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EXAMPLES OF SMOOTH MAPS WITH FINITELY MANY CRITICAL

POINTS IN DIMENSIONS (4, 3), (8, 5) AND (16, 9)

LOUIS FUNAR, CORNEL PINTEA, AND PING ZHANG

Abstract. We consider manifolds M2n which admit smooth maps into a connected sum of
S1 × Sn with only finitely many critical points, for n ∈ {2, 4, 8}, and compute the minimal
number of critical points.

1. Introduction and statement of the main result

Let ϕ(Mm, Nn) denote the minimal number of critical points of smooth maps between the
manifolds Mm and Nn. When superscripts are specified they denote the dimension of the
respective manifolds. We are interested below in the case when m ≥ n ≥ 2 and the manifolds
are compact. The main problem concerning ϕ is to characterize those pairs of manifolds for
which it is finite non-zero and then to compute its value (see [1]).

In [1] the authors found that, in small codimension 0 ≤ m − n − 1 ≤ 3, if ϕ(Mm, Nn+1) is
finite then ϕ(Mm, Nn+1) ∈ {0, 1}, except for the exceptional pairs of dimensions (m,n + 1) ∈
{(2, 2), (4, 3), (4, 2), (5, 2), (6, 3), (8, 5)}. Moreover, under the finiteness hypothesis, ϕ(M,N) =
1 if and only if M is the connected sum of a smooth fibration over N with an exotic sphere
and not a fibration itself. There are two essential ingredients in this result. First, there are
local obstructions to the existence of isolated singularities, namely the germs of smooth maps
R

m → R
n having an isolated singularity at origin are actually locally topologically equivalent

to a projection. Thus, these maps are topological fibrations. Second, singular points located
in a disk cluster together.

The simplest exceptional case is that of (pairs of) surfaces, which is completely understood
by elementary means (see [2] for explicit computations). Very little is known for the other
exceptional and generic (i.e. m − n − 1 ≥ 4) cases and even the case of pairs of spheres
is unsettled yet. In particular, it is not known whether ϕ is bounded in terms only of the
dimensions, in general.

The aim of this note is to find non-trivial examples in dimensions (4, 3), (8, 5) and (16, 9)
inspired by the early work of Antonelli ([3]). The smooth maps considered in [3] are so-
called Montgomery-Samelson fibrations with finitely many singularities where several fibers
are pinched to points. According to [9] these maps should be locally topologically equivalent
to a cone over the Hopf fibration, in a neighborhood of a critical point.

The main ingredient of our approach is the existence of global obstructions of topological
nature to the clustering of genuine critical points in these dimensions. This situation seems
rather exceptional and it permits us to obtain the precise value of ϕ using only basic algebraic
topology.

Date: March 4, 2008.
1991 Mathematics Subject Classification. 57 R 45, 58 K 05, 57 R 60, 57 R 70.
Key words and phrases. Critical point, isolated singularity, Montgomery-Samelson singular fibration, Hopf

fibration, homotopy sphere.

1



2 L.FUNAR, C.PINTEA, AND P.ZHANG

Our computations show that ϕ can take arbitrarily large even values. Thus the behaviour
of ϕ is qualitatively different from what it was seen before in [1].

Theorem 1.1. Let n ∈ {2, 4, 8}, e ≥ c ≥ 0, with c 6= 1, and Σ2n be a homotopy 2n-sphere.
Then

ϕ(Σ2n♯eS
n × Sn♯cS

1 × S2n−1, ♯cS
1 × Sn) = 2e− 2c+ 2

Here ♯cS
1 × Sn = Sn+1 if c = 0 and ♯eS

n × Sn♯cS
1 × S2n−1 = S2n if e = c = 0.

Remark 1.1. For n ∈ {4, 8} the closed orientable simply connected 2n-manifolds having finite
ϕ(M2n, Sn+1) > 1 are of the form Σ2n♯rS

n×Sn, where Σ2n is a homotopy 2n-sphere. It appears
that the singularities arising this way are confined in pairs since ϕ(Σ2n♯rS

n×Sn, Sn+1) = 2r+2
is always even.

The structure of the proof of the Theorem is as follows. We prove Proposition 2.1 which
yields a lower bound for the number of critical values derived from topological obstructions of
algebraic nature. The existence of a non-trivial lower bound is not obvious since one might
imagine that several singularities could combine into a single more complicated singularity.
The next step taken in section 3 is to construct explicit smooth maps with any even number
of singularities. This follows by taking fiber sums of elementary blocks of such maps coming
naturally from Hopf fibrations. Then Corollary 3.1 concludes the proof.

