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Morphological evidence for azimuthal variations of the cosmic ray

ion acceleration at the blast wave of SN 1006

Gamil Cassam-Chenäı1, John P. Hughes1, Estela M. Reynoso2,3, Carles Badenes4, David Moffett5

ABSTRACT

Using radio, X-ray and optical observations, we present evidence for morpho-

logical changes due to efficient cosmic ray ion acceleration in the structure of

the southeastern region of the supernova remnant SN 1006. SN 1006 has an ap-

parent bipolar morphology in both the radio and high-energy X-ray synchrotron

emission. In the optical, the shock front is clearly traced by a filament of Balmer

emission in the southeast. This optical emission enables us to trace the loca-

tion of the blast wave (BW) even in places where the synchrotron emission from

relativistic electrons is either absent or too weak to detect. The contact disconti-

nuity (CD) is traced using images in the low-energy X-rays (oxygen band) which

we argue reveals the distribution of shocked ejecta. We interpret the azimuthal

variations of the ratio of radii between the BW and CD plus the X-ray and ra-

dio synchrotron emission at the BW using CR-modified hydrodynamic models.

We assumed different azimuthal profiles for the injection rate of particles into

the acceleration process, magnetic field and level of turbulence. We found that

the observations are consistent with a model in which these parameters are all

azimuthally varying, being largest in the brightest regions.

Subject headings: acceleration of particles — cosmic rays — shock waves —

ISM: individual (SN 1006) — supernova remnants
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1. Introduction

Collisionless shocks in young supernova remnants (SNRs) are thought to be responsible

for the production and acceleration of the bulk of Galactic cosmic rays (CRs) at least up to

the “knee” (∼ 3 PeV) of the CR spectrum (e.g., Berezhko & Völk 2007). The theoretical

mechanism is believed to be the first order Fermi acceleration, also known as diffusive shock

acceleration (DSA), where electrons, protons and other ions scatter back and forth on mag-

netic fluctuations or Alfvén wave turbulence through the velocity discontinuity associated

with the shock (Jones & Ellison 1991; Malkov & O’C Drury 2001, and references therein).

The presence of the turbulence is a key ingredient in the process. The higher the turbu-

lence level, the higher the scattering rate and the faster the acceleration proceeds, allowing

particles to reach higher energies. The fast acceleration implies also that the CR pressure

becomes significant very quickly so that the shock structure is highly nonlinear (e.g., Ellison

et al. 2000; Baring 2007). The back-reaction of the particles on the shock hydrodynamics

increases the level of magnetic turbulence and the injection rate in turn, i.e., the accelerated

particles create the scattering environment by themselves (Bell 1978; Blandford & Ostriker

1978; Völk et al. 2003). Moreover, the production of relativistic particles (extracted from the

thermal plasma) along with their escape from the shock system increases the overall density

compression ratio (Berezhko & Ellison 1999; Blasi 2002).

This theoretical picture leads to several observational consequences. The intensity of

the synchrotron emission from shock-accelerated electrons will be larger as the acceleration

becomes more efficient since both the number of relativistic particles and intensity of the

magnetic field must increase. In the region of very efficient acceleration, the X-ray syn-

chrotron emission from the highest energy electrons will be concentrated in the form of thin

sheets behind the blast wave due to synchrotron cooling in the high turbulent magnetic

field amplified at the shock whereas the radio synchrotron emission will be much broader

in comparison (Ellison & Cassam-Chenäı 2005). Finally, the morphology of the interaction

region between the blast wave (BW) and the ejecta interface or contact discontinuity (CD)

will become much thinner geometrically as the acceleration becomes more efficient due to

the change in the compressibility of the plasma (Decourchelle et al. 2000; Ellison et al. 2004).

Because shocks are believed to put far more energy into ions than electrons, this last point,

if observed, would provide direct evidence for the acceleration of CR ions at the BW.

The detection of γ-rays with a neutral pion-decay signature resulting from the interac-

tion of shock-accelerated protons with the ambient matter would provide evidence for CR

ion acceleration as well. The best chance to see a clear pion-decay signal is when a SNR

interacts with a dense medium, the prototype case being RX J1713.7–3946 (Cassam-Chenäi

et al. 2004). Very high energy γ-rays have been detected from this remnant (Aharonian et al.
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2007a) and also from a few others (e.g., Aharonian et al. 2007b; Hoppe et al. 2007). How-

ever, the pion-decay signal is generally difficult to extract from these observations because

there are other processes efficiently producing γ-rays but involving CR electrons, namely

bremsstrahlung and Inverse-Compton scattering off the 2.7 K cosmic microwave background

and Galactic photons. The nature of the underlying process leading to γ-rays and therefore

the nature of the emissive particles is subject to intense debate (e.g., Berezhko & Völk 2006;

Porter et al. 2006; Uchiyama et al. 2007; Plaga 2008). Besides, in a large number of SNRs

where bright and geometrically thin X-ray synchrotron-emitting rims are observed (e.g.,

Keper, Tycho, SN 1006), ambient densities are often very low leaving open the question of

CR ion production in these SNRs (see also Katz & Waxman 2008).

The idea that the gap between the BW and CD allows quantifying the efficiency of CR

ion acceleration was proposed by Decourchelle (2005) in the case of Tycho, Kepler and Cas

A. In Tycho, a remnant where thin X-ray synchrotron-emitting rims are observed all around

with little variations in brightness, Warren et al. (2005) showed that the BW and CD are

so close to each other that they cannot be described by standard hydrodynamical models

(i.e., with no CR component), hence providing evidence for efficient CR ion acceleration in

this SNR. In a later study, Cassam-Chenäı et al. (2007) showed that the X-ray and to some

extent the radio properties of the synchrotron emitting rim as well as the gap between the CD

and BW were consistent with efficient CR ion acceleration modifying the hydrodynamical

evolution of Tycho.

Ideally, one would like to find a SNR where both efficient and inefficient particle acceler-

ation take place so that differential measurements can be made. This offers a great advantage

for the astrophysical interpretation since a number of uncertainties (e.g., distance and age)

can be eliminated in the comparison. Furthermore, by directly observing a difference in the

gap between the BW and CD in regions of efficient and inefficient acceleration, one obtains

a direct, model-independent, confirmation that CRs do indeed modify the hydrodynamical

evolution of the BW. SN 1006 provides a valuable laboratory in that regard since the gradual

variations of the intensity of the radio and X-ray synchrotron emission along the BW point

to underlying variation of CR ion acceleration. The task of measuring the ratio of radii

between the BW and CD in the regions of inefficient and efficient CR acceleration will be

challenging. Nonetheless, SN 1006 is one of the rare objects (perhaps even the unique one)

where this can be accomplished as we explain below.

In this paper, we focus our attention on the poorly studied southeastern (SE) quadrant

of SN 1006, i.e., along the shock front lying between the northeastern and the southwestern

synchrotron-emitting caps. Our first goal is to measure the ratio of radii between the BW

and CD there. We can fairly easily follow the BW in the bright synchrotron-emitting caps
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(presumably the regions of efficient CR acceleration) and the BW can still be traced from

the Hα emission in the region where both the radio and X-ray synchrotron emissions are

either too faint to be detected or absent (presumably the regions of inefficient CR acceler-

ation). As for the CD, it can be traced from the thermal X-ray emission associated with

the shocked ejecta. Our second objective is to measure the azimuthal variations of the syn-

chrotron brightness in the radio and several X-ray energy bands. With these observational

key results in hand, we use CR-modified hydrodynamic models of SNR evolution to constrain

the azimuthal variations of the acceleration parameters, i.e., the injection rate of particles

in the acceleration process, strength of the magnetic field, particle diffusion coefficient and

maximum energy of electrons and ions.

This paper is organized as followed. In §2, we describe the basic characteristics of SN

1006. In §3, we present the data used in our study. In §4, we present the key observational

results in SN 1006. In §5, we try to relate hydrodynamical models with those results in the

context of CR-unmodified and -modified shocks. Finally, we discuss our results (§6) and

present our conclusion (§7).

2. Basic characteristics of SN 1006

SN 1006 was a thermonuclear supernova (SN) widely seen on Earth in the year 1006

AD. More than a thousand year later, the remnant from this explosion is a huge shell of 30′

angular size.

The synchrotron emission is detected from the radio up to the X-rays and dominates

in two bright limbs – the northeast (NE) and southwest (SW) – where several thin (20′′

width or so) rims/arcs are running at the periphery, sometimes crossing each other (Bamba

et al. 2003; Long et al. 2003; Rothenflug et al. 2004). Those apparent ripples are most likely

the result of the projection of undulating sheets associated with the shock front. The radio

emission is well correlated with the nonthermal X-rays (Reynolds & Gilmore 1986; Long

et al. 2003). Both show an abrupt turn-on with coincident edges in the radial directions, but

the X-ray emission has more pronounced narrow peaks. This points to a scenario in which

the rims are limited by the radiative losses1 in a highly turbulent and amplified magnetic

field (Berezhko et al. 2002, 2003; Ellison & Cassam-Chenäı 2005; Ballet 2006). Finally,

the observed synchrotron morphology in SN 1006 is best explained if the bright limbs are

polar caps with the ambient magnetic field parallel to the shock velocity (Rothenflug et al.

