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Abstract

We consider the linear regression problem. We propose the S-Lasso proce-
dure to estimate the unknown regression parameters. This estimator enjoys
sparsity of the representation while taking into account correlation between
successive variables (or predictors). The study covers the case when n ≪ p,
i.e. the number of observations is much smaller than the number of variables.
Moreover, for fixed p, we establish asymptotic normality and consistency in
variable selection results for our procedure. Furthermore, we provide an esti-
mator of the effective degree of freedom of the S-Lasso estimator. A simulation
study shows that the S-Lasso performs better than the Lasso as far as variable
selection is concerned especially when high correlations between successive
variables exist. This procedure also appears to be a good challenger to the
Elastic-Net [26].
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1 Introduction

We focus on the usual linear regression model:

yi = xiβ
∗ + εi, i = 1, . . . , n, (1)

∗hebiri@math.jussieu.fr
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where the design xi = (xi,1, . . . , xi,p) ∈ R
p is deterministic, β∗ = (β∗

1 , . . . , β
∗
p)

′ ∈ R
p

is the unknown parameter and ε1, . . . , εn, are independent identically distributed
(i.i.d.) centered gaussian random variables with known variance σ2. We wish to
estimate β∗ in the sparse case, that is when many of its unknown components equal
zero. Thus only a subset of the design variables (x.,j)j is truly of interest where
x.,j = (x1,j , . . . , xn,j)

′, j = 1, . . . , p. Moreover the case p ≫ n is not excluded so that
we can consider p depending on n. In such a framework, two main issues arise: i)
the interpretability of the resulting prediction; ii) the control of the variance in the
estimation. Regularization is therefore needed. For this purpose we use selection
type procedures of the following form:

β̃ = Argmin
β∈Rp

{
‖Y − Xβ‖2

n + pen(β)
}

, (2)

where X = (x1, . . . , xn)′, Y = (y1, . . . , yn)′ and pen : R
p → R is a positive convex

function called the penalty. For any vector a = (a1, . . . , an)′, we have adopted the
notation ‖a‖2

n = n−1
∑n

i=1 |ai|2. The choice of the penalty appears to be crucial.
Although well-suited for variable-selection purpose, Concave-type penalties ([8], [19]
and [3]) are often computationally hard to optimize. Lasso-type procedures (modi-
fications of the l1 penalized least square (Lasso) estimator introduced by Tibshirani
[17]) have been extensively studied during the last few years. They seem to respond
to our objective as they perform both regression parameters estimation and variable
selection with low computational cost. We will explore this type of procedures in
our study.

In the paper, we propose a novel modification of the Lasso we call the Smooth-
lasso (S-lasso) estimator. It is defined as the solution of the optimization problem (2)
when the penalty function is a combination of the Lasso penalty (i.e.

∑p
j=1 |βj|)

and the l2-fusion penalty (i.e.
∑p

j=2 (βj − βj−1)
2). The l2-fusion penalty was first

introduced in [10]. We add it to the Lasso procedure in order to overcome the
variable selection problems of the Lasso estimator. Indeed the Lasso estimator has
good selection properties but fails in some situations. More precisely, in several
works ([24], [12], [25] and [23]) conditions for the consistency in variable selection of
the Lasso procedure are given. It was shown that the Lasso is not consistent when
high correlations exist between relevant (in the true model) and irrelevant (not in
the true model) variables. We will give similar consistency conditions for the S-Lasso
procedure. Problems are also encountered when we solve the Lasso criterion with the
Lasso modification of the LARS algorithm [6]. Indeed this algorithm tends to select
only one representer of each group of correlated variables. We attempt to respond
to this problem in the case where the variables are ranked so that high correlations
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can exist between successive variables. We will see through the simulations that such
situations support the use of the S-lasso estimator. This estimator is inspired by the
Fused-Lasso [18]. Both S-Lasso and Fused-Lasso combine a l1-penalty with a fusion
term [10]. The main difference between the two procedures is that we use the l2
distance between the successive coefficients (i.e. the l2-fusion penalty) whereas the
Fused-Lasso uses the l1 distance (i.e. the l1-fusion penalty:

∑p
j=2 |βj − βj−1|). The

use of the l2 distance can be relevant as: i) it forces successive coefficients to be close
without a perfect match (sparsity between coefficients differences) which is the case
for the l1 distance proposed in the Fused-Lasso; ii) the l2 distance is strictly convex
so that we can more easily optimize the S-Lasso criterion than the Fused-Lasso.
Actually, the sparsity is yet ensured by the Lasso penalty, we suggest the additional
l2 penalty mainly to catch correlations between variables. More relevant variables
can then be selected due to correlations between them.

Many techniques have been proposed to solve the weaknesses of the Lasso. The
Fused-Lasso procedure is one of them and we give here some of the most popular
methods; the Adaptive Lasso was introduced in [25], which is similar to the Lasso
but with adaptive weights used to penalize each regression coefficient separately.
This procedure reaches ’Oracles Properties’ (i.e. consistency in variable selection
and asymptotic normality). Another approach is used in the Relaxed Lasso [11]
and aims to doubly-control the Lasso estimate: one parameter to control variable
selection and the other to control shrinkage of the selected coefficients. To overcome
the problem due to the correlation between variables, group variable selection has
been proposed by Yuan and Lin [22] with the Group-Lasso procedure which selects
groups of correlated variables instead of single variables at each step. A first step to
the consistency study has been proposed in [1] and Sparse Oracle Inequalities were
given in [2]. Another choice of penalty has been proposed with the Elastic-Net [26].
It is in the same spirit that we shall treat the S-Lasso from a theoretical point of
view.

The paper is organized as follows. In the next section, we present one way
to solve the S-Lasso problem with the attractive property of piecewise linearity of
its regularization path. Section 3 gives theoretical performances of the considered
estimator such as consistency in variable selection and asymptotic normality. We also
establish a local bound for the regression coefficients. We give an estimate of the
effective degree of freedom of the S-Lasso estimator in Section 4. We provide a way
to control the variance of the estimator by scaling in Section 5 where a connection
with soft-thresholding is also established. We finally give experimental results in
Section 6 showing the S-Lasso performances against some popular methods. All
proofs are postponed to an Appendix section.
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2 The S-Lasso procedure

As described above, we define the S-Lasso estimator β̂SL as the solution of the
optimization problem (2) when the penalty function is:

pen(β) = λ|β|1 + µ

p∑

j=2

(βj − βj−1)
2 , (3)

where λ and µ are two positive parameters that control the smoothness of our esti-
mator. For any vector a = (a1, . . . , ap)

′, we have used the notation |a|1 =
∑p

j=1 |aj |.
Note that when µ = 0, the solution is the Lasso estimator so that it appears as a
special case of the S-Lasso estimator. Now we deal with the resolution of the S-Lasso
problem (2)-(3) and its computational cost. From now on, we suppose w.l.o.g. that
X = (x1, . . . , xn)′ is standardized (that is n−1

∑n
i=1 x2

i,j = 1 and n−1
∑n

i=1 xi,j = 0)
and Y = (y1, . . . , yn)

′ is centered (that is n−1
∑n

i=1 yi = 0). The following lemma
shows that the S-Lasso criterion can be expressed as a Lasso criterion by augmenting
the data artificially.