Remark 1.2. Observe that S1 ×S2n−1 fibers over S1 ×Sn, so that the formula in the Theorem
is still valid for e = 0 and c = 1. However, we do not know how to evaluate ϕ when e ≤ c− 1.
The present methods do not work for e ≥ c = 1 either.
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2. A lower bound for the number of critical values

Proposition 2.1. For any dimension n ≥ 2 and non-negative integers e and c, with c 6= 1 we
have

ϕ(Σ2n♯eS
n × Sn♯cS

1 × S2n−1, ♯cS
1 × Sn) ≥ 2e− 2c+ 2

Here ♯cS
1×Sn = Sn+1 if c = 0 and ♯eS

n×Sn♯cS
1×S2n−1 = S2n if e = c = 0 and Σ2n denotes

a homotopy 2n-sphere.

We will prove, more generally, the following:

Proposition 2.2. Let M2n and Nn+1 be closed orientable manifolds and n ≥ 2. Assume
that π1(M) ∼= π1(N) is a free group F(c) on c generators, c 6= 1 (with F(0) = 0) and that
πj(M) = πj(N) = 0, for 2 ≤ j ≤ n − 1. Then ϕ(M,N) ≥ βn(M) − 2c + 2, where βk denotes
the k-th Betti number.

Proof. Let B = B(f) denote the set of critical values of a smooth map f : M → N . We will
prove that the cardinality |B| of B(f) satisfies |B| ≥ βn(M) − 2c + 2, which will imply our
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claim. Set V = f−1(B(f)) ⊂M . We can assume that f has finitely many critical points, since
otherwise the claim of Proposition 2.2 would be obviously verified.

The following two Lemmas do not depend on the homotopy assumptions of Proposition 2.2.

Lemma 2.1. If A is a nonempty finite subset of a connected closed manifold Nn+1, then
βn(N \ A) = βn(N) + |A| − 1.

Proof. Clear from the homology exact sequence of the pair (N,N \A). �

Lemma 2.2. If Mn+q+1 and Nn+1 are smooth manifolds and f : M → N is a smooth map with
finitely many critical points, then the inclusions M \V →֒M and N \B →֒ N are n-connected.

Proof. This is obvious for N \B →֒ N . It remains to prove that πk(M,M \ V ) ∼= 0 for k ≤ n.
Take α : (Dk, Sk−1) → (M,M \ V ) to be an arbitrary smooth map of pairs. Since the critical
set C(f) of f is finite and contained in V , there exists a small homotopy of α relative to the
boundary such that the image α(Dk) avoids C(f). By compactness there exists a neighborhood
U of C(f) consisting of disjoint balls centered at the critical points such that α(Dk) ⊂M \U .
We can arrange by a small isotopy that V becomes transversal to ∂U .

Observe further that V \U consists of regular points of f and thus it is a properly embedded
sub-manifold of M \U . General transversality arguments show that α can be made transverse
to V \ U by a small homotopy. By dimension counting this means that α(Dk) ⊂ M \ U is
disjoint from V and thus the class of α in πk(M,M \ V ) vanishes. �

The restriction of f to M \ V is a proper submersion and hence, according to Ehresmann, a
locally trivial smooth fibration over N \B with compact smooth fiber Fn−1 (see [4]).

Lemma 2.3. Assume that c 6= 1. Then the generic fiber F is homotopy equivalent to the
(n− 1)-sphere.

Proof. Consider the last terms of the homotopy exact sequence of this fibration:

→ π1(M \ V )
f∗
→ π1(N \B)

p
→ π0(F ) → π0(M \ V ) → π0(N \B)

From Lemma 2.2 M \ V and N \ B are connected and π1(M \ V ) ∼= π1(N \ B) ∼= F(c). The
claim is obvious for c = 0. Let then c ≥ 2. If F has d ≥ 2 connected components then the
kernel ker p of p is a finite index proper subgroup of the free non-abelian group F(c). Thus, by
the Nielsen-Schreier theorem, ker p is a free group of rank d(c− 1) + 1, where d is the number
of components of F , and hence of rank larger than c. On the other hand, by exactness of the
sequence above, ker p is also the image of f∗ and thus it is a group of rank at most c. This
contradiction shows that F is connected.

