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Abstract 1 
 2 

This paper presents statistics of Polar Stratospheric Clouds (PSCs) above Antarctica from 3 

June to October 2006 using observations from the CALIOP spaceborne lidar, part of the 4 

CALIPSO mission. Synoptic-scale changes in their geographic and temporal distribution 5 

are documented on a weekly basis and correlated with temperature fields. A very high 6 

spatial and temporal variability tends to contradict the hypothesis that PSCs are mostly 7 

created via slow processes mainly governed by large-scale temperature changes. Linear 8 

depolarization ratios reveal strongly typed PSCs with distinct characteristics (implying dif-9 

ferent microphysics), but most of the time a unique cloud composition cannot be singled 10 

out. A West/East imbalance is observed in the depolarization distribution, symptomatic of 11 

microphysical disparities. A classification based on depolarization and scattering ratios 12 

suggests more than 60% of mixed PSCs, followed by more than 20% of STS, and a 13 

roughly equal concentration of NAT-based and pure ice PSCs (~8%). Up to the beginning 14 

of August, STS PSCs experience a steady decrease in concentration correlated with an 15 

increase in ice-based PSCs ; this tendency gets reversed after the first week of August. 16 

17 
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1. Introduction 1 

PSCs are traditionally classified according to their composition, either (Type Ia) a crystal-2 

line solid mixture of ice water with HNO3-based particles such as nitric acid trihydrate 3 

(NAT) or dihydrate (NAD); (Type Ib) a liquid supercooled ternary solution of HNO3, H2SO4 4 

and H2O; or (Type II) pure water ice (WMO, 2003). Inside Type Ia PSCs, a large number of 5 

small NAT crystals is designated as “enhanced NAT” (Tsias et al. 1999), while the pres-6 

ence of large particles in small numbers is termed “NAT-rock” (Fueglistaler et al. 2002); 7 

each play an important role in stratospheric denitrification. The composition itself depends 8 

on several factors, including the concentration of atmospheric chemical components, of 9 

nucleation particles, and the sufficiently long exposition of these components to tempera-10 

tures low enough for clouds to form. Depending on these factors, a large number of inter-11 

acting mechanisms are now considered to explain PSC formation (Höpfner et al. 2006), 12 

ranging from slow nucleation processes, mainly governed by synoptic-scale temperature 13 

changes (Teitelbaum et al., 2001) to rapid crystal formation due to mountain waves (e.g. 14 

Eckermann et al. 2006). On the surface of crystals, chemical reactions transform passive 15 

reservoir compounds (e.g. HCl) into active chlorine and bromine species that cause rapid 16 

ozone loss in sunlit conditions through destructive catalytic cycles (Solomon, 1999). 17 

Moreover, sedimenting crystals from Type I and II PSCs scavenge nitric acid with them 18 

(Jensen et al. 2002), slowing down further the conversion of active chlorine back to pas-19 

sive reservoir species. Due to these combined effects, PSCs are of fundamental impor-20 

tance to the formation of the Antarctic ozone hole (Farman et al. 1985). As the ongoing 21 

global climate change leads to stratospheric cooling (Randel, 2001), potentially increasing 22 

the population of PSCs and their impact on the ozone layer, it is of primary importance to 23 

better understand the spatial distribution and formation mechanisms producing these 24 

clouds.  25 

Difficult living conditions in Antarctica make local observations sparse. Ground-based stud-26 

ies (David et al. 1998; Santacesaria et al. 2001; Blum et al. 2005) or in-situ measurements 27 

(Browell et al. 1990; Toon et al. 1990) give useful insights into the local properties of 28 

PSCs, but cannot account for their spatial variability across immense Antarctica. Existing 29 

PSC climatologies are either based on passive remote sensing observations (Poole et al. 30 

1989, Poole and Pitts 1994) with a poor sensitivity to optically thin clouds (Hervig et al. 31 

2001), or based on local ground-based stations (Adriani et al. 2004) with limited spatial 32 
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cover. Occultation techniques and limb observations (Spang et al. 2001; Fromm et al. 1 