Lemma 1. Given the data set (X, Y ) and (λ, µ). Define the extended dataset (X̃, Ỹ )
by

X̃ =
1√

1 + µ

(
X√
nµJ

)
and Ỹ =

(
Y
0

)
,

where 0 is a vector of size p containing only zeros and J is the p × p matrix

J =




0 0 0 . . . 0

1 −1
. . .

. . .
...

0 1 −1
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 1 −1




. (4)

Let r = λ/
√

1 + µ and b =
√

1 + µ β. Then the S-Lasso criterion can be written

∥∥∥Ỹ − X̃b
∥∥∥

2

n
+ r|b|1.

Let b̂ be the minimizer of this Lasso-criterion, then

β̂SL =
1√

1 + µ
b̂.
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This result is a consequence of simple algebra. Lemma 1 motivates the following
comments on the S-Lasso procedure.

Remark 1 (Regularization paths). The S-Lasso modification of the LARS is an
iterative algorithm. For a fixed µ (appearing (3)), it constructs at each step an
estimator based on the correlation between variables and the current residue. Each
step corresponds to a value of λ. Then for a fixed µ, we get the evolution of the
S-Lasso estimator coefficients values when λ varies. This evolution describes the
regularization paths of the S-Lasso estimator which are piecewise linear [13]. This
property implies that the S-Lasso problem can be solved with the same computational
cost as the ordinary least square (OLS) estimate using the Lasso modification version
of the LARS algorithm.

Remark 2 (Implementation). The number of variables that the LARS algorithm
and its Lasso version can select is limited by the number of rows in the matrix X.
Applied to the augmented data (X̃, Ỹ ) introduced in Lemma 1, the Lasso modification
of the LARS algorithm is able to select all the p variables. Then we are no longer
limited by the sample size as for the Lasso [6].

3 Theoretical properties of the S-Lasso estimator

In this section we introduce the theoretical results about the S-Lasso. We first es-
tablish a link between regression coefficients and correlation between variables. We
then provide rates of convergence of the S-Lasso estimator and show how through
a control on the regularization parameters we can establish root-n consistency and
asymptotic normality. Finally study for variable selection consistency. More pre-
cisely, we give conditions under which the S-Lasso estimator succeeds in finding the
set of the non-zeros regression coefficients.

3.1 Local proximity

Here we show that there exists a link between the regression coefficients βj and
βk of two variables x.,j and x.,k and these variables correlation. Remember that Y
is centered and X standardized. Let us note ρ = n−1X ′X the correlation matrix
and ρ(j, k) = n−1x′

.,jx.,k the sample correlation between variables j and k. Define

∆βj = βj − (βj+1+βj−1)

2
for j ∈ 1, . . . , p with the convention: β0 = β1 and βp+1 = βp;
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Theorem 1. Given the data set (X, Y ) and the parameters (λ, µ). Let β̂SL =
β̂SL (λ, µ) be the S-Lasso estimator. Assume that β̂SL

j β̂SL
k > 0. Then for every

(j, k) ∈ {1, . . . , p}2, we have

∣∣∣∆β̂SL
j − ∆β̂SL

k

∣∣∣ ≤ ‖Y ‖n

4λ2

√
2 (1 − ρ(j, k)).

Remark 3. Note that we obtained nearly the same bound as for the Elastic-Net
procedure [26]. This is described as the ”grouping effect”. The main difference is
that they bound |βj − βk| whereas we bound |∆βj − ∆βk| which is a local version of
the former.

Theorem 1 states that the more correlated the variables x.,j and x.,k are, the

smaller the difference between the local approximation ∆β̂SL
j and ∆β̂SL

k of their
regression coefficients is. Then, in the high correlation case (ρ(j, k) ≃ 1), we have
∆β̂SL

j ≃ ∆β̂SL
k . This relation can be interpreted in two ways.

Either the quantities ∆β̂SL
j and ∆β̂SL

k are both close to 0; thus β̂SL
j and β̂SL

k

are well approximated by
β̂SL

j−1
+β̂SL

j+1

2
and

β̂SL
k−1

+β̂SL
k+1

2
respectively. This is the more

expected conclusion as the S-Lasso estimator (2)-(3) is mainly used when variables
are ranked. Indeed, in such a problem it is obvious that the regression coefficient β∗

j

of the variable x.,j depends on the coefficients β∗
j−1 and β∗

j+1.

Or the quantities ∆β̂SL
j and ∆β̂SL

k are not close to 0 but are approximatively of
the same order. This implies that correlated variables (even if their indexes distance
|j − k| is large) are sensitive in the same way to their neighboring values.

In both cases we conclude that there exists a link between β̂SL
j and

β̂SL
j−1

+β̂SL
j+1

2
.

Moreover one can predict the behaviour of one variable in its neighborhood when
analyzing the behavior of a correlated variable in its respective neighborhood.

3.2 Asymptotic Normality

In this section, we allow the regularization parameters (λ, µ) to depend on the sample
size n. We emphasize this dependence by adding a subscript n to these parameters.
We also fix the number of variables p. Let us note I(·) the indicator function and
define the sign function such that for any x ∈ R, Sgn(x) equals 1, −1 or 0 respec-
tively when x is bigger, smaller or equals 0. Knight and Fu [9] gave the asymptotic
distribution of the Lasso estimator. We provide here the asymptotic distribution to
the S-Lasso.
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Theorem 2. Given the data set (X, Y ), assume the correlation matrix verifies

n−1X ′X → C, when n → ∞,

where C is a positive definite matrix. If there exists a sequence vn such that vn → 0
and the regularization parameters verify λnv

−1
n → λ ≥ 0 and µnv

−1
n → µ ≥ 0. Then,

if (
√

nvn)−1 → κ ≥ 0, we have

v−1
n (β̂SL − β∗)

D−→ Argmin
u∈Rp

V (u), when n → ∞,

where

V (u) = −2κuT W + uTCu + λ

p∑

j=1

{
uj Sgn(β∗

j )I(β
∗
j 6= 0) + |uj| I(β∗

j = 0)
}

+ 2µ

p∑

j=2

{
(uj − uj−1)(β

∗
j − β∗

j−1)I(β
∗
j 6= β∗

j−1)
}

,

with W ∼ N (0, σ2C).

Remark 4. When κ 6= 0 is a finite constant: in this case v−1
n is Op(

√
n) so that

the estimator β̂SL is root-n consistent. Moreover when λ = µ = 0, we obtain the

following standard regressor asymptotic normality:
√

n(β̂SL − β∗)
D−→ N (0, σ2C−1).