1Note however that such a model is incapable of reproducing the observed sharp turn-on of radio syn-

chrotron emission at SN 1006’s outer edge, as in Tycho (Cassam-Chenäı et al. 2007).
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2004). In the caps, the maximum energy reached by the accelerated particles, as well as

their number, must be higher than elsewhere (Rothenflug et al. 2004).

In contrast to the nonthermal X-ray emission, the very faint thermal X-ray emission

seems to be distributed more or less uniformly (Rothenflug et al. 2004). This is best seen

in the oxygen band (0.5-0.8 keV). It is, however, difficult to separate the thermal emission

from the nonthermal emission in the caps. Moreover, it is not clear whether the thermal

X-rays should be attributed to the shocked ambient medium (Yamaguchi et al. 2007) or the

shocked ejecta (Long et al. 2003), but both the over-solar abundances required to fit the

X-ray spectra in the inner northwest (NW) and NE parts of the SNR and the clumpiness

on a 30′′ to 1′ scale of the low-energy X-ray emission favor an ejecta origin. The SE region

seems to be slightly different than the rest of the SNR in terms of ejecta composition and

clumpiness too. There is, in particular, evidence for the presence of cold (Winkler et al.

2005) and reverse-shock heated (Yamaguchi et al. 2007) iron. In terms of dynamics, there

is evidence for ejecta extending to/overtaking the BW in the NW (Long et al. 2003; Vink

et al. 2003; Raymond et al. 2007).

In the optical, the remnant has a very different morphology. Deep Hα imaging reveals

very faint Balmer emission around almost the entire periphery with a clear arc or shock front

running from east to south (Winkler & Long 1997; Winkler et al. 2003). Interestingly, no syn-

chrotron emission is detected in X-ray in this southeast (SE) region whereas extremely faint

(and highly polarized) synchrotron emission is detected in the radio (Reynolds & Gilmore

1993). Besides, none of the optical emission is of synchrotron origin. There is also a clear

Balmer line filament in the NW of SN 1006 which has been observed in great detail in the

optical (Ghavamian et al. 2002; Sollerman et al. 2003; Raymond et al. 2007), ultraviolet

(Raymond et al. 1995; Korreck et al. 2004; Hamilton et al. 2007) and X-ray bands (Long

et al. 2003; Vink et al. 2003; Acero et al. 2007), providing diagnostics for the shock speed

(Vs ∼ 2400−3000 km/s), ion-electron thermal equilibration at the shock (Te/Tp ≤ 0.07) and

preshock ambient density (0.25 cm−3 ≤ n0 ≤ 0.4 cm−3). Optical proper motions (Winkler

et al. 2003) combined with the shock speed estimate (Ghavamian et al. 2002; Heng & Mc-

Cray 2007) along this NW filament leads to a distance to the SNR between 1.8 and 2.3 kpc.

However, because the remnant is interacting with a denser medium in the NW (Moffett et al.

1993; Dubner et al. 2002), the shock speed and the ambient density, in particular, might be

respectively higher and lower elsewhere (Acero et al. 2007). For instance, the broadening

of the oxygen (Vink et al. 2003) and silicon (Yamaguchi et al. 2007) X-ray emission-lines

suggest a shock speed Vs ≥ 4000 km/s (although these measurements were carried out at

different locations in SN 1006). Such high velocities are compatible with recent proper mo-

tion measurements based on radio data (Moffett et al. 2004; Reynoso et al. 2008). Moreover,

the lack of observed TeV γ-ray emission (Aharonian et al. 2005) sets an upper limit on the
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ambient density of n0 ≤ 0.1 cm−3 (Ksenofontov et al. 2005) and the high latitude (∼ 500 pc

at a distance of 2 kpc) of SN 1006 suggests that n0 ∼ 0.03 − 0.04 cm−3 (Ferrière 2001).

3. Data

3.1. X-ray

We used the most recent Chandra data of SN 1006 (ObsId 3838 and ObsId 4385 up to

4394) which were obtained in April 2003 with the ACIS-I imaging spectrometer in timed

exposure and very faint data modes. Eleven pointings were necessary to cover the entire

extent of the remnant. The final image is shown in Figure 1. The X-ray analysis was done

using CIAO software (ver. 3.4). Standard data reduction methods were applied for event

filtering, flare rejection, gain correction. The final exposure time amounts to ∼ 20 ks per

pointing.

3.2. Radio

Radio observations were performed in 2003 (nearly at the same time as the X-ray ob-

servations) with both the Australia Telescope Compact Array (ATCA) and the Very Large

Array (VLA).

The ATCA consists of an array of six 22-m antennae that attain a maximum baseline

of 6 km in the East-West direction. The ATCA observations occurred on three separate

occasions in antenna configurations that optimize high spatial resolution: January 24 in its

6-km B configuration for 12 hours, March 3 in its 6-km A configuration for 12 hours, and

June 12 in its 750-m C configuration for 7 hours. Observations were made using two 128-

MHz bands (divided into 32 channels each) centered at 1384 and 1704 MHz. The source

PKS 1934–638 was used for flux density and bandpass calibration, while PKS 1458–391 was

used as a phase calibrator. The total integration time on SN 1006 was over 1500 minutes.

The VLA consists of 27 25-m antennae arranged in a “Y” pattern. Observations with

the VLA were carried out during 4 hours on January 25th in its hybrid CnD configuration

(arranged to maximize spatial resolution when observing southern declination sources). Ob-

servations were made using two 12.5-MHz channels centered at 1370 and 1665 MHz. 3C286

and 1451–400 were observed for flux and phase calibration. The total VLA integration time

on SN 1006 was 140 minutes.

Data from all of the observations were combined, then uniformly weighted during imag-
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ing to minimize the effects of interferometric sidelobes. The final image, shown in Figure

2, has a resolution of ∼ 6′′ × 9′′ and an off-source rms noise of 20 µJy/beam near the rims.

Since the angular size of SN 1006 is comparable to the primary beam of both instruments

(half a degree), corrections were applied to the image to recover the lost flux. After primary

beam corrections, the total flux density was recovered to within < 5% of the expected value.

With primary beam correction, noise increases in the faint SE portion. For the study of the

azimuthal variations of the radio emission at the shock, we use non beam corrected data

(§4.2).

3.3. Optical

We used the very deep Hα image presented by Winkler et al. (2003). This image taken

in June 1998, that is 5 years before the X-ray data, is shown in Figure 3. To compare the

optical and X-ray images, we had to correct for the remnant’s expansion. In the optical,

proper motions of 0.280± 0.008 ′′ yr−1 were measured (from April 1987 to June 1998) along

the NW rim where thin nonradiative Balmer-dominated filaments are seen (Winkler et al.

2003). In the radio, an overall expansion rate of 0.44± 0.13 ′′ yr−1 was measured (from May

1983 to July 1992, Moffett et al. 1993), although higher values have been measured using

more recent observations (Moffett et al. 2004; Reynoso et al. 2008). This value does not

include the NW rim where the optical filaments are observed because there is simply little

or no radio emission there. The observed expansion rate is clearly higher in the radio than

in the optical and is consistent with the picture in which the BW encounters a localized and

relatively dense medium in the NW. For simplicity, when using radial profiles, we use the

value of 0.40′′ yr−1, so that the optical profiles are shifted by 2′′ to be compared with the X-

ray profiles. As we show below, this correction is negligible compared to other uncertainties

when trying to locate the fluid discontinuities.

4. Key observational results

4.1. Fluid discontinuities

In this section, we determine the location of the fluid discontinuities – i.e., the BW and

CD – in the SE quadrant of SN 1006. Our goal is to measure the gap between the BW and

CD as a function of azimuth.

To trace the location of the BW, we use the Hα image of SN 1006 which shows very faint

filaments of Balmer emission around much of the periphery of the remnant (Fig. 4, top-right
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panel). In the southeastern quadrant, the Hα emission follows a nearly circular arc. We

extracted radial profiles by azimuthally summing over 4◦ wide sectors starting from 158◦

(from west) to 302◦ (in the clockwise direction). The center of these profiles was determined

to provide the best match to the curvature of the Hα rim. The coordinates of the center are

(αJ2000, δJ2000) = (15h02m56.8s,−41◦56′56.6′′). This center is very close to the geometrical

center of the SNR, which, given its overall circularity, may not be too far from the overall

expansion center which has not yet been determined. In practice we found it very difficult

to determine the location of the optical rim based purely on a numerical value (e.g., contour

value or enhancement factor above the local background level) because of the presence of faint

stellar emission, poorly subtracted stars, and faint diffuse Hα emission across the image. So,

we identified locations where the Hα emission increased slightly in the radial profiles by eye

and then further checked (again visually) the corresponding radii on the optical image. We

associated generous uncertainties with the radii derived from this procedure: 12′′ outward

and 24′′ inward (our process tended to overestimate the radii, hence the asymmetric errors).