2003; Spang et al., 2005) give encouraging insights into PSC climatologies, but their spa-2 

tial and temporal resolutions are limited and large differences exist between results from 3 

different instruments (Pavolonis and Key, 2003). The present paper aims to overcome 4 

these limitations by using backscatter and linear depolarization ratio δ (depolarization ratio 5 

hereafter) from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) space-6 

borne lidar, an instrument well suited to PSC observations thanks to its vertical and hori-7 

zontal resolutions and its high sensitivity to optically thin clouds. 8 

The Geosciences Laser Altimeter System (Spinhirne et al. 2005a) was the first space-9 

borne lidar to look at PSCs (Palm et al. 2005a) ; the analysis of two days of observation 10 

suggested a correlation between PSCs and tropospheric disturbances (Palm et al. 2005b). 11 

Recent results from GLAS show a cloud cover 40% higher than from passive remote sens-12 

ing (Spinhirne et al. 2005b), confirming the lidar suitability to thin cloud study ; however, 13 

GLAS lack the microphysical information contained in the depolarization ratio δ (Sassen, 14 

1991) and was only operated during limited time periods that were not optimal for the ob-15 

servation of PSC variability – within the 12 available observation periods, the most appro-16 

priate one (September 25-November 18, 2003, used in Palm et al. 2005b) is already past 17 

the end of the peak PSC season. To provide the spatiotemporal variability needed for PSC 18 

studies requires a more extensive dataset, such as the one from CALIOP. 19 

This paper presents a study of PSC properties over Antarctica during the 2006 austral win-20 

ter, documenting the variability of their geographical and thickness distribution. A compre-21 

hensive dataset of spaceborne lidar observations (Sect. 2) provides 1) a high resolution 22 

and sensitivity especially suited to PSC detection, and 2) an extensive observation domain 23 

and period which allow to track synoptic-scale changes on a weekly scale during the sea-24 

son (Sect. 3.1 and 3.2). Depolarization ratio shows changes in the microphysical proper-25 

ties of PSCs (Sect. 3.3). Results are discussed in Sect. 4. 26 

2. Observations and cloud detection 27 

CALIOP is part of the NASA / CNES (Centre National d’Etudes Spatiales) mission CA-28 

LIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), and orbits 29 

Earth roughly 14 times a day between 82°N and 82°S at 705 km (Winker et al. 2003, 30 

2006). CALIOP has shown excellent agreement with airborne lidars during validation cam-31 
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paigns (McGill et al. 2007) ; preliminary studies suggest its depolarization ratio follows dis-1 

tributions and trends inferred from long-term, ground-based studies (e.g. Sassen and Ben-2 

son, 2001). These studies give confidence that CALIOP data is not affected by any signifi-3 

cant bias and that scientific interpretation is possible. CALIOP time series are gathered on 4 

a non-uniform altitude and time grid (Winker et al. 2004) ; data was therefore first regrid-5 

ded over constant altitude bins of 30 meters, then averaged over 30 profiles, reducing the 6 

resolution from 1 profile every 333 meters (CALIOP’s nominal resolution) to 1 profile every 7 

10 km to improve signal-to-noise ratio.  8 

The present study uses two and a half months of observation, from June 16 to August 31st 9 

– the period of maximum PSC occurrence above Antarctica – with 6 missing days (July 11 10 

to 13 and 28, August 29 and 30). Data include total attenuated backscatter for 532 and 11 

1064 nm channels (giving the color ratio), and attenuated backscatter in the 532 nm per-12 

pendicular channel (giving δ, Sect. 3.3) as a function of altitude, longitude and latitude 13 

(Hostetler et al. 2006). Due to solar light, daytime observations suffer from a relatively low 14 

signal-to-noise ratio which makes the detection of optically thin clouds not trivial and im-15 

pacts the depolarization ratio ; however, given CALIPSO’s heliosynchronous orbit, all 16 

clouds in the studied period and area – from 82°S to 65°S – were observed during night-17 

time. Observations with a signal-to-noise ratio below 3 in the 532 nm channel were dis-18 

carded. Since more than 99% of PSCs during that period were optically thin (optical depth 19 

below 0.3) and frequently subvisual (optical depth below 0.03), multiple scattering effects 20 

should be negligible (You et al. 2006).  21 

The cloud detection algorithm used in this study first normalizes individual profiles of total 22 

attenuated backscatter on the molecular backscattering profile in the middle stratosphere 23 

(between 28 km and 30 km, above possible PSC layers). Atmospheric features are de-24 

tected on a profile-by-profile basis using a thresholding on the scattering ratio (i.e. a ratio 25 

between atmospheric and molecular backscatter higher than 1.15, following Massoli et al. 26 