When κ = 0: in this case, the rate of convergence is slower than
√

n so that we no
longer have the optimal rate. Moreover the limit is not random anymore.

Note first that the correlation penalty does not alter the asymptotic bias when
successive regression coefficients are equal. We also remark that the sequence vn

must be chosen properly as it determines our convergence rate. We would like vn to
be as close as possible to 1/

√
n. This sequence is calibrated by the user such that

λn/vn → λ and µn/vn → µ.

3.3 Consistency in variable selection

In this section, variable selection consistency of the S-Lasso estimator is considered.
For this purpose, we introduce the following sparsity sets: A∗ = {j : β∗

j 6= 0} and

An = {j : β̂SL
j 6= 0}. The set A∗ consists of the non-zero coefficients in the vector

of the true regression vector β∗. The set An consists of the non-zero coefficients in
the S-Lasso estimator β̂SL

j and is also called the active set of this estimator. Before
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stating our result, let us introduce some notations. For any vector a ∈ R
p and any

set of indexes B ∈ {1, . . . , p}, denote by aB the restriction of the vector a to the
indexes in B. In the same way, if we note |B| the cardinal of the set B, then for any
s × q matrix M , we use the following convention: i) MB,B is the |B| × |B| matrix
consisting of the lines and rows of M whose indexes are in B; ii) M.,B is the s × |B|
matrix consisting of the rows of M whose indexes are in B; iii) MB,. is the |B| × q

matrix consisting of the lines of M whose indexes are in B. Moreover, we define J̃
the p×p matrix J′J where J was defined in (4). Finally we define for j ∈ {1, . . . , p},
the quantity Ωj by

Ωj(λ, µ,A∗, β∗) = Cj,A∗(CA∗,A∗+µJ̃A∗,A∗)−1
(
2−1 Sgn(β∗

A∗) +
µ

λ
J̃A∗,A∗β∗

A∗

)
−µ

λ
J̃j,A∗β∗

A∗

(5)
Now consider the following conditions: for every j ∈ (A∗)c

|Ωj(λ, µ,A∗, β∗)| < 1, (6)

|Ωj(λ, µ,A∗, β∗)| ≤ 1. (7)

These conditions on the correlation matrix C and the regression vector β∗
A∗ are the

analogues respectively of the sufficient and necessary conditions derived for the Lasso
([25], [24] and [23]). Now we state the consistency results

Theorem 3. If condition (6) holds, then for every couple of regularization parame-
ters (λn, µn) such that λn → 0, λnn

1/2 → ∞ and µn → 0, the S-Lasso estimator β̂SL

as defined in (2)-(3) is consistent in variable selection. That is

P(An = A∗) → 1, when n → ∞.

Theorem 4. If there exist sequences (λn, µn) such that the S-Lasso estimator is
consistent in variable selection, then condition (7) is satisfied.

We just have established necessary and sufficient conditions to the selection con-
sistency of the S-Lasso estimator. Due to the assumptions needed in Theorem 3
(more precisely λnn

1/2 → ∞), root-n consistency and variables consistency cannot
be treated here simultaneously. We may want to know if the S-Lasso estimator can
be consistent with a slower rate than n1/2 and consistent in variable selection in the
same time.

Remark 5. Here are special cases of condition (6)- (7).
When µ = 0 and µ/λ = 0: these conditions are exactly the sufficient and necessary
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conditions of the Lasso estimator. In this case Yuan and Lin [23] showed that the
condition (6) becomes necessary and sufficient for the Lasso estimator consistency
in variable selection.
When µ = 0 and µ/λ = γ 6= 0: in this case, condition (6) becomes

sup
j∈(A∗)c

|Cj,A∗C−1
A∗,A∗(2−1 Sgn(β∗

A∗) + γJ̃A∗,A∗β∗
A∗) − γJ̃j,A∗β∗

A∗ | < 1.

Here a good calibration of γ leads to consistency in variable selection:

• if (Cj,A∗C−1
A∗,A∗ J̃A∗,A∗ − J̃j,A∗)β∗

A∗ > 0, then γ must be chosen between

−
1 + 2−1Cj,A∗C−1

A∗,A∗ Sgn(β∗
A∗)

(Cj,A∗C−1
A∗,A∗ J̃A∗,A∗ − J̃j,A∗)β∗

A∗

and
1 − 2−1Cj,A∗C−1

A∗,A∗ Sgn(β∗
A∗)

(Cj,A∗C−1
A∗,A∗ J̃A∗,A∗ − J̃j,A∗)β∗

A∗

.

• if (Cj,A∗C−1
A∗,A∗ J̃A∗,A∗ − J̃j,A∗)β∗

A∗ < 0, then γ must be chosen between the same
quantities but with inversion in their order.

When µ 6= 0 and µ/λ = γ 6= 0: this case is similar to the previous. In addition, it
allows to have another control on the condition through a calibration with µ, so that
condition (6) can more easily be satisfied.

We conclude that if we sacrifice the optimal rate of convergence (i.e. root-n
consistency), we are able through a proper choice of the regularization parameters
(λn, µn) to get consistency in variable selection. Note that Zou [25] showed that the
Lasso estimator cannot be consistent in variable selection even if with a slower rate
of convergence than

√
n. He then added weights to the Lasso (i.e. the adaptive

Lasso estimator) in order to get both asymptotic normality and variable selection
consistency.

4 Model Selection

As already said [Remark 1 in Section 2], each step of the S-Lasso version of the
LARS algorithm provides an estimator of β∗. In this section, we are interested in
the choice of the best estimator according to its prediction accuracy. For a new n×p
matrix xnew of instances (independent of X), denote ŷSL = β̂SLxnew the estimator
of its unknown response value ynew and m = E(ynew|xnew). We aim to minimize the
true risk E

{
‖m − ŷSL‖2

n

}
. First, we easily obtain

E
{
‖m − ŷSL‖2

n

}
= E{‖Y − ŷSL‖2

n − σ2 + 2n−1
n∑

i=1

Cov(yi, ŷ
SL
i )},
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where the expectation is taken over the random variable Y . The last term in this
equation was called optimism [5]. Moreover, Tibshirani [17] links this quantity to the
degree of freedom df(ŷSL) of the estimator ŷSL, so that the above equality becomes

E
{
‖m − ŷSL‖2

n

}
= E

{
‖Y − ŷSL‖2

n − σ2 + 2n−1 df(ŷSL)σ2
}

. (8)

This final expression involves the degree of freedom which is unknown. Various
methods exist to estimate the degree of freedom as bootstrap [7] or data perturba-
tion methods [16]. We give an explicit form to the degree of freedom in order to
reduce the computational cost as in [6] and [27].