If n = 2 then F is a circle, as claimed.
Let now n > 2. We obtained above that f∗ is surjective. Since finitely generated free groups

are Hopfian any surjective homomorphism F(c) → F(c) is also injective. Since π2(N \ B) ∼=
π2(N) = 0 and f∗ is injective we derive that π1(F ) = 0. The remaining terms of the homotopy
exact sequence of the fibration and Lemma 2.2 show then that πj(F ) = 0 for 2 ≤ j ≤ n − 1.
Thus F is a homotopy sphere. �

Lemma 2.4. (1) We have H1(N \B) ∼= Z
c, Hn(N \B) = Z

|B|+c−1 and Hn+1(N \B) = 0.
(2) If n > 2 then Hn−1(M \ V ) = 0.
(3) The homomorphism Hn(M \ V ) → Hn(M) induced by the inclusion map is surjective.

Proof. The first two assertions are consequences of Lemma 2.1, Lemma 2.2 and standard alge-
braic topology. For instance, H1(N \ B) ∼= H1(N) = Z

c. The last claim follows from Lemma
2.2 and the long exact sequence in homology of the pair (M,M \ V ). �
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Lemma 2.5. If c 6= 1 then the rank of Hn(M \ V ) is 2c+ |B| − 2.

Proof. The Gysin sequence of this spherical fibration reads:

→ Hm(M \ V ) → Hm(N \B) → Hm−n(N \B) → Hm−1(M \ V ) →

Consider the exact subsequence

Hn+1(N \B) → H1(N \B) → Hn(M \ V ) → Hn(N \B) → H0(N \B) → Hn−1(M \ V )

If n > 2 then the first and the last terms vanish.
The Euler characteristic of this subsequence is zero by exactness and thus the rank of Hn(M \

V ) is 2c+ |B| − 2 by Lemma 2.4.
When n = 2, we can complete the exact sequence above by adding one more term to its

right, namely H1(M \B)
f∗
→ H1(N \B). However, f∗ is actually the map induced in homology

by the isomorphism f∗ : π1(M) → π1(N) and thus an isomorphism itself. The argument with
the Euler characteristic can be applied again and yields the claimed result. �

From Lemma 2.5 and Lemma 2.4 (3) we derive that

2c+ |B| − 2 ≥ βn(M)

and the proposition is proved. �

Corollary 2.1. If M2n is a smooth (n− 1)-connected closed manifold, then

ϕ(M,Σn+1) ≥ βn(M) + 2,

where Σn+1 is a homotopy sphere.

Remark 2.1. The present approach does not work for c = 1. In fact, fibers might have several
connected components, each one being a homotopy sphere. Without an upper bound of their
number the Leray-Serre spectral sequence leads only to a trivial lower bound for the number
of critical values.

3. Fiber sums of suspensions of Hopf fibrations

Recall from [1] that ϕ(S2n, Sn+1) = 2 if n = 2, 4 or 8. This is realized by taking suspensions of
both spaces in the Hopf fibration h : S2n−1 → Sn, where n = 2, 4 or 8, and then smoothing the
new map at both ends. The extension H : S2n → Sn+1 has precisely two critical points. This
is also the basic example of a Montgomery-Samelson fibration with finitely many singularities,
as considered in [3].

Our aim is to define fiber sums of Hopf fibrations leading to other examples of pairs of mani-
folds with finite ϕ. Identify Sn+1 (and respectively S2n) with the suspension of Sn (respectively
S2n−1) and thus equip it with the coordinates (x, t), where |x|2 + t2 = 1, and t ∈ [−1, 1]. We
call the coordinate t the height of the respective point. The suspension H is then given by:

H(x, t) =

(
|x|h

(
x

|x|

)
, t

)

Pick up a number of points x1, x2, . . . , xk ∈ Sn+1 and their small enough disk neighborhoods
xi ∈ Di ⊂ Sn+1, such that:

(1) the projections of Di on the height coordinate axis are disjoint;
(2) the Di’s do not contain the two poles, i.e. their projections on the height axis are

contained in the open interval (−1, 1).
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Let Ak be the manifold with boundary obtained by deleting from Sn+1 of the interiors of the
disks Di, for 1 ≤ i ≤ k. Let also Bk denote the preimage H−1(Ak) ⊂ S2n by the suspended
Hopf map. Since H restricts to a trivial fibration over the disks Di it follows that Bk is a
manifold, each one of its boundary component being diffeomorphic to Sn−1 × Sn. Moreover,
the boundary components are endowed with a natural trivialization induced from Di.