2006). In a given lidar profile referenced by time, latitude and longitude, a 30-m altitude bin 27 

with a scattering ratio higher than this threshold was identified as a “cloud point”. PSC 28 

statistics (Sect. 3) were then obtained by analyzing the relevant data at cloud coordinates 29 

(time, latitude, longitude, altitude). Since there are no dependable statistics of color ratio 30 

(defined as the ratio between total backscattered intensity at 1064 and 532 nm) in PSCs, 31 

this measurement was used as an indicator of non-physical data – negative or saturated 32 
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values were filtered out. Fig. 1 shows an example of PSC observed by CALIOP on July 24, 1 

2006 (average profile in the right panel) and the results of the cloud detection (Fig. 1b), 2 

with clear-sky in white. The number of false positives is low and does not affect the results; 3 

however extremely weak backscatter PSCs (e.g. profiles 1375 to 1450, at 13-15 km alti-4 

tude) can be missed. Given how depolarization was averaged (Sect. 3.3) such clouds 5 

would have limited to no impact, but PSC thickness and cover (Sect. 3.1) could be under-6 

estimated. Further work will be required to verify the importance and extent of PSCs with 7 

scattering ratios below 1.15. 8 

3. PSCs above Antarctica 9 

During southern hemisphere winter, the lapse-rate definition of tropopause is not appropri-10 

ate above Antarctica (Hudson and Brandt, 2005), hence a conservative value of 13 km 11 

was chosen as the lower altitude limit for the stratosphere. Cloud points above that altitude 12 

were considered as PSCs, and only data above this level was used in the study.  13 

3. 1. Cloud Occurrence and Thickness 14 

A lidar profile was considered as cloudy if at least 3 consecutive cloudy points (which 15 

translates to a cloud layer 100 m thick) were detected between 13 and 28 km. From this 16 

result, cloud occurrence in a lat-lon cell was defined as the number of cloudy lidar profiles 17 

divided by the entire number of profiles available in a given cell. Considering 7-day periods 18 

from June 16 to August 31, cloud occurrence in 2.5° x 2.5° cells poleward of 65°S (Fig. 2, 19 

column 1) is often greater than 50% (i.e. at least one profile out of two contains at least 20 

three cloud points). Over the continent it is consistently higher than 50% (saturated areas 21 

in Fig. 2 col. 1), and often reaches 100% (i.e. all profiles in a cell contain at least three 22 

cloud points). Until July 8th, clouds are mostly located in the East hemisphere; from then on 23 

clouds are present in both hemispheres until August. After August 8, maximum occur-24 

rences drop below 50% and are only widespread south of 75°S. In the last two weeks of 25 

August, cloud occurrences drop to very low values close to the pole; occurrences are still 26 

important (>30%) further away from the pole (north of 75°S), but these are thin clouds (Fig. 27 

2, col. 2).  28 

The number of cloud points per profile higher than 13 km can be translated into cloud 29 

thickness, and averages from 0 (clear sky) to 150 (4.5 km cloud thickness) in a given cell. 30 
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Geometrically thicker clouds are generally closer to South Pole, at or south of 76°S (Fig. 2, 1 

col. 2). Thick clouds are geographically heterogeneous, their location is variable from one 2 

week to the next, and is rather well correlated with cloud occurrence and temperature. 3 

PSCs are rather thin during the beginning of winter, apart from regional areas of high cloud 4 

occurrence over the peninsula in the Eastern hemisphere (June 24 to July 7). Cloud thick-5 

ness then increases rapidly, with thick clouds covering more or less the entire Antarctic 6 

continent between July 24 and 31 and covering a quarter of diagram (30°W to 120°W, 7 

north of 62°S) between August 1st and 7. During that week, the associated backscatter is 8 

higher than July 1-15 observations by an order of magnitude. During the following week 9 

(August 8-15) clouds more than 1 km thick still appear over large portions of Antarctica 10 

(especially 75°W-120°W and 0°-60°E), but their overall surface is greatly reduced. Be-11 

tween August 16 and 31, PSCs almost never get thicker than 1 km, and those thicker than 12 

500 m are located far away from the Pole (North of 75°S, consistent with cloud occur-13 

rence). 14 

3. 2. Temperature 15 

PSC particle types are traditionally associated with a maximum threshold temperature de-16 

pending on their supposed formation process - 195 K for Type Ia (NAT) and Ib (STS), 188 17 