Degrees of freedom: the degree of freedom is a quantity of interest in model
selection. Before stating our result, let us introduce some useful properties about
the regularization paths of the S-Lasso estimator:
Given a response Y , and a regularization parameter µ ≥ 0, there is a finite sequence
0 = λ(K) < λ(K−1) < . . . < λ(0) such that β̂SL = 0 for every λ ≥ λ(0). In this
notation, superscripts correspond to the steps of the S-Lasso version of the LARS
algorithm.
Given a response Y , and a regularization parameter µ ≥ 0, for λ ∈ (λ(k+1), λ(k)), the
same variables are used to construct the estimator. Let us note Aζ the active set for
a fixed couple ζ = (λ, µ) and X.,Aζ

the corresponding design matrix.
In what follows, we will use the subscript ζ to emphasize the fact that the con-

sidered quantity depends on ζ .

Theorem 5. For fixed µ ≥ 0 and λ > 0, an unbiased estimate of the effective degree
of freedom of the S-Lasso estimate is given by

d̂f(ŷSL
ζ ) = Tr

[
X.,Aζ

(
X ′

.,Aζ
X.,Aζ

+ µJ̃Aζ ,Aζ

)−1

X ′
.,Aζ

]
,

where J̃ = J′J is defined by

J̃ =




1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 . . . 0 −1 1




. (9)
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As the estimation given in Theorem 5 has an important computational cost, we
propose the following estimator of the degree of freedom of the S-Lasso estimator:

d̂f(ŷSL
ζ ) =

|Aζ| − 2

1 + 2µ
+

2

1 + µ
, (10)

which is very easy to compute. Let Is be the s×s identity matrix where s is an integer.
We found the former approximation of the degree of freedom under the orthogonal
covariance matrix assumption (that is n−1X ′X = Ip). Moreover we approximate the

matrix (I|Aλ| + µJ̃Aλ,Aλ
) by the diagonal matrix with 1 + µ in the first and the last

terms, and 1 + 2µ in the others.

Remark 6 (Comparison to the Lasso and the Elastic-Net). A similar work leads

to an estimation of the degree of freedom of the Lasso: d̂f(ŷL
ζ ) = |Aζ| and to an

estimation of the degree of freedom of the Elastic-Net estimator: d̂f(ŷEN
ζ ) = |Aζ|/(1+

µ). These approximations of the degrees of freedom provide the following comparison

for a fixed ζ: d̂f(ŷSL
ζ ) ≤ d̂f(ŷEN

ζ ) ≤ d̂f(ŷL
ζ ). A conclusion is that the S-Lasso estimator

is the one which penalizes the smaller models, and the Lasso estimator the larger.
As a consequence, the S-Lasso estimator should select larger models than the Lasso
or the Elastic-Net estimator.

5 The Normalized S-Lasso estimator

In this section, we look for a scaled S-Lasso estimator which would have better em-
pirical performance than the original S-Lasso presented above. The idea behind this
study is to better control shrinkage. Indeed, using the S-Lasso procedure (2)-(3) in-
duces double shrinkage: one using the Lasso penalty and the other using the fusion
penalty. We want to undo the shrinkage implied by the fusion penalty as shrinkage is
already ensured by the Lasso penalty. We then suggest to study the S-Lasso criterion
(2)-(3) without the Lasso penalty (i.e. the l2-fusion) in order to find the constant we
have to scale with.

Define

β̃ = Argmin
β∈Rp

‖Y − Xβ‖2
n + µ

p∑

j=2

(βj − βj−1)
2 .

We easily obtain β̃ = ((X ′X)/n + µJ̃)−1(X ′Y )/n := L−1(X ′Y )/n where J̃ is given
by (9). Moreover as the design matrix X is standardized, the symmetric matrix L
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can be written

L =




1 + µ ρ(1, 2) − µ ρ(1, 3) . . . ρ(1, p)

1 + 2µ ρ(2, 3) − µ . . .
...

. . .
. . . ρ(p − 2, p − 1)

1 + 2µ ρ(p − 1, p) − µ
1 + µ




,

where ρ(j, k) is the correlation between the variables x.,j and x.,k.
In order to get rid of the shrinkage due to the fusion penalty, we force L to have

ones (or close to a diagonal of ones) in its diagonal elements. Then we scale the
estimator β̃ by a factor c. Here are two choice we will use in the following of the
paper: i) the first is c = 1 + µ so that the first and the last diagonal elements of L−1

become equal to one; ii) the second is c = 1 + 2µ which offers the advantage that
all the diagonal elements of L−1 become equal to one except the first and the last.
This second choice seems to be more appropriate to undo this extra shrinkage and
specially in high dimensional problem.

We first give a generalization of Lemma 1.

Lemma 2. Given the dataset (X, Y ) and (λ1, µ). Define the augmented dataset

(X̃, Ỹ ) by

X̃ = ν−1
1

(
X√
nµJ

)
and Ỹ =

(
Y
0

)
,

where ν1 is a constant which depends only on µ and J is given by (4). Let r = λ/ν1

and b = (ν2/c)β where ν2 is a constant which depends only on µ, and c is the scaling
constant which appears in the previous study. Then the S-Lasso criterion can be
written ∥∥∥Ỹ − X̃b

∥∥∥
2

n
+ r|b|1. (11)

Let b̂ be the minimizer of this Lasso-criterion, then we define the Scaled Smooth Lasso
(SS-Lasso) by

β̂SSL = β̂SSL(ν1, ν2, c) = (c/ν2) b̂.

Moreover, let J̃ = J′J. Then we have

β̂SSL = Argmin
β∈Rp

{
ν2

ν1
β ′

(
X′X

n
+ µJ̃

c

)
β − 2

Y ′X

n
β + λ

p∑

j=1

|βj |
}

. (12)
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Equation (12) is only a rearrangement of the Lasso criterion (11). The SS-Lasso
expression (12) emphasizes the importance of the scaling constant c. In a way, the
SS-Lasso estimator stabilizes the Lasso estimator β̂L (criterion (11) based in (X, Y )

instead of (X̃, Ỹ )) as we have

β̂L = Argmin
β∈Rp

{
β ′
(

X ′X

n

)
β − 2

Y ′X

n
β + λ

p∑

j=1

|βj|
}

.

The choice of ν1 and ν2 should be linked to this scaling constant c in order to
get better empirical performances and to have less parameters to calibrate. Let us
define some specific cases. i) Case 1: When ν1 = ν2 =

√
1 + µ and c = 1: this is the

”original” S-Lasso estimator as seen in Section 2. ii) Case 2: When ν1 = ν2 =
√

1 + µ
and c = 1 + µ: we call this scaled S-Lasso estimator Normalized Smooth Lasso (NS-
Lasso) and we note it β̂NSL. In this case, we have β̂NSL = (1 + µβ̂SL). iii) Case
3: When ν1 = ν2 =

√
1 + 2µ and c = 1 + 2µ: we call this scaled version Highly

Normalized Smooth Lasso (HS-Lasso) and we note it β̂HSL.
Others choices are possible for ν1 and ν2 in order to better control shrinkage. For

instance we can consider a compromise between the NS-Lasso and the HS-Lasso by
defining ν1 = 1 + µ and ν2 = 1 + 2µ.