Let now Γ be a finite connected graph. To each vertex v of valence k we associate a block
(Bv , Av,H|Bv ) which will be denoted (Bk, Ak,H|Bk

) when we want to emphasize the depen-
dence on the number of boundary components. Each boundary component of Av or Bv corre-
sponds to an edge incident to the vertex v. We define the fiber sum along Γ as the following
triple (BΓ, AΓ,HΓ):

(1) AΓ is the result of gluing the manifolds with boundary Av, associated to the vertices v
of Γ, by identifying, for each edge e joining the vertices v and w (which might coincide)
the pair of boundary components in Av and Aw corresponding to the edge e;

(2) BΓ is the result of gluing the manifolds with boundaryBv, associated to the vertices v of
Γ, by identifying, for each edge e joining the vertices v and w (which might coincide) the
boundary components in Bv and Bw corresponding to the pair of boundary components
in AΓ associated to e;

(3) As the boundary components are identified the natural trivializations of the boundary
components of Bv agree in pairs. Thus the maps Hv induce a well-defined map HΓ :
BΓ → AΓ.

Proposition 3.1. The map HΓ : BΓ → AΓ has 2m critical points, where m is the number of
vertices of Γ.

Proof. Clear, by construction. �

We say that Γ has c independent cycles if the rank of H1(Γ) is c. This is equivalent to ask
that Γ becomes a tree only after removal of at least c edges. Moreover, c = e−m+ 1 where e
denotes the number of edges.

Proposition 3.2. If Γ has e edges and c cycles, i.e. e−c+1 vertices, then BΓ is diffeomorphic
to ♯eS

n × Sn♯cS
1 × S2n−1, while AΓ is diffeomorphic to ♯cS

1 × Sn. For c = 0 the manifold
♯cS

1 × Sn is actually Sn+1.

Proof. The sub-blocks Ak are diffeomorphic to the connected sum of k copies of disks Dn+1 out
of their boundaries. When gluing together two such distinct sub-blocks (due to the presence
of an edge in Γ joining the respective vertices) the respective pair of disks leads to a sphere
factor Sn+1. When gluing all sub-blocks in the pattern of the graph Γ the only non-trivial
contribution comes from the cycles. Each cycle of Γ introduces a 1-handle. Thus the manifold
AΓ is ♯cS

1 × Sn.
The sub-blocks Bk are diffeomorphic to the connected sum of k copies of the product Sn×Dn

out of their boundaries. In fact, one obtains Bk by deleting out k copies of H−1(Di); each
H−1(Di) is a tubular neighborhood of the (generic) fiber of H and thus diffeomorphic to
Sn−1 ×Dn+1.

When k = 1 the generic fiber of H is an Sn−1 embedded in S2n. Although the fiber of
the Hopf fibration is knotted in S2n−1 (e.g. it is a trefoil knot when n = 2), its image in
the suspension sphere S2n is unknotted. This is an immediate consequence of Haefliger’s
classification of smooth embeddings. According to [5], any smooth embedding of Sk in Sm is
unknotted, i.e. isotopic to the boundary of a standard ball in the meta-stable range k < 2

3
m−1.
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This implies that the complement of a regular neighborhood of the fiber is diffeomorphic to
the complement of a standard sphere and thus to Sn ×Dn.

When k ≥ 2 we remark that the fibers over the points xi ∈ Di lie at different heights and
thus they are contained in disjoint slice spheres of the suspension S2n. This implies that these
fibers are unlinked i.e. isotopic to the boundary of a set of disjoint standard balls. Thus the
complement of a regular neighborhood of their union is diffeomorphic to the connected sum of
their individual complements, and therefore to the connected sum of k copies of the product
Sn ×Dn out of their boundaries.

When gluing together two such sub-blocks associated to adjacent vertices in Γ the respective
pair of Sn ×Dn’s yields a factor Sn × Sn, because the gluing map respects the product struc-
ture. When gluing all sub-blocks in the pattern of the graph Γ the only additional non-trivial
contribution comes from the cycles. Each cycle of Γ introduces an extra 1-handle. Thus the
manifold BΓ is ♯eS

n × Sn♯cS
1 × S2n−1. �

Remark 3.1. There are some small variations of the method above. When n = 8 let us decorate
each edge a of the graph Γ by an element ψa ∈ Γ8. Here Γ8 denotes the group of (pseudo-)
isotopy classes of diffeomorphisms of S7. When gluing the sub-blocks of AΓ along the boundary
7-spheres corresponding to the edge a we make a twist by the element ψa. Further, for the
gluings along the boundary components S7 × S8 of the sub-blocks of BΓ use the product class
ψa × 1. This will produce some twisted pairs of manifolds, corresponding to adjoining exotic
spheres to our former examples.