K for Type II (ice), at the 60 hPa level (roughly in mid-stratosphere) and 3 ppmv water mix-18 

ing ratio (Savigny et al. 2005). The transition from a sulfuric- to nitric-acid dominated solu-19 

tion in Type Ib PSC occurs in a small temperature window (~2 K), 3 to 5 K warmer than the 20 

ice frostpoint (Lowe et al. 2006). Given that the altitude (13-28 km) and pressure (20-120 21 

hPa) ranges considered here are large, these temperature thresholds are subject to some 22 

variations.  23 

Fig. 1c shows the geographic distribution of the minimum temperature at the 530K isen-24 

tropic surface (21 km in average), using the same grid as in Sect. 3.1. ECMWF tempera-25 

tures have a maximum uncertainty of +3.5/-2.5 K in the Austral polar vortex (Gobiet et al. 26 

2005). If homogeneous freezing were the main mechanism of PSC formation, cloud cover 27 

would be homogeneous in areas colder than 185 K (blue in Fig. 2, col. 3). Comparing tem-28 

peratures with cloud occurrence (Fig. 2, col. 1) and thickness (Fig. 2, col. 2) shows that 29 

being colder than the homogeneous nucleation threshold is not enough to form PSCs. 30 

However, highest cloud concentrations clearly occur at coldest temperatures (July 24-31 
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August 7), which suggests that homogeneous freezing can occur relatively fast on a 1 

weekly scale when temperatures are well below the condensation point (Drdla and Brow-2 

ell, 2004). The correlation with temperature is not as good after August 8th. More work is 3 

needed to conclude on the dominant formation processes based on temperatures in PSCs 4 

(Sect. 4). 5 

Temperature distribution in cloud points (Fig. 3) indicates that PSCs are present between 6 

175 K and 200 K, with most of them appearing within 180 - 190 K (consistent with results 7 

from Savigny et al. 2005). The distribution peaks at 182 - 184 K, with a sharp drop towards 8 

colder temperatures. It appears monomodal, but analysis of data subsets in distinct re-9 

gions and time periods suggests it is a combination of overlapping modes. These modes 10 

are most likely linked to distinct PSC types, but attempts to separate modes based on 11 

other measurements (e.g. depolarization) did not bring any significant result. 12 

3. 3. Depolarization Ratio Observations 13 

Lidar observations in the 1990’s (Browell et al. 1990, Toon et al. 1990) showed PSCs can 14 

depolarize (solid, Type Ia, II) or not (liquid, Type Ib). It is generally agreed that microphysi-15 

cal properties of PSCs can be inferred from parallel and perpendicular lidar signal (e.g. 16 

Biele et al. 2001), however ground-based lidar observations from Dumont d’Urville have 17 

shown that the temperature-depolarization relationship is complex (Stefanutti et al. 1995), 18 

with non-depolarizing PSCs below the NAT freezing threshold and vice-versa. 19 

Depolarization ratio maps (Fig. 2, col. 4) were obtained by 1) separately totalling signal in 20 

the perpendicular and parallel planes in stratospheric cloud points (Sect. 2) in all profiles 21 

observed inside individual grid cells over 7 days, and 2) computing the ratio of both (Sas-22 

sen et al. 2001). Parallel-plane signal was obtained by substracting perpendicular back-23 

scatter channel signal from the total backscatter channel signal. This averaging technique 24 

minimizes the influence of small-scale fluctuations due to noise, but, all things being equal, 25 

implies that PSCs with stronger backscatter will dominate the average values. It should be 26 

noted that other statistics, such as distributions, were obtained by considering separate 27 

values of depolarization ratio at individual cloud coordinates (time,lat,lon,altitude). Among 28 

those, the number of physically unrealistic depolarization ratios (i.e. greater than 0.8) stays 29 

below 2%. 30 
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The average δ in cloud points (Fig. 2, col. 4) varies significantly from one week to the next. 1 