Remark 7 (Connection with Soft Thresholding). Let us consider the limit case of
the NS-Lasso estimator. Note β̂NSL

∞ = limµ→∞ β̂NSL, then using (12), we have

β̂NSL
∞ = Argmin

β
{β ′β − 2Y ′Xβ + λ|β|1}.

As a consequence, (β̂NSL
∞ )j =

(
|Y ′x.,j| − λ

2

)
+

Sgn(Y ′x.,j) which is the Univariate Soft

Thresholding [4]. Hence, when µ → ∞, the NS-Lasso works as if all the variables
were independent. The Lasso, which corresponds to the NS-Lasso when µ = 0, often
fails to select variables when high correlations exist between relevant and irrelevant
variables. It seems that the NS-Lasso is able to avoid such problem by increasing µ
and working as if all the variables were independent. Then for a fixed λ, the control of
the regularization parameter µ appears to be crucial. When we vary it, the NS-Lasso
bridges the Lasso and the Soft Thresholding.

6 Experimental results

In the present section we illustrate the good prediction and selection properties of
the NS-Lasso and the HS-Lasso estimators. For this purpose, we compare it to

13



the Lasso and the Elastic-Net. It appears that S-Lasso is a good challenger to the
Elastic-Net [26] even when large correlations between variables exist. We further
show that in most cases, our procedure outperforms the Elastic-Net and the Lasso
when we consider the ratio between the relevant selected variables and irrelevant
selected variables.

Simulations:
Data. Four simulations are generated according to the linear regression model

y = xβ∗ + σε, ε ∼ N (0, 1), x = (x1, . . . , xp).

The first and the second examples were introduced in the original Lasso paper [17].
The third simulation creates a grouped variables situation. It was introduced in [26]
and aims to point the efficiency of the Elastic-Net compared to the Lasso. The last
simulation introduces large correlation between successive variables.

(a) In this example, we simulate 20 observations with 8 variables. The true re-
gression vector is β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0)′ so that only three variables are
truly relevant. Let σ = 3 and the correlation between xj and xk such that
ρ(j, k) = 2−|j−k|.

(b) The second example is the same as the first one, except that we generate 50
observations and that β∗

j = 0.85 for every j ∈ {1, . . . , 8} so that all the variables
are relevant.

(c) In the third example, we simulate 50 data with 40 variables. The true regression
vector is such that β∗

j = 3 for j = 1, . . . , 15 and β∗
j = 0 for j = 16, . . . , 40. Let

σ = 15 and the variables generated as follows:

xj = Z1 + εj, Z1 ∼ N (0, 1), j = 1, . . . , 5,

xj = Z2 + εj, Z2 ∼ N (0, 1), j = 6, . . . , 10,

xj = Z3 + εj, Z3 ∼ N (0, 1), j = 11, . . . , 15,

where εj, j = 1, . . . , 15, are i.i.d. N (0, 0.01) variables. Moreover for j =
16, . . . , 40, the xj’s are i.i.d N (0, 1) variables.
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(d) In the last example, we generate 50 data with 30 variables. The true regression
vector is such that

βj = 3 − 0.1j j = 1, . . . , 10,

βj = −5 + 0.3j j = 20, . . . , 25,

βj = 0 for the others j.

The noise is such that σ = 9 and the correlations are such that ρ(j, k) =

exp (− |j−k|
2

) for (j, k) ∈ {11, . . . , 25}2 and the others variables are i.i.d. N (0, 1),
also independent from x11, . . . , x25. In this model there are big correlation
between relevant variables and even between relevant and irrelevant variables.

Validation. The selection of the regularization parameters λ and µ is based on the
minimization of a BIC-type criterion [14]. For a given β̂ the associated BIC error is
defined as:

BIC(β̂) = ‖Y − Xβ̂‖2
n +

log(n)σ2

n
d̂f(β̂),

where d̂f(β̂) is given by (10) if we consider the S-Lasso and denotes its analogous
quantities if we consider the Lasso or the Elastic-Net. Such criterion provides an
accurate estimator which enjoys good variable selection properties ([15] and [21]).
In simulation studies, for each replication, we also provide the Mean Square Error
(MSE) of the selected estimator on a new and independent dataset with the same
size as training set (that is n). This gives an information on the robustness of the
procedures.

Interpretations. All the results exposed here are based on 200 replications. Figure 1
and Figure 2 give respectively the BIC error and the test error of the considered
procedures in each example. According to the selection part, Figure 3 shows the
frequencies of selection of each variable for all the procedures, and Table 1 shows the
mean of the number of non-zeros coefficients that each procedure selected. Finally
for each procedure, Table 2 gives the ratio between the number of relevant variables
and the number of noise variables that the procedures selected. Let us call SNR this
ratio. Then we can express this ratio as

SNR =

∑
j∈An

I(j ∈ A∗)
∑

j∈An
I(j /∈ A∗)

.

This is a good indication of the selection power of the procedures.
As the Lasso is a special case of the S-Lasso and the Elastic-Net, the Lasso

BIC error (Figure 1) is always larger than the BIC error for the other methods.
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Method Example (a) Example (b) Example (c) Example (d)
Lasso 3.8 [±1.2] 6.5 [±1.2] 6 [±2.0] 18.4 [±3.0]
E-Net 4.9 [±1.2] 6.9 [±0.6] 15.9 [±2.0] 20.5 [±3.4]

NS-Lasso 3.9 [±1.3] 6.5 [±0.9] 15.3 [±2.3] 18.9 [±2.5]
HS-Lasso 3.5 [±1.2] 5.9 [±1.2] 15 [±2.2] 18.1 [±3.1]

Table 1: Mean of the number of non-zero coefficients [and its standard deviation]
selected respectively by the Lasso, the Elastic-Net (E-Net), the Normalized Smooth
Lasso (NS-Lasso) and the Highly Smooth Lasso (HS-Lasso) procedures.

Method Example (a) Example (c) Example (d)
Lasso 2.3 [±1.1] 2.9 [±1.7] 4.7 [±3.2]
E-Net 1.7 [±1.0] 13.1 [±4.4] 3.4 [±2.9]

NS-Lasso 2.5 [±1.0] 13.5 [±4.3] 6.8 [±4.8]
HS-Lasso 1.79 [±1.0] 11.4 [±4.6] 6.4 [±4.1]

Table 2: Mean of the ratio between the number of relevant variables and the number
of noise variables (SNR) [and its standard deviation] that each of the Lasso, the
Elastic-Net, the NS-Lasso and the HS-Lasso procedures selected.

These two seem to have equivalent BIC errors. When considering the test error
(Figure 2), it seems again that all the procedures are similar in all of the examples.
They manage to produce good prediction independly of the sparsity of the model.