To trace the location of the CD, we use the X-ray image in the low-energy band (0.5−0.8

keV) which contains most of the oxygen lines (Fig. 4, bottom-left panel). While it is not

clear whether the oxygen emission comes from the shocked ambient medium or the shocked

ejecta, we consider here an ejecta origin. We discuss and justify this assumption below

(§5.1). Another issue comes from the fact that the X-ray emission in the oxygen band may

contain some nonthermal contribution in the bright limbs. The three-color composite X-ray

image (Fig. 1) reveals that the oxygen emission (red color) is in fact fairly different from

the nonthermal X-rays (white color), and appears notably clumpier even in the synchrotron

limbs (see the eastern limb for instance). This tells us that we can still use the oxygen

emission to trace the CD in the bright limbs, at least in the azimuthal range we selected

(158◦−302◦) where the synchrotron emission is not completely overwhelming. Radial profiles

were extracted from a flux image, summing over 1◦ wide sectors, with the same center and

azimuthal range as for the optical. In the radial profiles, we selected the radii for which the

brightness becomes larger than 1.5 × 10−5 ph/cm2/s/arcmin2.

Figure 5 summarizes the above-described measurements and shows the azimuthal varia-

tions of the radii as determined from the Hα emission (black lines) and low-energy (0.5−0.8

keV, red lines), mid-energy (0.8 − 2.0 keV, green lines) and high-energy (2.0 − 4.5 keV,

blue lines) X-ray emissions. The cross-hatched lines indicate the location of the bright syn-

chrotron limbs. They correspond to the places where the contour of the outer high-energy

X-ray emission (blue lines) can be determined. Between the two synchrotron caps (angles

between 200◦ and 270◦), there is a clear gap between the BW and CD which is easily seen in

Figure 4 (bottom-left panel). In the bright limbs, however, the BW and CD are apparently

globally coincident. Fingers of ejecta (indicated by the stars) are even sometimes visible



– 9 –

clearly ahead of the Hα emission. In these places, the Hα emission might not be the best

tracer of the BW location. The mid-energy X-ray emission (green lines) shows that these

fingers are also present. It is not clear whether this emission traces the BW or, again, the

ejecta (mostly silicon). The high-energy X-ray emission (blue lines) cannot be used, nor a

X-ray spectral analysis, to answer this point because of the low number of X-ray counts in

this region.

Figure 6 shows the ratio of radii for the Hα and low-energy X-ray emission, which to

first approximation corresponds to the ratio of radii between the BW and CD, RBW/RCD.

With increasing azimuthal angles the ratio of radii increases from values near unity (within

the northeastern synchrotron-emitting cap) to a maximum of RBW/RCD ≃ 1.10+0.02
−0.04 before

falling again to values near unity (in the southwestern synchrotron-emitting cap). Over the

entire azimuthal region where the synchrotron emission is faint, the azimuthally averaged

ratio of radii is RBW/RCD ≃ 1.04 ± 0.03. In the regions within the synchrotron rims,

RBW/RCD ≃ 1.00.

4.2. Synchrotron emission at the blast wave

In this section, we measure the azimuthal variations of the synchrotron flux extracted

at the BW and we investigate how these variations compare when measured at different

frequencies.

For that purpose, we use radio and X-ray data (Fig. 4, left panels). We extracted the flux

in a 30′′-wide region behind the BW along the SE rim. To define the BW location, we used the

well-defined radii obtained from the high-energy X-ray image for the northeastern (θ ≤ 200◦)

and southwestern (θ ≥ 270◦) regions while, in the remaining SE quadrant (200◦ < θ < 270◦),

we used the radii determined from the Hα image since no synchrotron emission is detected

there.

In Figure 7 (top panel), we show the azimuthal variations of the projected brightness in

the radio (1.5 GHz, black lines), and several X-ray energy bands: 0.5 − 0.8 keV (red lines),

0.8−2.0 keV (green lines) and 2.0−4.5 keV (blue lines). The radio brightness was multiplied

by 2×10−5 to make it appear on the same plot with the X-ray data. When moving from the

northeastern or southwestern synchrotron-emitting caps toward the faint SE region, we see

that the projected brightness gradually decreases in both radio and X-ray bands. The radio,

medium- (green lines) and high-energy (blue lines) X-rays show mostly the variations of the

synchrotron emission, while the low-energy X-rays (red lines) show mostly the variations of

the thermal (oxygen) emission, but may contain some nonthermal contribution as well.
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In Figure 7 (bottom panel), we show the same azimuthal variations but rescaled roughly

to the same level in the synchrotron-emitting caps. The logarithmic scale shows that the

brightness contrast between the bright caps and faint SE region is of order 20 to 50 in the

radio and X-rays. In fact, this value might even be larger since the radio and high-energy

X-ray fluxes in the faint SE quadrant are compatible with no emission. We note that the

azimuthal variations of the radio synchrotron emission are much less pronounced than those

in the X-rays.

5. Relating hydrodynamical models to the observations

In the previous section, we have found evidence for azimuthal variations of the separation

between the BW and CD and synchrotron brightness just behind the BW (§4). Both the

separation and the brightness are correlated: the brighter the BW, the smaller the separation.

We measured in particular an unexpectedly small separation between the BW and CD (∼
1.04) in the SE quadrant of SN 1006 where little to no synchrotron emission is detected.

These measurements depend on the assumption that the oxygen emission comes from the

shocked ejecta. After justifying this approach below (§5.1), we first investigate the different

scenarios that could potentially lead to a small ratio of radii between the BW and CD

assuming no CR acceleration at the shock (§5.2). Finally, we interpret the observed azimuthal

variations of the ratio of radii and synchrotron brightness using CR-modified hydrodynamic

models (§5.3).

5.1. Does the oxygen come from the ejecta?

A strong assumption made in the measurement of the ratio of radii between the BW

and CD in SN 1006 is that the thermal X-ray emission (from the oxygen) is associated with

the shocked ejecta.

There is, however, still the possibility that the oxygen emission is associated with the

shocked ambient medium. Yamaguchi et al. (2007) have shown that the integrated X-ray

spectrum of the SE quadrant can be described by a combination of three thermal plasmas

in non-equilibrium ionization and one power-law component. One of the thermal compo-

nents, assumed to have solar abundances and therefore associated with the shocked ambient

medium, was able to produce most of the observed low-energy X-rays (in particular the Kα

lines from O vii, O viii and Ne ix). The two other thermal components, with non-solar

abundances, were able to reproduce most of the Kα lines of Si, S and Fe, and were attributed
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to the shocked ejecta.

There are several arguments from an examination of the high resolution Chandra images,

however, that favor an ejecta origin for the low-energy X-ray emission. The three-color

composite X-ray image (Fig. 1) shows that the spectral character of the X-ray emission in the

SE quadrant (where there is little to no synchrotron emission) does not change appreciably

as a function of radius behind the BW, which would be expected if the Yamaguchi et al.

(2007) picture were correct. The lack of virtually any X-ray emission between the BW and

CD can be explained by the expected low density of the ambient medium (∼ 0.03 − 0.04

cm−3 Ferrière 2001) which can reduce both the overall intensity and the level of line emission

(due to strong nonequilibrium ionization effects). If the soft X-ray emission were from the

shocked ambient medium its brightness should in principle rise gradually behind the BW as

a result of the projection of a thick shell onto the line-of-sight (Warren et al. 2005), but the

radial profile of the low-energy X-ray emission (not shown) in fact turns on rather quickly

at the periphery.

Another argument in favor of an ejecta origin is the observed clumpiness of the oxygen

emission throughout the SE region. There is also the protuberances seen right at the edge

of SN 1006, which are suggestive of Rayleigh-Taylor hydrodynamical instabilities that are

expected at the CD (see Fig. 1). Note that the outer edge of the long, thin filament of

X-ray emission in the NW – which overlaps the brightest Hα emission and therefore is likely

to be at least partly due to shocked ambient medium – is much smoother than the edge

of the remnant in the SE. Finally, high emission measures of oxygen in the shocked ejecta

at young dynamical SNR ages are compatible with most thermonuclear explosion models.

Essentially, all 1-D and 3-D deflagration models, and all delayed detonation and pulsating

delayed detonation models have oxygen in the outer layers (but not prompt detonations or

sub-Chandrasekhar explosions) (Badenes et al. 2003).

5.2. The small gap in the faint SE region

We have presented evidence in §4.1 for a small ratio of radii RBW/RCD ∼ 1.04 between

the BW and CD in the SE quadrant of SN 1006. This is also the location where the radio and

X-ray nonthermal emission are either very weak or undetected. The most straightforward

explanation for this lack of synchrotron emission is an absence of efficient CR acceleration at

the BW here. In the following sections, we first investigate whether pure 1-D hydrodynamical

models for SNR evolution (i.e., without CR acceleration) can reproduce such a small ratio

of radii. We consider the role of ambient density, ejecta profile, and explosion energy on the

size of the gap between CD and BW. Then we consider the effects of 3-D projection on the
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hydrodynamically unstable CD.