Areas of high cloud concentration do not produce a stable δ, which ranges generally be-2 

tween 0.3 and 0.5 and suggests heterogeneous microphysical properties. 3 

• The area of highest cloud concentration and thickness (45°W to 120°W, August 4 

1st to 7) shows high average δ, slightly above 0.4. Similar values are also ob-5 

served the previous week (July 24 to 31), scattered in the Western part of the 6 

diagram. These clouds are extremely widespread (synoptic-scale) and corre-7 

lated with the arrival of extremely low temperatures (Sect. 3.2). 8 

• High δ is also observed close to the Antarctic peninsula (i.e. 65°W) at rather low 9 

latitudes (north of 75°S) between June 24 and July 15. A detailed histogram of 10 

individual values of δ over this area and period shows a bimodal distribution: one 11 

mode close to 0.4 (extending up to 0.6) and another weak mode centered on 0. 12 

These clouds only cover a limited area (Fig. 2 col. 1), so they are not a statisti-13 

cally significant part of the PSC population. However, since they appear so 14 

brightly on the δ diagrams they must dominate the perpendicular signal - i.e. 15 

their backscattering is significantly higher than other clouds in that area, which 16 

typically suggests higher optical depths. Individual orbits reveal that the associ-17 

ated clouds reach mid-stratosphere (higher than 26 km), and indeed produce 18 

strong backscattering. These clouds are most likely orographic, associated with 19 

large-amplitude gravity waves (Hertzog et al. 2002; Dörnbrack et al. 2002) in-20 

duced by the steep slopes of the Antarctic peninsula and the Ellsworth moun-21 

tain. Locations and dates are consistent with observations from Höpfner et al. 22 

2006.  23 

• Apart from these two regions, average δ are most frequently close to 0.3. The 24 

depolarization ratio distribution over most areas shows a single mode – this 25 

suggests that these areas are either dominated by (1) a single type of PSC mi-26 

crophysics; or (2) a mixture of different particle types which produce the same 27 

depolarization ratio. In both cases, it is not possible without additional observa-28 

tions to describe the involved particle types with certainty. 29 
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• A last category of clouds (mostly in the first 3 weeks, for instance July 1-7 be-1 

tween 60 and 120°E) shows a very low δ, with a distribution centered on zero. 2 

This low-δ PSC category shows up in cloud occurrence (Fig. 2 col. 1) but is 3 

rather thin (Fig. 2 col. 2) and produces low backscattering. However, it repre-4 

sents a significant part of the overall cloud population, as a zero-depolarization 5 

mode appears in the global distribution. 6 

Clouds colder than 188 K, located between 16 and 24 km (Fig. 4), produce relatively high 7 

δ, up to 0.6 with most observations between 0 and 0.4. Depolarization is strongly depend-8 

ent on the vertical thermal profile, but is lower here than in clouds observed in the Arctic 9 

region by Massoli et al. (2006). By contrast, clouds warmer than 188 K are either located 10 

low in the stratosphere (13-16 km) or very high (above 24 km) and produce comparatively 11 

low δ, the majority below 0.25. δ appears geographically asymmetrical, as statistics over 12 

the entire period shows that δ > 0.2 are mostly located in the Western area, while PSCs in 13 

the East mostly produce δ < 0.2. High values in the West are not limited to the Peninsula, 14 

but generally happen above the continent. This asymmetry mirrors the one observed in 15 

tropopause cirrus in 2003 by Spinhirne et al. (2005a) using GLAS observations, and sug-16 

gests a relationship between stratospheric and tropospheric processes as in Palm et al. 17 

(2005b). It can be due to orographic conditions (the Antarctic peninsula but also its West-18 

ern coastline feature large elevation changes), but can also be linked to temperature varia-19 

tions. 20 

Type Ib PSCs produce a low δ < 0.04 (Browell et al. 1998; Toon et al. 2000); this is ob-21 

served in ~18% of the present individual CALIOP cloud points. Mapping the concentrations 22 

of Type Ib PSCs shows a very homogeneous geographic distribution, without the strong 23 

local variations found in cloud thickness maps (Fig. 2 col. 1). Results were refined using 24 

the classification scheme from Massoli et al. (2006), which allow a separate identification 25 

of NAT, NAT rock, NAT enhanced, STS and ice PSCs, while staying consistent with classi-26 

fications from Browell et al. (1998), Stein et al. (1999) and Dörnbrack et al. (2002). This 27 

scheme classifies PSCs according to observations of depolarization ratio and scattering 28 

ratios (Table 1 in Massoli et al. 2006). Following Massoli and Adriani et al. (2004), the 29 

scattering ratio SR was replaced by the (1-1/SR) parameter, in order to constrain the value 30 