The more attractive aspect concerns variable selection. For this purpose we treat
each example separately.
Example (a): the Elastic-Net selects a model which is too large (Table 1). This is
reflected by the worst SNR (Table 2). As a consequence, we can observe in Figure 3
that it also includes the second variable more often than the other procedures. This
is due to the ”grouping effect” as the first variable is relevant. For similar reasons,
the S-Lasso often selects the second variable. However, this variable is less selected
than by the Elastic-Net as the S-Lasso seems to be a little bit disturbed by the third
variable which is irrelevant. This aspect of the S-Lasso procedure is also present
in the selection of the variable 5 as its neighbor variables 4 and 6 are irrelevant.
We can also observe that the S-Lasso procedure is the one which selects less often
irrelevant variables when these variables are far away from relevant ones (in term of
indices distance). Finally, even if the Lasso procedure selects less often the relevant
variables than the Elastic-Net and the S-Lasso procedures, it also has as good SNR.
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Figure 1: BIC error in each example. For each plot, we construct the boxplot for the
procedure 1 = Lasso; 2 = Elastic-Net; 3 = NS-Lasso; 4 = HS-Lasso

The Lasso presents good selection performances in this example.
Example (b): we can see in Figure 3 how the S-Lasso and Elastic-Net selection de-
pends on how the variables are ranked. They both select more variables in the middle
(that is variables 2 to 7) than the ones in the borders (variables 1 and 8) than the
Lasso. We also remark that this aspect is more emphasized for the S-Lasso than for
the Elastic-Net.
Example (c): the Lasso procedure performs poorly. It selects more noise variables
and less relevant ones tha n the other procedures (Figure 3). It also has the worst
SNR (Table 2). In this example, Figure 3 also shows that the Elastic-Net selects more
often relevant variables than the S-Lasso procedures but it also selects more noise
variables than the NS-lasso procedure. Then even if the Elastic-Net has very good
performance in variable selection, the NS-Lasso procedure has similar performances
with a close SNR (Table 2). The NS-Lasso appears to have very good performance
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Figure 2: Test Error in each example. For each plot, we construct the boxplot for
the procedure 1 = Lasso; 2 = Elastic-Net; 3 = NS-Lasso; 4 = HS-Lasso

in this example. However, it selects again less often relevant variables at the border
than the Elastic-Net.
Example (d): we decompose the study into two parts. First, the independent part
which considers variables x1, . . . , x10 and x26, . . . , x30. The second part considers the
other variables which are dependent. Regarding the independent variables, Figure 3
shows that all the procedures perform roughly in the same way, though the S-Lasso
procedure enjoys a slightly better selection (in both relevant and noise group of vari-
ables). For the dependent and relevant variables, the Lasso performs worst than
the other procedures. It selects clearly less often these relevant variables. As in
example (c), the reason is that the Lasso modification of the LARS algorithm tends
to select only one representer of a group of highly correlated variables. The high
value of the SNR for the Lasso (when compared to the Elastic-Net) is explained by
its good performance when it treat noise variables. In this example the Elastic-Net
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Figure 3: Number of variables detections for each procedure in all the examples (Top-
Left: Example (a); Top-Right: Example (b); Bottom-Left: Example (a); Bottom-
Right: Example (b))
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correctly selects relevant variables but it is also the procedure which selects the more
noise variables and has the worst SNR. We also note that both the NS-Lasso and
HS-Lasso outperform the Lasso and Elastic-Net. This gain is emphasized especially
in the center of the groups. Observe that for the variables x20, x21, x25 and x26 (that
is the borders), the NS-Lasso and HS-Lasso have slightly worst performance than
in the center of the groups. This is again due to the attraction we imposed by the
fusion penalty (3) in the S-Lasso criterion.

Conclusion of the experiments. The S-Lasso procedure seems to respond to our
expectations. Indeed, when successive correlations exist, it tends to select the whole
group of these relevant variables and not only one representant as when we use the
Lasso procedure. It also appears that the S-Lasso procedure has very good selection
properties according to both relevant and noise variables. However it has slightly
worst performance in the borders than in the centers of groups of variables (due
to attractions of irrelevant variables). It almost always has a better SNR than the
Elastic-Net, so we can take it as a good challenger for this procedure.

7 Conclusion

In this paper, we introduced a new procedure called the Smooth-Lasso which takes
into account correlation between successive variables. We established its asymptotic
distribution, provided consistency in variable selection results and concluded that
the Smooth-Lasso can be both consistent in variable selection and asymptotically
normal with a lower rate than

√
n. We also found that regression coefficients of

two correlated variables highly depend on the correlation between these variables.
Moreover, simulation studies showed that normalized versions of the Smooth-Lasso
have nice properties of variable selection which is emphasized when high correlations
exist between successive variables. It appears that the Smooth-Lasso almost always
outperforms the Lasso and is a good challenger of the Elastic-Net.

Appendix A.

In this appendix we prove the main results:

Proof of Theorem 1. Using the definition of the S-Lasso criterion (2)-(3) we have:

−2

n
x′

.,j(Y − Xβ̂SL) + λ Sgn(β̂SL
j ) + 2µ

[
2β̂SL

j − (β̂SL
j+1 + β̂SL

j−1)
]

= 0 ∀ j ∈ {1, . . . , p}
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where β̂SL
0 = β̂SL

1 , β̂SL
p+1 = β̂SL

p and for any x ∈ R, Sgn(x) equals 1, −1 or 0 respec-

tively when x is bigger, smaller or equals 0. Now as in our choices β̂SL
j and β̂SL

k are
non-zero and have the same sign, we then easily obtain

n−1
(
x′

.,j − x′
.,k

)
(Y − Xβ̂SL) + 4µ

[
∆β̂SL

j − ∆β̂SL
k

]
= 0.

Or equivalently

[
∆β̂SL

j − ∆β̂SL
k

]
=

1

4nµ

(
x′

.,j − x′
.,k

)
(Y − Xβ̂SL). (13)

On the other hand, by definition, the S-Lasso reaches its minimum at β̂SL. Hence

‖Y − Xβ̂SL‖2
n + λ|β̂SL|1 + µ

p∑

j=2

(
β̂SL

j − β̂SL
j−1

)2

≤ ‖Y ‖2
n,

and consequently, we obtain

‖Y − Xβ̂SL‖2
n ≤ ‖Y ‖2

n, (14)

Moreover, since X is standardized,

‖x.,j − x.,k‖2
n = 2 (1 − ρ(j, k)) . (15)

Combining (13), (14) and (15), we finally obtain

1

‖Y ‖n
|∆β̂SL

j − ∆β̂SL
k | ≤ 1

4nµ

√
n ‖x.,j − x.,k‖n

√
n‖Y − Xβ̂SL‖n

‖Y ‖n

≤ 1

2µ

√
2 (1 − ρ(j, k)).