5.2.1. Predictions from standard hydrodynamical models

To understand how a small gap can be produced in a region where there is apparently no

evidence for efficient particle acceleration, we used standard one dimensional (1-D) spher-

ically symmetric numerical hydrodynamical simulations that follow the interaction of the

ejecta with the ambient medium. These simulations do not include any CR component.

Key inputs to these simulations are the initial density profiles of the ejecta and ambient

medium. In the following, we consider a uniform density in the ambient medium and two

different initial ejecta density profiles: exponential and power-law. The exponential form has

been shown to be most representative of explosion models for thermonuclear SNe (Dwarkadas

& Chevalier 1998), but we also present results with a power-law distribution to quantify the

impact of the shape or compactness of the ejecta profile on RBW/RCD.

In general, an exponential profile is expected for thermonuclear SNe because the explo-

sion is driven by the continuous release of energy from the burning front as it propagates

through the star, while the power-law profile (more compact) is expected for core collapse

SNe because the explosion is driven by a central engine (core bounce), and the shock loses

energy as it propagates through the star (Matzner & McKee 1999). Power law profiles

with n = 7 have been used to represent 1-D deflagration models (in particular, model W7

from Nomoto et al. 1984), while exponential profiles are more adequate to represent delayed

detonation models (Dwarkadas & Chevalier 1998). When comparing these two analytical

profiles, it is worth noting that they transmit momentum to the ISM in a different manner.

The more compact power law profile is a more efficient piston for ISM acceleration, and will

lead to smaller gaps than the less compact exponential profile (Dwarkadas & Chevalier 1998;

Badenes et al. 2003).

The hydrodynamical simulations provide the radii of the BW and CD at any time for a

given ejecta profile, ambient medium density, and explosion energy. In Figure 8, we quantify

the impact of these three contributions on the ratio of radii RBW/RCD. In particular, we

plot the ratio obtained for a wide range of ambient medium density (0.001 cm−3 ≤ n0 ≤
30 cm−3) using 1-D exponential (EXP) and powerlaw (PL7) ejecta profiles with different

kinetic energies. The cross-hatched domains define the range of ratio of radii2 observed in

2In Figure 8, it is important to keep in mind that the maximum value of the ratio found in Tycho comes

from a presumably efficient particle acceleration shock region while in SN 1006, it comes from an inefficient
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SN 1006 and Tycho (RBW/RCD ≤ 1.10) and range of typical ambient densities (0.01 cm−3 ≤
n0 ≤ 0.06 cm−3 in SN 1006; 0.1 cm−3 ≤ n0 ≤ 0.6 cm−3 in Tycho) consistent with constraints

derived from the observations (Acero et al. 2007; Cassam-Chenäı et al. 2007). It is clear

that the 1-D hydrodynamical simulations are unable to reproduce a ratio of radii as small

as the one observed in both SNRs. We note however that such a comparison between the

observations and the models is not straightforward since our measurements are likely to be

affected by projection and other effects as we detail next.

5.2.2. Three dimensional projection effects

One of the limitations of our numerical simulations is the one dimensionality. Hydrody-

namical simulations in 2-D or 3-D show that hydrodynamical (Rayleigh–Taylor) instabilities

project pieces of ejecta ahead of the 1-D CD. In these simulations, the outermost pieces of

ejecta reach half way of the gap between the 1-D CD and BW (e.g., Chevalier et al. 1992;

Wang & Chevalier 2001). Therefore, because of such protrusions, the line-of-sight projected

CD radius, R̂CD, will appear larger than the true average CD radius, RCD. On the other

hand, because the BW is not as highly structured as the CD interface (it is not subject to

Rayleigh–Taylor instabilities), it is reasonable to assume that the true average BW radius,

RBW, is very close to the projected value, R̂BW. It follows that the ratio of projected radii

between the BW and CD, R̂BW/R̂CD, will be smaller than the true average ratio, RBW/RCD.

Quantifying the effects due to projection is of considerable importance for interpreting the

ratio of radii between the BW and CD in the context of particle acceleration3.

There are several attempts aimed at estimating the projection correcting factor, ξ,

where ξ is defined as R̂CD = (1 + ξ) RCD. Based on the projection with ejecta protrusions

determined from a power-spectrum analysis done at the observed CD in Tycho, Warren

et al. (2005) estimated an amount of bias of ξproj ≃ 6%. Based on the projection of a

shell of shocked ejecta with protrusions calculated in a 2-D hydrodynamical simulations,

Dwarkadas (2000) and Wang & Chevalier (2001) found a slightly larger value of ξproj ≃ 10%.

Taking ξ = 10%, the predicted ratio of projected radii, R̂BW/R̂CD = RBW/RCD / (1 + ξ),

becomes 1.18/(1 + 0.1) ≃ 1.07, where 1.18 is the ratio of radii found at an age of 1000 years

using 1-D power-law ejecta profiles assuming a kinetic energy of the explosion of 1051 ergs

particle acceleration region.

3It is not even clear how the 1-D CR-modified hydrodynamical results on the ratio of radii need to be

adjusted given multi-D Rayleigh–Taylor instability effects. Preliminary studies on this have been done by

Blondin & Ellison (2001) but this work does not fully quantify all relevant effects.
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and an ambient medium density of 0.03 cm−3. Using exponential ejecta profiles, we find

R̂BW/R̂CD = 1.14 because they produce higher ratio of radii (i.e., RBW/RCD = 1.25). In

either case (power-law or exponential ejecta profiles), the average ratio (resp. 1.07 or 1.14)

is still larger than the average value of 1.04 measured in the SE quadrant of SN 1006 (cf.

§4.1).

There are several possibilities to explain such discrepancy between the models and the

observations. For instance, the value of ξproj could be larger in 3-D than in 2-D. Indeed,

models show that hydrodynamical instabilities can grow considerably faster (by ∼ 30%) and

penetrate further in 3-D than in 2-D (Kane et al. 2000). There can also be a certain amount

of inhomogeneity in the ejecta density distribution. Spectropolarimetric observations of

thermonuclear SNe do show that ejecta are clumpy on large scales (Leonard et al. 2005).

Besides, Wang & Chevalier (2001) have shown that high density clump traveling with high

speed in the diffuse SN ejecta can reach and perturb the BW. This requires a high density

contrast of a factor 100. The density contrast is certainly not as high in SN 1006 because

otherwise we would see it in the low-energy X-ray and/or in the optical image, but may

be non-negligible. According to the previous calculation, the ejecta clumping is required to

contribute an additional ξclump ∼ 3− 10% factor (so that ξ = ξproj + ξclump) in order to make

the observed and predicted ratios of radii agree. Finally, although we could not come up

with a reasonable solution, we cannot exclude the possibility of a complex 3-D geometry in

the SE quadrant of SN 1006 where the outermost extent of the shocked ejecta would not

be directly connected to the shock front emission in the hydrodynamical sense (i.e., the CD

and BW would corresponds to different parts of the remnant seen in projection).

5.3. Azimuthal variations of the CR ion acceleration

In this section, we try to explain both the observed azimuthal variations of the ratio of

radii between the BW and CD (§4.1) and synchrotron flux at the BW (§4.2) in SN 1006 in

the context of CR-modified shock hydrodynamics where the efficiency of CR acceleration is

varying along the BW.

In the following, we use CR-modified hydrodynamic models of SNR evolution which

allow us for a given set of acceleration parameters to calculate the ratio of radii, RBW/RCD,

and the synchrotron flux, Fν , at any frequency ν. Relevant parameters are the injection

rate of particles into the DSA process, the magnetic field strength and the particle diffusion

coefficient (or equivalently the turbulence level). Our goal will not consist in finding the exact

variations of these parameters along the shock by fitting the data, but rather to provide a

qualitative description of the variations based on the theory to verify whether the model
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predictions are consistent with the observations or not.

5.3.1. Conceptual basis for modeling

Here, we explicate the various assumptions concerning the spatial distribution of the

ambient density and magnetic field before running our CR-modified hydrodynamic models.

The knowledge of the remnant’s environment is important since it affects its evolution and

also its emission characteristics.

First, we assume that the ambient density is uniform. This is suggested by the quasi-

circularity of the Hα filament in the SE of SN 1006 and a reasonable assumption for remnants

of thermonuclear explosion (Badenes et al. 2007). Second, we assume that the ambient

magnetic field direction is oriented along a preferred axis. In SN 1006, this would correspond

to southwest-northeast axis which is the direction parallel to the Galactic plane (following

Rothenflug et al. 2004). The magnetic field lines are then parallel to the shock velocity in

the brightest part of the synchrotron caps in SN 1006 and perpendicular at the equator.

The angle between the ambient magnetic field lines and the shock velocity will determine

the number of particles injected in the DSA process, i.e., the injection rate. The smaller the

angle, the larger the injection rate (Ellison et al. 1995; Völk et al. 2003).