Other examples can be obtained by adjoining an exotic sphere to ♯eS
n × Sn♯cS

1 × S2n−1

in dimensions 2n = 8 or 16, or a homotopy 4-sphere when 2n = 4. Recall that the group Θk

of homotopy k-spheres is Θ8 = Θ16 = Z/2Z. This can be realized by removing a small disk
centered at a critical point and gluing it back differently, when n 6= 2, and respectively gluing
back a homotopy 4-disk, when n = 2. In this way, using the theorem of Huebsch and Morse for
n = 2 (see [6] and also [1] where this argument is carried out in detail) we still have a function
with 2e− 2c+ 2 critical points and Proposition 2.1 implies that

Corollary 3.1. If e ≥ c ≥ 0, c 6= 1 and Σ is a homotopy sphere then:

ϕ(Σ2n ♯eS
n × Sn♯cS

1 × S2n−1, ♯cS
1 × Sn) ≥ 2e− 2c+ 2

with equality when n ∈ {2, 4, 8}.

4. Examples with ϕ = 1

The result of [1] show that if ϕ(Mm, Nn+1) is finite non-zero (small codimension non-

exceptional dimensions) then ϕ(Mm, Nn+1) = 1 and Mm should be diffeomorphic to Σm♯N̂ ,
where Σm is an exotic sphere such that Mm is not fibered over N . Actually this construction
might produce non-trivial examples in any codimension.

Proposition 4.1. If Σm is an exotic sphere and N̂ → N a fibration then ϕ(Σm♯N̂ ,N) ∈ {0, 1}.

Proof. We obtain Σm♯N̂ from N̂ by excising a ball Dn+1 and gluing it (or a homotopy 4-disk
when m = 4) back by means of a suitable diffeomorphism h of its boundary. By a classical

result of Huebsch and Morse ([6]), there exists a smooth homeomorphism Σm♯N̂ → N̂ which

has only one critical point located in the ball Dn+1. This provides a smooth map Σm♯N̂ → N

with one critical point. Notice however that Σm♯N̂ might still be fibered over N , as it is the

case when N̂ → N is the Hopf fibration S7 → S4. �
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Remark 4.1. Notice however that Σm♯N̂ might still be fibered over N , although not diffeomor-

phic to N̂ . This is so when N̂ → N is the Hopf fibration S7 → S4 and Σ7♯N̂ is a Milnor exotic
sphere, namely a S3-fibration over S4 with Euler class ±1.

Remark 4.2. The manifold Mm = Σm♯Sm−n−1 ×Sn+1 is not diffeomorphic to Sm−n−1 × Sn+1

if Σm is an exotic sphere (see [8]). Thus, the Proposition above yields effectively examples with
ϕ = 1.

If Σ8 is the exotic 8-sphere which generates the group Θ8 = Z/2Z then ϕ(Σ8♯S3×S5, S5) = 1.
In fact M8 = Σ8♯S3 ×S5 is homeomorphic but not diffeomorphic to S3 ×S5. Assume that M8

fibers over S5. Then the fiber is a homotopy 3-sphere and hence S3, by the Poincaré Conjecture.
Isomorphism classes of S3-fibrations over S5 are classified by elements of π4(SO(4)) ∼= Z/2Z.
Thus there exists only one non-trivial S3-fibration W 8. According to ([7], p.164) W 8 is the only
S3-fibration over S5 without cross-sections and thus it has not the homotopy type of S3 × S5.
In particular, W 8 is not homeomorphic to M8 and thus M8 cannot smoothly fiber over S5.

References

1. D. Andrica and L. Funar, On smooth maps with finitely many critical points, J. London Math. Soc. 69(2004),
783–800, Addendum 73(2006), 231–236.

2. D. Andrica and L. Funar, The minimal number of critical points of maps between surfaces, 8p., preprint
2007.

3. P. L. Antonelli, Differentiable Montgomery-Samelson fiberings withfinite singular sets, Canad. J. Math.
21(1969),1489–1495.

4. A. Dimca, Singularities and topology of hypersurfaces, Springer-Verlag, Berlin, 1992.
5. A. Haefliger, Differentiable embeddings of Sn in Sn+q for q > 2, Ann. of Math. 83(1966), 402–436.
6. W. Huebsch and M. Morse, Schoenflies extensions without interior differential singularities, Ann. Math.

76(1962), 18–54.
7. I.M. James and J.H.C. Whithead, The homotopy theory of sphere bundles over spheres. II, Proc. London

Math. Soc. (3) 5(1955), 148–166.
8. R. Schultz, On the inertia group of a product of spheres, Trans. Amer. Math. Soc. 156(1971), 137–153.
9. J. G. Timourian, Fiber bundles with discrete singular set, J. Math. Mech. 18(1968), 61–70.

Institut Fourier BP 74, UMR 5582, Université de Grenoble I, 38402 Saint-Martin-d’Hères
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