Proof of Theorem 2. Let Ψn be

Ψn(u) = ‖Y − X(β∗ + vnu)‖2
n + λn

p∑

j=1

|β∗
j + vnuj|

+ µn

p∑

j=2

(
β∗

j − β∗
j−1 + vn(uj − uj−1)

)2
,
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for u = (u1, . . . , up)
′ ∈ R

p and let û = Argminu Ψn(u). Let ε = (ε1, . . . , εn)
′, we then

have

Ψn(u) − Ψn(0) =: Vn(u)

= v2
n u′

(
X ′X

n

)
u − 2

vn√
n

ε′X√
n

u + vnλn

p∑

j=1

v−1
n

(
|β∗

j + vnuj| − |β∗
j |
)

+vnµn

p∑

j=2

v−1
n

{(
β∗

j − β∗
j−1 + vn(uj − uj−1)

)2 −
(
β∗

j − β∗
j−1

)2}

= v2
n

[
u′
(

X ′X

n

)
u − 2

vn

√
n

ε′X√
n

u +
λn

vn

p∑

j=1

v−1
n

(
|β∗

j + vnuj| − |β∗
j |
)

+
µn

vn

p∑

j=2

v−1
n

{(
β∗

j − β∗
j−1 + vn(uj − uj−1)

)2 −
(
β∗

j − β∗
j−1

)2}
]

= v2
nVn(u).

Note that û = Argminu Ψn(u) = Argminu Vn(u), we then have to consider the limit
distribution of Vn(u). First, we have X′X

n
→ C. Moreover, as 1/(vn

√
n) → κ and as

given X, the random variable ε′X√
n

D−→ W , with W ∼ N (0, σ2C), the Slutsky theorem
implies that

2

vn

√
n

ε′X√
n

u
D−→ 2κW ′u.

Now we treat the last two terms. If β∗
j 6= 0,

v−1
n

(
|β∗

j + vnuj| − |β∗
j |
)
→ uj Sgn(β∗

j ),

and is equal to |uj| otherwise. Then, as

λn

vn

p∑

j=1

v−1
n

(
|β∗

j + vnuj| − |β∗
j |
)
→ λ

p∑

j=1

{
uj Sgn(β∗

j )I(β
∗
j 6= 0) + |uj| I(β∗

j = 0)
}

,

For the remaining term, we show that if βj 6= βj−1,

v−1
n

{(
β∗

j − β∗
j−1 + vn(uj − uj−1)

)2 −
(
β∗

j − β∗
j−1

)2}→ 2(uj − uj−1)(β
∗
j − β∗

j−1),

and is equal to
(uj−uj−1)2

n
otherwise. But µn converge to 0, implies that

µn

vn

p∑

j=2

v−1
n

{(
β∗

j − β∗
j−1 + vn(uj − uj−1)

)2 −
(
β∗

j − β∗
j−1

)2}→
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2µ

p∑

j=2

{
(uj − uj−1)(β

∗
j − β∗

j−1)I(β
∗
j 6= β∗

j−1)
}

.

Therefore we have Vn(u) → V (u) for every u ∈ R
p. And since C is a positive

defined matrix, V (u) has a unique minimizer. Moreover as Vn(u) is convex, standard
M-estimation results ([20]) lead to: ûn → Argminu V (u).

Proof of Theorem 3. We begin by giving two results which we will use in our proof.
The first one concerns the optimality conditions of the S-Lasso estimator. Recall
that by definition

β̂SL = Argmin
β∈Rp

‖Y − Xβ‖2
n + λn|β|1 + µnβ ′J̃β.

Note f(a)|a=a0
the evaluation of the function f at the point a0. As the above problem

is a non-differentiable convex problem, classical tools lead to the following optimality
conditions for the S-Lasso estimator:

Lemma 3. The vector β̂SL = (β̂SL
1 , . . . , β̂SL

p )′ is the S-Lasso estimate as defined in
(2)-(3) if and only if

‖Y − Xβ‖2
n + µnβ

′J̃β

dβj

∣∣∣∣∣
βj=β̂SL

j

= −λn Sgn(β̂SL
j ) for j : β̂SL

j 6= 0, (16)

∣∣∣∣∣∣
‖Y − Xβ‖2

n + µnβ
′J̃β

dβj

∣∣∣∣∣
βj=β̂SL

j

∣∣∣∣∣∣
≤ λn for j : β̂SL

j = 0. (17)

Recall that A∗ = {j : β∗
j 6= 0}, the second result states that if we restrict ourselves

to the variables which we are after (i.e. indexes in A∗), we get a consistent estimate
as soon as the regularization parameters λn and µn are properly chosen.

Lemma 4. Let β̃A∗ a minimizer of

‖Y − XA∗βA∗‖2
n + λn

∑

j∈A∗

|βj| + µnβ
′
A∗ J̃A∗,A∗βA∗ .

If λn → 0 and µn → 0 , then β̃A∗ converges to β∗
A∗ in probability.
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This lemma can be see as a special and restricted case of Theorem 2. We now
prove Theorem 3. Let β̃A∗ as in Lemma 4. We define an estimator β̃ by extending
β̃A∗ by zeros on (A∗)c. Hence, consistency of β̃ is ensure as a simple consequence of
Lemma 4. Now we need to prove that with probability tending to one, this estimator
is optimal for the problem (2)-(3). That is the optimal conditions (16)-(17) are
fulfilled with probability tending to one.

From now on, we denote A for A∗. By definition of β̃A, the optimality condi-
tion (16) is satisfied. We now must check the optimality condition (17). Combining
the fact that Y = Xβ∗ + ε and the convergence of the matrix X ′X/n and the vector
ε′X/

√
n, we have

n−1(X ′Y − X ′XAβ̃A) = C.,A(β∗
A − β̃A) + Op(n

−1/2). (18)

Moreover, the optimality condition (16) for the estimator β̃ can be written as

n−1(X ′
.,AY − X ′

.,AX.,Aβ̃A) =
λn

2
Sgn(β̃A) − µnJ̃A,A(β∗

A − β̃A) + µnJ̃A,Aβ∗
A. (19)

Combining (18) and (19), we easily obtain

(β∗
A − β̃A) = (CA,A + µnJ̃A,A)−1

(
λn

2
Sgn(β̃A) + µnJ̃A,Aβ∗

A

)
+ Op(n

−1/2).

Since β̃ is consistent and λnn
1/2 → ∞, for each j ∈ Ac, the left hand size in the

optimality condition (17)

1

λnn
(x′

.,jY − x′
.,jX.,Aβ̃A) − µn

λn
J̃j,Aβ̃A =: L

(n)
j ,

converges in probability to

Cj,A(CA,A + µJ̃A,A)−1
(
2−1 Sgn(β∗

A) +
µ

λ
J̃A,Aβ∗

A

)
− µ

λ
J̃j,Aβ∗

A =: Lj .