With this picture of an axisymmetry around the magnetic field orientation axis in mind,

the azimuthal conditions at the BW are essentially spatially static, the evolution is self-

similar and hence temporal evolution of gas parcels can be followed with a 1-D spherically

symmetric code. We will run such a code with specific initial conditions at each azimuthal

angle along the BW (viewing the SNR in a plane containing the revolution axis of the

magnetic field). We implicitly assume a radial flow approximation in our approach, i.e., that

each azimuthal zone is sufficiently isolated from the others so that they evolve independently.

We run the self-similar models assuming a power-law density profile in the ejecta with

an index of n = 7, an ejected mass and kinetic energy of the ejecta of 1.4 M⊙ and 1051

ergs, respectively, which are standard values for thermonuclear SNe. We assume that the

SNR evolves into an interstellar medium whose density is n0 = 0.03 cm−3 and pressure 2300

K cm−3. For such a low density, the use of the self-similarity is well justified as shown in

Figure 8: the ratio of radii RBW/RCD obtained with a 1-D purely numerical hydrodynamic

simulation with the same initial conditions remains indeed more or less constant even until

the age of 1000 yrs (solid yellow lines). Other input parameters will be specified later. First,

we describe the CR acceleration model used with the hydrodynamical model.
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5.3.2. CR acceleration model

The models consist of a self-similar hydrodynamical calculation coupled with a nonlinear

diffusive shock acceleration model, so that the back-reaction of the accelerated particles at the

BW is taken into account (Decourchelle et al. 2000). For a given injection rate of protons,

ηinj, far upstream magnetic field, Bu, and diffusion coefficient, D, the shock acceleration

model determines the shock jump conditions and the particle spectrum from thermal to

relativistic energies (Berezhko & Ellison 1999). This allows us to compute the ratio of radii

and, by following the downstream evolution of the particle spectrum associated with each

fluid element, the synchrotron emission within the remnant (Cassam-Chenäı et al. 2005).

The CR proton spectrum at the BW is a piecewise power-law model with an exponential

cutoff at high energies:

fp(E) = a E−Γ(E) exp (−E/Ep,max) , (1)

where a is the normalization, Γ is the power-law index which depends on the energy E,

and Ep,max is the maximum energy reached by the protons. Typically three distinct energy

regimes with different Γ values are assumed (Berezhko & Ellison 1999). The normalization,

a, is given by:

a =
ninj qsub

4 π p3
inj

(2)

where ninj = ηinj n0 (rtot/rsub) is the number density of gas particles injected in the acceler-

ation process, with rtot and rsub being the overall density and subshock compression ratios,

qsub = 3 rsub/(rsub − 1) and pinj is the injection momentum. Here, pinj = λ mp cs2 where λ is

a parameter (here fixed to a value of 4) which encodes all the complex microphysics of the

shock and cs2 is the sound speed in the shock-heated gas immediately downstream from the

subshock (see §2.2 in Berezhko & Ellison 1999). We note that because there is a nonlinear

reaction on the system due to the injection, the parameter ηinj should be in fact related to

pinj (see §5 in Blasi et al. 2005, for more details).

The CR electron spectrum at the BW is determined by assuming a certain electron-

to-proton density ratio at relativistic energies, Kep, which is defined as the ratio between

the electron and proton distributions at a regime in energy where the protons are already

relativistic but the electrons have not yet cooled radiatively (e.g., Ellison et al. 2000). In the

appropriate energy range, the CR electron spectrum is then:

fe(E) = a Kep E−Γ(E) exp (−E/Ee,max) , (3)

where Ee,max is the maximum energy reached by the electrons, which could be eventually

lower than that of protons (Ep,max) through synchrotron cooling of electrons depending on
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the strength of the post-shock magnetic field. Kep is left as a free parameter. We will obtain

typically Kep ∼ 10−4 − 10−2.

The maximum energies Ep,max and Ee,max contain information on the limits of the ac-

celeration. They are set by matching either the acceleration time to the shock age or to the

characteristic time for synchrotron losses, or by matching the upstream diffusive length to

some fraction, ξs, of the shock radius, whichever gives the lowest value. We set ξs = 0.05,

a value that allows to mimic the effect of an expanding spherical shock as compared to the

plane-parallel shock approximation assumed here (see Berezhko 1996; Ellison et al. 2000).

A fundamental parameter in determining the maximum energy of particles is the diffusion

coefficient, D, which contains information on the level of turbulence and encodes the scat-

tering law (Parizot et al. 2006). For the sake of simplicity, we assumed the Bohm regime

for all particles (i.e., diffusion coefficient proportional to energy). We allow deviations from

the Bohm limit (which corresponds to a mean free path of the charged particles equal to

the Larmor radius, which is thought to be the lowest possible value for isotropic turbulence)

via the parameter k0 defined as the ratio between the diffusion coefficient, D, and its Bohm

value, DB. Hence k0 ≡ D/DB is always ≥ 1 and k0 = 1 corresponds to the highest level

of turbulence. The smaller the diffusion coefficient (or k0), the higher the maximum energy

(the maximum energy scales as 1/
√

k0 in the radiative loss case and as 1/k0 in the age- and

escape-limited cases).

5.3.3. Heuristic models

In order to make predictions for the azimuthal variations of the ratio of radii and syn-

chrotron flux, we must make some assumptions about the azimuthal variations of the input

parameters used in our CR-modified hydrodynamical models. Relevant input parameters

are the injection rate (ηinj), the upstream magnetic field (Bu), the electron-to-proton ratio

at relativistic energies (Kep) and the level of turbulence or diffusion coefficient relative to

the Bohm limit (k0).

To understand the influence of these four basic input parameters, we begin first with

a heuristic discussion to set the stage for later detailed and more physical models (§5.3.5).

In Figure 9, we show three models where we vary the two most important parameters, ηinj

and Bu, with azimuthal angle (Kep is held constant and k0 is set to 1 at all angles). Model

1 (left panels) has ηinj varying from 10−5 to 10−3, while Bu is held constant at the value

25 µG. Model 2 (middle panels) has constant ηinj = 10−4 and Bu varying from 3 µG to

25 µG. Model 3 (right panels) is a combination of models 1 and 2 and has ηinj varying from

10−5 to 10−3 and Bu varying from 3 µG to 25 µG.
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Note that in all these models, the functional form of the profiles when ηinj and Bu vary

is rather arbitrary and just used for illustration purposes (for completeness we note that the

angular range shown corresponds to the data extraction region in Fig. 7). Moreover, the

upstream magnetic field, Bu (second panels, solid lines), is allowed to vary with azimuthal

angle because we implicitly assume that it can be significantly amplified by the CR-streaming

instability. Our model does not include self-consistently the magnetic field amplification

believed to occur at SNR shocks, but is provided with a simple compression. Assuming that

the magnetic turbulence is isotropic ahead of the shock, the immediate post-shock magnetic

field, Bd (dashed lines), will then be larger than upstream by a factor rB ≡ Bd/Bu =
√

(1 + 2 r2
tot)/3. This relation is assumed at each azimuthal angle4.

We show the predicted profiles of the ratio of radii between the BW and CD (third pan-

els) and synchrotron brightness projected along the line-of-sight in the radio and different

X-ray energy bands (bottom panels). We explain later how those brightness profiles were

precisely constructed (§5.3.5). Clearly, model 2 does not predict the expected correlation

between the ratio of radii and the synchrotron brightness and hence can be rejected imme-

diately5. On the other hand, models 1 and 3 lead to the expected correlation: the smaller

the BW/CD ratio, the brighter the synchrotron emission. Comparing models 1 or 3 with

model 2 allows us to see that only an azimuthal variation of the injection rate leads to the

appropriate variation in the ratio of BW to CD radii (third panels). Comparing model 1

with model 3 shows the impact of the magnetic field variations through synchrotron losses

on the azimuthal profiles of the X-ray synchrotron emission (bottom panels).

Although models 1 and 3 seem to describe the key observational constraints fairly well,

they suffer weaknesses as regards their underlying astrophysical premises. In model 1, it

is difficult to justify why the magnetic field should be enhanced in the region of inefficient

particle acceleration (ηinj ≤ 6 × 10−5). The model proposes a post-shock magnetic field

there of ∼ 80 µG, when a value of 10 − 15 µG would more likely reflect the value of the

compressed ambient field. In model 3, it is difficult to understand why the turbulence level

would saturate (i.e., k0 = 1) everywhere. Hence, we are led to develop more elaborated

4Here, the compression does not depend on the angle between the upstream magnetic field and shock

velocity as considered in Reynolds (1998) or Orlando et al. (2007). Instead we assume that after the

amplification process, the magnetic field becomes entirely turbulent, so its originally ordered character has

been lost.