in the (0,1) range. Fig. 5 shows the distribution of PSCs according to this scheme using a 31 

logarithmic color scale. The percentage of PSC types as a function of time (Fig. 6) shows a 32 
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strong dominance by mixed PSCs (62% in average), followed by STS PSCs (21%) and 1 

roughly equal quantities of NAT-based (8.2%) and ice PSCs (7.8%). NAT-based PSC con-2 

centrations are stable (7-10%); all other types experience stronger variations. The most 3 

variable are STS and Ice PSCs, and their evolution is anticorrelated : STS PSCs concen-4 

tration goes down from 40% in mid-june to 15% in the first week of August, while Ice PSC 5 

concentration goes from 2% to 18% ; this evolution is inverted during the remaining of 6 

August (STS concentration goes back up to 30% while Ice PSCs go back to almost 0%). 7 

NAT Rock and enhanced NATs dominate NAT-based PSCs, with a very small fraction of 8 

pure NAT clouds. This last result should be treated with caution however, as NAT Rock 9 

PSCs cannot be identified unambiguously as by Fahey at al. (2001). 10 

4. Discussion and Conclusions 11 

This article describes the evolution PSC cover over Antarctica during two and a half 12 

months of the 2006 Austral winter, using spaceborne lidar observations which provide a 13 

resolution and sensitivity unreachable through passive remote sensing. Large variations in 14 

the geographical distribution of PSCs are documented from one week to the next, and the 15 

important role played by temperature in PSC formation is confirmed. Almost all PSCs were 16 

below the NAT freezing point (195 K), with a large fraction below the Type II PSC forma-17 

tion threshold (188 K) and a maximum cloud presence at even colder temperatures (~183 18 

K). There is a high correlation between temperature and PSC occurrence and thickness, 19 

but temperature thresholds alone are not sufficient to explain the cloud geographic distri-20 

bution, as its complexity shows compared to the temperature field and the polar vortex. 21 

Cloud distribution is most likely also strongly dependent on the distribution of pressure, 22 

water vapour and particle nuclei in the stratosphere. Temperature can therefore provide 23 

strong hints at the areas susceptible to contain PSCs and their subsequent type, but by 24 

itself is not sufficient to predict both. To conclude on the dominant PSC formation proc-25 

esses (heterogeneous or homogeneous), would require 1) the modelling of nucleation 26 

temperature threshold for the different particle types found in PSCs based on thermody-27 

namical parameters, and 2) the colocated extraction of these parameters from other in-28 

struments within the A-Train (such as MLS). These steps are however out of the scope of 29 

the present paper and outline the basis of a future study.  30 

Above the Antarctic circle the number of unphysical depolarization ratios stays low, so re-31 

sults should be considered robust ; this number however increases steadily from less than 32 
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0.5% at 82°S to almost 2% closer to 60°S, this effect might be due to the increase in solar 1 

light at the edges of the arctic circle and winter period, further studies should investigate. 2 

There is a strong relationship between temperature and depolarization ratio, with highly 3 

depolarizing clouds generally colder than 188 K (16-24 km) and non-depolarizing PSCs 4 

warmer than 188 K. This dependence, also present in PSCs associated with gravity waves 5 

(Sect. 3.3), could help explain the observed East/West depolarization imbalance. However, 6 

the depolarization distribution is not solely influenced by temperature: isolated geographi-7 

cal regions (Sect. 3.2) reveal depolarization distributions clearly centered on high values 8 

(e.g. 0.4) that are not associated with cold temperatures. Individual locations present 9 

strongly typed depolarization ratios, with average values of 0.4, 0.2 or 0, but at such loca-10 

tions the δ distribution is rarely monomodal, emphasizing the frequent simultaneous occur-11 

rence of various microphysics in the same vicinity. The δ distribution is frequently quite 12 

large, which is symptomatic of a solid/liquid particle mix; its general shape gives primary 13 

importance to zero depolarization, typical of STS. Both observations agree with results of 14 

the PSC classification scheme: a majority of mixed clouds and STS, consistent with long-15 

term lidar climatologies of PSCs observed in Arctic by Blum et al. (2005) and Massoli et al. 16 