By condition (6), this quantity is strictly smaller than one. Then

lim
n→∞

P

(
∀j ∈ Ac, |L(n)

j | ≤ 1
)
≥
∏

j∈Ac

P (|Lj| ≤ 1) = 1,

which ends the proof.
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Proof of Theorem 4. We prove the theorem by contradiction by assuming that there
exists a j ∈ (A∗)c such that there exists a i ∈ A∗ and

|Ωj(λ, µ,A∗, β∗)| > 1,

where the Ωj are given by (5). Since An = A∗ with probability tending to one,
optimality condition (16) implies

β̂SL
A =

(
X ′

.,AX.,A

n
+ µnJ̃A,A

)−1(X ′
.,AY

n
− λn

2
Sgn(β̂SL

A )

)
. (20)

Using this expression of β̂SL
A and Y = X.,Aβ∗

A + ε, then for every j ∈ Ac,

x′
.,jY

n
− x′

.,jX.,Aβ̂SL
A

n
=

x′
.,jY

n
− x′

.,jX.,A

n

(
X ′

.,AX.,A

n
+ λnJ̃A,A

)−1 X ′
.,AY

n

+
λn

2

x′
.,jX.,A

n

(
X ′

.,AX.,A

n
+ λnJ̃A,A

)−1

Sgn(β̂SL
A )

=
x′

.,jY

n
− x′

.,jX.,A

n

(
X ′

.,AX.,A

n
+ λnJ̃A,A

)−1 X ′
.,Aε

n
− x′

.,jX.,A

n
β∗
A

+
x′

.,jX.,A

n

(
X ′

.,AX.,A

n
+ λnJ̃A,A

)−1(
λn

2
Sgn(β̂SL

A ) + µnJ̃A,Aβ∗
A

)
.

Therefore,
n−1(x′

.,jY − x′
.,jX.,Aβ̂SL

A ) − µnJ̃j,AβSL
A = An + Bn,

with




An =
x′

.,jY

n
− x′

.,jX.,A

n

(
X′

.,AX.,A

n
+ µnJ̃A,A

)−1 X′
.,Aε

n
− x′

.,jX.,A

n
β∗
A

Bn =
x′

.,jX.,A

n

(
X′

.,AX.,A

n
+ µnJ̃A,A

)−1 (
λn

2
Sgn(β̂SL

A ) + µnJ̃A,Aβ∗
A

)
− µnJ̃j,Aβ̂SL

A .

We treat this two terms separately. First as β̂SL
A converges in probability to β∗

A and
empirical covariance matrices convergence, the sequence Bn/λn converges to

B = Cj,A(CA,A + µJ̃A,A)−1(2−1λ Sgn(β∗
A) + µλ−1J̃A,Aβ∗

A) − µλ−1J̃j,Aβ∗
A.

By assumption |B| > 1. This implies that P (Bn/λn ≥ (1 + |B|)/2) converges to one.
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For the other term, as Y = Xβ∗ + ε we have

An =
x′

.,jε

n
− x′

.,jX.,A

n

(
X ′

.,AX.,A

n
+ µnJ̃A,A

)−1 X ′
.,Aε

n

= n−1

n∑

k=1

εk(xk,j − Cj,A(CA,A + µJ̃A,A)−1x′
k,A) + op(n

−1/2)

= n−1
n∑

k=1

cn + op(n
−1/2) = Cn + op(n

−1/2),

where cn are i.i.d. random variables with mean 0 and variance:

s2 = Var(ck) = E(c2
k) = E[E(c2

k|X)]

= E

[
E(ε2

k|X)(xk,j − Cj,A(CA,A + µJ̃A,A)−1x′
k,A)2

]

= σ2
E

[
Cj,j + Cj,A(CA,A + µJ̃A,A)−1CA,A(CA,A + µJ̃A,A)−1CA,j

−2Cj,A(CA,A + µJ̃A,A)−1CA,j

]
.

Thus, by the central limit theorem, n1/2Cn is asymptotically normal with mean 0
and covariance matrix s2/n, which is finite. Thus P(n1/2An > 0) converges to 1/2.

Finally, P((An + Bn)/λn > (1 + |B|)/2) is asymptotically bounded below by 1/2.
Thus |(An +Bn)/λn| is asymptotically bigger than 1 with a positive probability, that
is to say the optimality condition (17) is not satisfied. Then β̂SL is not optimal. We
get a contradiction, which concludes the proof.

Proof of Theorem 5. The proof of this theorem is essentially an adaptation of the
one concerning the Lasso in [27]. We do not give the whole proof but only mention
the important steps and let the reader refer to [27] for more details. The main points
in the proof are Stein’s lemma and these few facts:

• For every couple (λ, µ), the S-Lasso estimator is a continuous function of Y .

• For every couple (λ, µ) = ζ , the active set Aζ and the sign vector of β̂SL
ζ which

we denote by Sgnζ are piecewise constant with respect to Y , out of a set with
Lebesgue measure equal to 0.

The detailed proof uses these points and the explicit form of the estimator β̂SL given
by (20). This proof is the same as the one in [27] so that we omit it here.
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[12] Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and vari-
able selection with the lasso. Ann. Statist., 34(3):1436–1462, 2006.

[13] Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths. Ann.
Statist., 35(3):1012–1030, 2007.

27



[14] Gideon Schwartz. Estimating the dimension of a model. Ann. Statist., 6(2):461–
464, 1978.

[15] Jun Shao. An asymptotic theory for linear model selection - with comments.
Statist. Sinica, 7(2):221–264, 1997.

[16] Xiaotong Shen and Jianming Ye. Adaptive model selection. J. Amer. Statist.
Assoc., 97(457):210–221, 2002.

[17] Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Roy.
Statist. Soc. Ser. B, 58(1):267–288, 1996.

[18] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith
Knight. Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser.
B Stat. Methodol., 67(1):91–108, 2005.

[19] A. B. Tsybakov and S. A. Van de Geer. Square root penalty: adaptation to the
margin in classification and in edge estimation. Ann. Statist., 33(3):1203–1224,
2005.

[20] A. W. Van Der Vaart. Asymptotic statistics. Cambridge Univ. Press, 1998.

[21] Yuhong Yang. Can the strengths of AIC and BIC be shared? A conflict between
model indentification and regression estimation. Biometrika, 92(4):937–950,
2005.

[22] Ming Yuan and Yi Lin. Model selection and estimation in regression with
grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol., 68(1):49–67, 2006.

[23] Ming Yuan and Yi Lin. On the non-negative garrotte estimator. J. R. Stat.
Soc. Ser. B Stat. Methodol., 69(2):143–161, 2007.

[24] Peng Zhao and Bin Yu. On model selection consistency of Lasso. J. Mach.
Learn. Res., 7:2541–2563, 2006.

[25] Hui Zou. The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc.,
101(476):1418–1429, 2006.

[26] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic
net. J. R. Stat. Soc. Ser. B Stat. Methodol., 67(2):301–320, 2005.

[27] Hui Zou, Trevor Hastie, and Robert Tibshirani. On the ”degrees of freedom” of
the lasso. Ann. Statist., 35(5):2173–2192, 2007.

28