5Looking at the BW to CD ratio in model 2, it naively seems surprising to have a less modified shock

(i.e., higher BW to CD ratio) where the magnetic field is larger. This effect is due to the presence of Alfvén

heating in the precursor (see Berezhko & Ellison 1999), although there is debate about whether this is the

most efficient mechanism for turbulent heating in the precursor (see Amato & Blasi 2006).
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models where k0 and/or Kep are allowed to vary with azimuthal angle. A variation of either

k0 or Kep will not significantly affect the ratio of BW to CD radii, but will only modify

the profiles of the synchrotron emission. In fact, a model with varying Kep can be already

excluded because this quantity changes the radio and X-ray synchrotron intensities in the

same way while the observed radio and X-ray profiles (Fig. 7) vary with azimuth in different

ways. Varying k0 (as we show in §5.3.5) does allow us to modify the relative azimuthal

profiles.

5.3.4. Can CR-modified models provide RBW/RCD = 1.00?

Although CR-modified hydrodynamical simulations predict a ratio of radii RBW/RCD

smaller than standard hydrodynamical simulations, they still predict a lower limit on that

ratio that is strictly larger than unity. For instance, Figure 9 (third-right panel) shows that

the modeled ratio of radii where the synchrotron emission is strong is ∼ 1.13. This value

was obtained assuming an injection rate of 10−3 and an ambient magnetic field of 25 µG.

Keeping all the same inputs, but reducing the magnetic field value to 3 µG, we obtain the

lowest possible value of RBW/RCD = 1.06.

On the other hand, the observations of SN 1006 show that the ratio of radii is of order

1.00 in the synchrotron-emitting caps, a value that is not possible to obtain from our CR-

modified model under the DSA framework. However, as already mentioned before in our

discussions of the small gap between the BW and CD in the region of inefficient acceleration

(§5.2), we need to consider projection effects due to hydrodynamical instabilities at the CD

which can reduce the gap by 6−10%. This does not fully account for the difference with the

model and, therefore, we may need to invoke another effect, such as clumping of the ejecta,

to fully explain the offset between the observation and models. It is important to note that

in both the regions of efficient and inefficient CR acceleration, we require essentially the same

numerical factor to bring the modeled ratio of radii (for the appropriate model in each case)

into agreement with the observed ratio. In the following, we introduce an ad-hoc rescaling

of the ratio of radii by decreasing the modeled values by a constant factor (∼ 13%) at all

azimuthal angles. By doing this, we implicitly assume that this factor contains the total

contribution of effects that are unrelated to the CR acceleration process. The numerical

value used depends, of course, on the particular SN explosion model used. For example, the

factor would need to be increased slightly in the case of an exponential ejecta profile (cf.,

Fig. 8).
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5.3.5. Toward a good astrophysical model

In Figure 10, we present in more detail what we believe is a reasonable astrophysical

model. This model assumes that ηinj increases from a value of 5×10−5 to a value of 10−3 while

at the same time Bu increases from a value of 3 µG to a value of 20 µG and k0 increases from

an arbitrary value of 100 to 1 (Kep is kept constant at all angles). The azimuthal variations

of these parameters is consistent with the picture of DSA where, once the magnetic field

fluctuations at the shock exceed the background ISM fluctuations, any low injection rate

leads to growth of the turbulent magnetic field in the upstream region, which in turns leads

to an increase of the injection rate (Völk et al. 2003). The acceleration efficiency, defined as

the fraction of total energy flux crossing the shock that goes into relativistic particles (see

§3.3 in Berezhko & Ellison 1999), is 51% in the case with ηinj = 10−3 and 7% in the case

with ηinj = 5 × 10−5.

Note that the form of the azimuthal profiles of ηinj and Bu is again arbitrary (here a

squared-sine variation) and just used for illustration purpose. Our goal is not to find the exact

form of the profiles based on an accurate fit of the model predictions to the observations,

but rather to describe qualitatively how the acceleration parameters vary along the BW in

SN 1006. The extremum values for ηinj were chosen so that the predicted variations of the

ratio of radii RBW/RCD roughly matches the observations. A maximum (minimum) value of

ηinj between 10−4 and 10−2 (resp. 10−5 and 5× 10−5) will not significantly affect our results

concerning the profile of RBW/RCD, but differences will be seen in the absolute intensity

in the synchrotron emission. The maximum value of Bu was adjusted so that it yields an

immediate postshock value, Bd ≃ 80 µG (panels e), consistent with the value derived from

the thickness of the X-ray synchrotron-emitting rims in SN 1006, under the assumption that

this thickness is limited by the synchrotron losses of the highest energy electrons (e.g., Ballet

2006). Finally, we adjusted the minimum value of Bu in the faint region so that the predicted

and observed radio synchrotron flux are roughly the same; here we show profiles with a value

of Bu = 3 µG, i.e., the typical ISM value.

In Figure 10 (panel g), we show the predicted azimuthal profile of ratio of radii between

the BW and CD (dashed lines). The ratio of radii was normalized (solid lines) so that it

roughly equals 1.00 in the region of efficient CR acceleration as in the observations. This

normalization procedure (which we justified in §5.3.4) works remarkably well. The variations

of the ratio of radii reflects nothing but the variations of the overall density compression ratio,

rtot (panel d). For low injection rates (ηinj ≤ 6× 10−5), the compression ratio comes close to

the value obtained in the test-particle case (i.e., rtot = 4) and as the injection rate increases,

the plasma becomes more compressible with rtot ∼ 6. However, once the magnetic field has

been considerably amplified (Bu ≥ 10 µG), rtot starts to slightly decrease due to the heating
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of the gas by the Alfvén waves in the precursor region (see Berezhko & Ellison 1999).

In Figure 10 (panel h), we show the azimuthal profiles of the synchrotron emission in the

radio and several X-ray energy bands. To obtain these profiles, we first computed the radial

profile of the synchrotron flux (calculated in a given energy band) at each azimuthal angle.

Then, we projected the flux along the line-of-sight and finally extracted the projected flux in

30′′-wide regions behind the BW (assuming a distance of 2 kpc) as we did in the observations

of SN 1006 (§4.2). In this procedure, we assumed a spherically symmetric distribution for

the emissivity. This is a reasonable assumption as long as we restrict the analysis close to

the BW, considering that the bright limbs in SN 1006 are in fact polar caps, i.e., where the

emissivity distribution is axisymmetric. Finally, we fixed the radio flux in the synchrotron

caps to be the same as in the observations by adjusting the electron-to-proton density ratio

at relativistic energies, Kep. This is obtained for a value of Kep = 7 × 10−4.

Relaxing the assumption of the Bohm diffusion (i.e., k0) at each azimuthal angle sig-

nificantly modifies the azimuthal profiles of the synchrotron flux in the X-ray band (while

the radio profile is unchanged) compared to the model 3 of Figure 9 in which k0 was always

equal to 1. This is because an increase of k0 decreases the maximum energy of electrons,

Ee,max. Since the synchrotron emission is very sensitive to the position of the high-energy

cutoff in the electron distribution (i.e., Ee,max), all profiles do not show anymore a plateau

in the region of efficient CR acceleration but are now gradually decreasing (panel h). Be-

sides, the synchrotron brightness in the X-ray bands now decreases faster than in the radio

(panel i). This is roughly consistent with what is observed in SN 1006. We note that in this

model, the maximum energy of both protons and electrons (panel f ) decrease rather quickly

as we move toward regions of inefficient CR acceleration as opposed to the previous model 3

with k0 = 1 where the maximum energy of electrons remained approximately constant (not

shown). Overall, our results from this model are consistent with those of Rothenflug et al.

(2004) which were based on a different approach (i.e., measure of the azimuthal variations

of the cutoff-frequency all around SN 1006) using XMM-Newton observations.

5.3.6. Other azimuthal profiles for ηinj, Bu and k0

We have found that a simple model in which the injection rate of particles in the acceler-

ation process (ηinj), amplified magnetic field (Bu) and level of turbulence (k0) were gradually

increasing around the shock front was able to provide predictions in a good agreement with

the observations for the azimuthal variations of the ratio of radii and radio and X-ray syn-

chrotron fluxes. The input parameters and their azimuthal variations were chosen based

on the physical picture where the injection of particles and amplification of the magnetic
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turbulence are coupled.

One can imagine however more complicated scenario and hence more complicated input

profiles for the acceleration parameters (ηinj, Bu, k0). For instance, the coupling between

the injection and the turbulence which occurs at the beginning of the acceleration process

may end at some point when the amplitude of the magnetic field fluctuations become so high

that their further growth is prevented by strong dissipation processes (Völk et al. 2003). The

injection, magnetic field and level of turbulence may in fact saturate (over some azimuthal

range) as we reach regions of very efficient CR acceleration. Another example of scenario can

be imagined if the shock velocity is not uniformly distributed along the shock (as opposed

to what we have assumed in our models) due to a asymmetrical explosion. Such a scenario

could explain why the bright synchrotron-emitting caps in SN 1006 seem to have larger radii

than the faint regions. If so, the injection could be larger in the region of higher velocity

while the level of turbulence and magnetic field could potentially saturate there. In general,

these new scenarios will not lead to a significant modification of the profile of the ratio

of radii. However, we do expect some changes in the azimuthal profiles of the radio and

X-ray synchrotron flux. They will generally be flatter in the regions of very efficient CR

acceleration.

6. Discussion

6.1. Polar cap morphology

The model in which the injection rate of particles, magnetic field and level of tur-

bulence are all varying as a function of azimuth was successful in reproducing the overall

azimuthal variations of the radio and X-ray synchrotron flux observed along the BW of SN

1006 (Fig. 10). In fact, it is actually possible to build a 2-D projected map of the radio and

X-ray synchrotron morphology comparable to the radio and X-ray images of SN 1006 (Figs.

1 and 2). This requires us to know the three-dimensional distribution of the emissivity. Here,

we consider polar caps as suggested by Rothenflug et al. (2004).

To simplify the calculation, we consider that the radial profiles of the emissivity obtained

from the different values of injection, magnetic field and turbulence level have an exponential

form characterized by a maximum emissivity at the shock and width ∆R over which the

emissivity decreases (see Appendix A). We also fixed the BW radius, RBW, to be the same

at each azimuthal angle where the injection and magnetic field vary, although it slightly

depends on the CR acceleration efficiency. These are good approximations.

In the case of the radio synchrotron emission, the width ∆R does not depend on the
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azimuthal angle (from the pole to the equator), and we have typically ∆R̃ ≡ ∆R/RBW =

0.01. The projected radio morphology is shown in Figure 11 (top-right panel). It has a

bipolar limb-brightened morphology as is observed in SN 1006.

In the case of the X-ray synchrotron emission, the width ∆R is expected first to increase

(starting from the equator) as particles reach higher energies and the emission builds up, and

then to slightly decrease when the effect of radiative losses starts to become important due

to the larger post-shock magnetic field as we move toward the pole. Because the brightness

is much lower at the equator than at the pole, a reasonable approximation is to consider

the width constant with typically ∆R̃ = 2 − 5 × 10−3 (bottom-left panel) or even a slightly

increasing width from the pole to the equator (bottom-right panel). A slightly increasing

width will not change the overall morphology. It still produces a thin rim whose projected

width is decreasing starting from the pole to the equator. In Figure 11, we have assumed

that the emissivity contrast at the BW between the pole and the equator is always a factor

100. In fact, because the contrast between the pole and equator is larger in the X-rays

than in the radio, we will obtain a similar morphology but with the size of the caps slightly

reduced in X-ray. In other words, the X-ray synchrotron emitting rims become geometrically

thinner and of smallest azimuthal extent as we go to higher energy. All these effects would

be however slightly attenuated if we had included the instrumental effects (particularly the

PSF), but overall this is consistent with what is observed in SN 1006.

6.2. CR acceleration in a partially ionized medium

When trying to delineate the BW, we found that the X-ray synchrotron-emitting rims

and the diffuse filament of Hα emission were coincident over some little azimuthal range,

notably for instance at the edge of the eastern cap where the synchrotron emission starts to

turn on (see Fig. 1). SN 1006 is one of the rare remnants where this characteristic is clearly

observed, although this likely happens in the Tycho SNR too.

In general, Hα emission from non-radiative shocks is believed to arise when the blast

wave encounters partially ionized gas. This points to the presence of neutral atoms in the

ambient medium around SN 1006 (Ghavamian et al. 2002). Theoretical studies have shown

that in such medium, the scattering Alfvén waves should be damped, henceforth quenching

the acceleration of high energy particles (O’C Drury et al. 1996). In fact, recent theoretical

studies suggest that the magnetic field could be turbulently amplified even in such medium

(Bykov & Toptygin 2005). The fact that we observe the Hα and synchrotron X-rays to be

coincident gives support to this statement. Other observations of Hα emission coexisting

with synchrotron X-rays would be very interesting in that regard.
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6.3. Comparison between SN 1006 and Tycho

Like SN 1006, the Tycho SNR is believed to be the remnant of a thermonuclear explosion

and, as such, is expected to develop an approximately exponential ejecta density profile and

to evolve in a uniform ambient medium. Measurements of the gap between BW and CD

have been done in the Tycho SNR using Chandra observations (Warren et al. 2005). We

comment on the Tycho results in the light of our results.

Because the thin and bright X-ray synchrotron-emitting rims concentrated at the BW

are observed all around Tycho, in contrast to SN 1006, the BW’s location can be easily

determined. In addition, because the X-ray emission from the shocked ejecta is dominant

in Tycho, in contrast to SN 1006, it is also fairly easy to determine the CD’s location. The

observed azimuthally-averaged ratio of radii between the BW and CD was found to be ∼ 1.04

in Tycho (Warren et al. 2005). After correcting, approximately, for effects due to projection

of the highly structured CD, the ratio of radii became ∼ 1.075. This is still a lot smaller than

the (unprojected) ratio of ∼ 1.25 derived using standard one-dimensional hydrodynamical

simulations with no CR acceleration, at the current age of Tycho (430 yrs). It was then

concluded that efficient CR ion acceleration was occurring around nearly the entire BW of

Tycho.

More recently, Cassam-Chenäı et al. (2007) applied a CR-modified self-similar hydrody-

namic model to the radio and X-ray observations of the Tycho SNR using the observed ratio

of BW to CD radii as an important input constraint. Using reasonable values for the hydro-

dynamical parameters (ambient medium density, SN explosion energy, ejected mass), DSA

parameters (injection efficiency, magnetic field, diffusion coefficient, electron-to-proton ratio

at relativistic energies), and the distance, a good description of the observational properties at

the blast wave of Tycho was obtained. This detailed study provides a self-consistent/coherent

picture of efficient CR ion acceleration.

Regarding SN 1006, we have some good news and some bad (compared to the case of

Tycho, where CR-modified models seem to describe the data well). The good news is that

there is a significant variation in the ratio of BW to CD radii as a function of azimuthal angle

that is correlated with the varying intensity of the X-ray and radio synchrotron emission.

Where the gap is large the synchrotron emission is faint (or not detected) and where the gap

is small the emission is bright. This is consistent with an azimuthal variation in the effects

of CR-modification to the remnant dynamics. The bad news is that in regions of presumably

efficient acceleration (i.e., the bright rims), the ratio of BW to CD radii approaches small

values, very close to 1. The puzzle is that our CR-modified hydrodynamical models are

unable to produce ratio values less than 1.06, while the specific scenarios presented above

produce ratio values closer to 1.12. In order to make progress in our study we decided to
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introduce an ad-hoc rescaling of the ratio of radii by decreasing the modeled values at all

angles by a constant factor of ∼ 12%. This procedure works remarkably well and suggests

to us that something else, unrelated to the CR acceleration process (such as 3-D projection

effects and ejecta clumping), may be responsible for the smaller than expected gap between

the BW and CD in SN 1006.

7. Conclusion

Using a combination of radio, optical (Hα) and X-ray images, we have located the

positions of the BW and CD radii along the southeastern sector of SN 1006. We found that

with increasing azimuthal angles the ratio of radii between the BW and CD increases from

values near unity (within the northeastern synchrotron-emitting cap) to a maximum of about

1.10 before falling again to values near unity (in the southwestern synchrotron-emitting cap).

These variations reflect changes in the compressibility of the plasma attributed to variations

in the efficiency of the BW at accelerating CR ions and give strong support to the overall

picture that SNR shocks produce some fraction of Galactic CRs. However, at the present time

we do not have a detailed explanation for the apparent overall smallness of the measured

ratios of radii in SN 1006: the minimum value predicted by our CR-modified self-similar

dynamical models is 1.06. In this study we simply rescaled the ratio of radii by a constant

factor (independent of azimuthal angle) of ∼ 12% with the expectation that some process,

other than CR acceleration itself, was responsible for driving the edge of the ejecta closer to

the BW all along the rim of SN 1006. The lack of a definitive astrophysical explanation for

this discrepancy is a significant factor limiting our ability to understand the CR acceleration

process in SN 1006. Further research into the effects of hydrodynamical instabilities at

the CD and ejecta clumping (two possible explanations for the small BW/CD ratio) would

incidentally provide new insights into the acceleration process.

In addition to the azimuthal variations of the ratio of radii between the BW and CD

we also interpreted the variations of the synchrotron flux (at various frequencies) at the BW

using CR-modified hydrodynamic models. We assumed different azimuthal profiles for the

injection rate of particles in the acceleration process, magnetic field and turbulence level.

We found the observations to be consistent with a model in which these quantities are all

azimuthally varying, being the largest in the brightest regions. Overall this is consistent

with the picture of diffusive shock acceleration. In terms of morphology, we found that our

model was generally consistent with the observed properties of SN 1006, i.e., a bright and

geometrically-thin synchrotron-emitting rim at the poles and very faint synchrotron emission

at the equator and in the interior. In the model, the X-ray synchrotron-emitting rims are
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geometrically thinner and of smallest azimuthal extent than the radio rims, which is in broad

agreement with observations. This is because the most energetic electrons accelerated at the

blast wave lose energy efficiently in the amplified post-shock magnetic field. Based on this

picture, it would be worth trying to measure the azimuthal variation of the magnetic field

strength (from the X-ray rim widths) and thereby gain further insight into the amplification

process.
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A. Projection along the line-of-sight in the case of polar caps

Let r be the distance to the center O of a sphere of radius Rs, φ the azimuthal angle

in the (O~x, O~z) plane with 0 ≤ φ ≤ 2π, and θ the latitude with −π/2 ≤ θ ≤ π/2. The

projection of a spherical emissivity distribution E(r, θ, φ) onto the plane (O~x, O~y) results in

a two-dimensional brightness distribution:

B(x, y) = 2

∫ ℓ

0

E(r, θ, φ) dz, (A1)

where ℓ2 = x2
s − x2, and 0 ≤ x ≤ xs ≡ Rs cos θ and 0 ≤ y ≤ Rs. At any point of coordinate

(x, y, z), the emissivity is E(x, y, z) = E(r, θ, φ) where r2 = x2 + y2 + z2 and θ = arcsin (y/r)

and φ = arccos(x/
√

x2 + z2). When the emissivity has a symmetry of revolution around the

O~y axis (e.g., polar caps), there is no dependency on φ.

Let us consider a sphere where the emissivity E is radially decreasing from the maximum

Emax at the surface of the sphere with a characteristic width ∆R. In the case of an exponential

decrease and cylindrical symmetry, we have:

E(r, θ, φ) = Emax(θ) exp

(

r − Rs

∆R(θ)

)

. (A2)
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In the case of polar caps, Emax will be larger at the poles (θ = π/2 and θ = −π/2).

In Figure 11, we show the projected morphology obtained with the emissivity spatial

distribution given by Eq. (A2) in the range 0 ≤ θ ≤ π/2 assuming different values and

angular dependencies for the width ∆R̃ ≡ ∆R/Rs. In those plots, a squared-sine variation

was assumed for log10 (Emax), having the value 0.0 at the pole and −2.0 at the equator.

Decreasing the value at the equator produces similar rims but with a lower azimuthal extent

(i.e., smaller polar caps).
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Fig. 1.— Three-color Chandra image of SN 1006: 0.5-0.8 keV (red), 0.8-2 keV (green) and 2-

4.5 keV (blue). The regions dominated by synchrotron emission from high-energy relativistic

electrons appears in white and are naturally associated with the BW. The regions dominated

by the thermal emission from the shocked gas (mostly oxygen) appears in red and are most

likely associated with the ejecta. Note that the oxygen is found slightly ahead of the BW in

some places (e.g., east and south). Point sources have been removed here so that only the

diffuse emission from the remnant is visible. Images were background subtracted, corrected

for vignetting and slightly smoothed. The intensity scaling is square-root with a maximum

fixed at 5.0× 10−4, 5.0× 10−4 and 2.0× 10−4 ph/cm2/s/arcmin2 for the red, green and blue

bands, respectively.
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Fig. 2.— Radio image of SN 1006 at 1.5 GHz. The intensity scaling is square-root with

a maximum fixed at 1.0 mJy/beam. The bright elongated source in the western rim is a

background radio galaxy.
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Fig. 3.— Hα image of SN 1006.



– 35 –

Fig. 4.— Images of SN 1006 in several energy bands. Top-left : Radio image at 1.5 GHz. The

maximum intensity was fixed at 0.6 mJy/beam. Top-right : Hα image with the contour errors

associated with the shock front seen in the southeast (red lines). Bottom-left : Chandra X-

ray image in the oxygen band (0.5-0.8 keV). The maximum intensity was fixed at 5.0× 10−4

ph/cm2/s/arcmin2. Bottom-right : Chandra image in the mid-energy X-ray band (0.8-2.0

keV). The maximum intensity was fixed at 6.0×10−4 ph/cm2/s/arcmin2. Both X-ray images

were background subtracted, corrected for vignetting and slightly smoothed. In the radio and

X-ray images, we show the contour derived from the Hα emission (red lines). This contour

lies within the contour errors shown in the Hα image. In all the images, the intensity scaling

is linear.
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Fig. 5.— Azimuthal variation of the outer Hα emission (black lines) and X-ray emission

as obtained in several X-ray energy bands: 0.5-0.8 keV (red lines), 0.8-2 keV (green lines)

and 2-4.5 keV (blue lines). Regions where the X-ray synchrotron emission is dominant are

indicated by cross-hatched yellow lines. In those regions, the fingers (stars) indicate the

presence of shocked ejecta found at or even slightly ahead of the BW. The X-ray contours

correspond to places where the brightness becomes larger than 1.5×10−5 ph/cm2/s/arcmin2

in the 0.5 − 0.8 keV band, 0.6 × 10−5 ph/cm2/s/arcmin2 in the 0.8 − 2 keV band and

0.4 × 10−5 ph/cm2/s/arcmin2 in the 2 − 4.5 keV band. Note that the radii measurements

are quite sensitive to the contour values, but the range of variations is contained between

the red and blue lines.
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Fig. 6.— Ratio of the outer Hα radius (black lines in Fig. 5) to the 0.5-0.8 keV X-ray

radius (red lines in Fig. 5). Regions where the X-ray synchrotron emission is dominant

are indicated by cross-hatched yellow lines. Error bars include uncertainties on the radius

derived from the (expanded) Hα image and that done in the low-energy X-rays choosing

different contour values (2.5± 1.0× 10−5 ph/cm2/s/arcmin2). The large error bars between

200◦ − 205◦ are due to a low exposure there.
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Fig. 7.— Top: Azimuthal variations of the brightness at the BW of SN 1006 at several

frequencies/energies: 1.5 GHz (black lines), 0.5-0.8 keV (red lines), 0.8-2 keV (green lines)

and 2-4.5 keV (blue lines). The brightness in each azimuthal bin was calculated between the

BW radius and the radius 30′′ behind. For comparison, we show the level of the radio rms

noise level and X-ray background located 1′ outside the BW and extracted from a 30′′-wide

box (dashed lines). Bottom: Same but with the curves rescaled roughly to the same level in

the brightest regions and shown with a log scale.
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Fig. 8.— Ratio of radii between the BW and CD, RBW/RCD, as obtained from 1-D numerical

hydrodynamical simulations (assuming no CR acceleration at the BW) and calculated for a

large range of ambient density, n0, for a fixed SNR age (dashed lines : 400 yrs; solid lines :

1000 yrs). We show curves obtained with a 1-D exponential (EXP) ejecta profile with a

kinetic energy of the explosion E51 ≡ E/1051 ergs = 1.0 (red lines), E51 = 0.8 (blue lines),

E51 = 1.4 (green lines) and a 1-D powerlaw (PL7) ejecta profile (n = 7) with E51 = 1.0

(yellow lines). The cross-hatched domains correspond to the intersection of the range of ratio

of radii observed in SN 1006 and Tycho (≤ 1.10, vertical solid lines) and range of ambient

medium density typically encountered in their vicinity (horizontal dotted lines). The 1-D

hydrodynamical simulations are clearly unable to predict a ratio of radii as small as the

one observed in both SNRs. For completeness, we indicate by a filled circle the value of

the ambient density at which the simulated SNR radius matches the one observed for each

model. An angular BW radius of 14.6′ (resp. 256′′) and a distance to the SNR of 2.0 kpc

(2.8 kpc) were assumed for SN 1006 (resp. Tycho), resulting in a physical BW radius of

∼ 8.5 pc (resp. ∼ 3.5 pc). Larger values for the physical radius (due for instance to a larger

distance to the remnant) would correspond to lower ambient densities.
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Fig. 9.— Various models assuming different azimuthal profiles for the injection rate, ηinj

(top), and far upstream magnetic field, Bu (second, solid lines). Each model predicts az-

imuthal variations of the ratio of radii between the BW and CD, RBW/RCD (third), and

synchrotron brightness (projected along the line-of-sight) at different frequencies (bottom).
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Fig. 10.— Left column: azimuthal profiles assumed for the injection efficiency, ηinj (panel

a), far upstream magnetic field, Bu (panel b) and diffusion coefficient normalized to the

Bohm-limit value, k0 (panel c). Middle column: model profiles of the overall density (rtot)

and magnetic field (rB) compression ratios (panel d), immediate post-shock value of the

magnetic field, Bd (panel e) and maximum energies (panel f ). Right column: predicted

(thick lines) and observed (thin histograms) azimuthal profiles for the ratio of radii between

the BW and CD, RBW/RCD (panel g, solid lines) and line-of-sight projected synchrotron

brightness at several frequencies (panels h and i).
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Fig. 11.— Projected morphology predicted in the case of polar caps (see Appendix A)

with ∆R̃ = 5 × 10−2 (top-left), ∆R̃ = 10−2 (top-right), ∆R̃ = 5 × 10−3 (bottom-left),

∆R̃ linearly varying from 2 × 10−3 at the pole to 8 × 10−3 at the equator (bottom-right).

The radio and the high-energy X-ray morphology predicted by the model shown in Figure

10 correspond roughly here to the top-right and bottom-right panels, respectively. In all

panels, the intensity scaling is square-root.