(2006). A visual examination of backscatter images suggests the dominance of mixed 17 

clouds is due to the omnipresence of extended stacked clouds of different types rather 18 

than in-cloud mixing, but further work is needed to verify this assertion. Moreover, the 19 

classification reveals 1) a strong increase in ice PSCs during the end of July, correlated 20 

with a comparable decrease in STS PSCs, 2) a higher frequency of STS PSCs at the be-21 

ginning and the end of the winter season, anticorrelated with frequency of mixed PSCs. 22 

This seasonal cycle suggests a possible balance mechanism between mixed, ice and STS 23 

PSC populations, from which NAT-based PSCs are excluded. Since the average depolari-24 

zation is weighted by cloud backscatter (Sect. 3.3), it is possible that weakly backscatter-25 

ing PSCs are not represented well in present results ; future work will have to assess the 26 

importance of such PSCs, including those lying under the scattering ratio detection thresh-27 

old (Sect. 2), and determine if they possess specific characteristics. Though these clouds 28 

only have a limited radiative impact and particulate content, they could still play an impor-29 

tant role in the PSC lifecycle by e.g. being initiators of cloud formation.  30 

Orography plays a limited but important role, as some PSCs over the Antarctic peninsula 31 

and Western coastline (06/16-07/16) appear linked to gravity waves (Small-Scale Variabil-32 



13 / 19 

ity PSCs in Adriani et al. 2004). These clouds reach extremely high altitudes (higher than 1 

26 km) and are optically thicker than other PSCs by an order of magnitude, although geo-2 

metrically thin. Their depolarization distribution is bimodal centered on 0 and 0.4, similar to 3 

the case observed over Scandinavia in Dörnbrak et al. (2002). They represent a minority 4 

however when compared to the entire PSC population. 5 

As a final note, this study shows that spatially-resolved results can be obtained through 6 

active remote sensing over synoptic-scale areas and extended time periods; this confirms 7 

the importance of CALIPSO for the study of optically thin clouds on a global scale. 8 
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Figure Captions

Fig. 1: a) Example of attenuated backscatter from a PSC observed from CALIPSO on July 
24th 2006. Color scale is logarithmic. Average backscatter profile is shown in the right 
pane. b) Result of the cloud detection, with clear sky showing up as white. 

Fig. 2A. Columns, from left to right: Geographic distribution for the first 5 weeks (June 16-
July 24) of the a) percentage of profiles with at least three cloudy points above 13 km, b) 
cloud thickness above 13 km, c) minimum temperature on the 530 K isentropic surface 
and d) depolarization ratio in cloudy points, weekly averaged in 2.5°×2.5° boxes. For the 
first week (June 16 to June 23), some cells are not filled due to the missing lidar profiles. 
The black line shows the polar vortex (Nash et al. 1996), averaged on a 36h period cen-
tered in the middle of each week. The Antarctica coastline is superimposed. Fig. 2B : same 
as Fig. 2A, for the five last weeks of the considered period (July 24-August 31).

Fig. 3: Temperature distribution in all stratospheric cloudy points between June 14 and 
August 31st.

Fig. 4: Distributions of altitudes and depolarization in cloudy points, at temperatures 
warmer and colder than 188K.

Fig. 5: Distribution of PSCs as a function of scattering ratio and depolarization ratio, using 
a logarithmic color scale. Areas are identified using boundaries from Table 1 in Massoli et 
al. 2006.

Fig. 6: Percentages of PSC types as a function of time using the Massoli et al. classifica-
tion scheme.
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Fig. 1: a. Example of attenuated backscatter from a PSC observed from CALIPSO on July 
24th 2006. Color scale is logarithmic. Average backscatter profile is shown in the right 
pane. b. Result of the cloud detection, with clear sky in white.
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Fig. 2A. Columns, from left to right: Geographic distribution for the first 5 weeks (June 16-
July 24) of the a) percentage of profiles with at least three cloudy points above 13 km, b) 
cloud thickness above 13 km, c) minimum temperature on the 530 K isentropic surface 
and d) depolarization ratio in cloudy points, weekly averaged in 2.5°×2.5° boxes. For the 
first week (June 16 to June 23), some cells are not filled due to the missing lidar profiles. 
The black line shows the polar vortex (Nash et al. 1996), averaged on a 36h period cen-
tered in the middle of each week. The Antarctica coastline is superimposed in grey.
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Fig. 2B : same as Fig. 2A, for the five last weeks of the considered period (July 24-August 
31).
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Fig. 3: Temperature distribution in stratospheric cloud points between June 14 and August 
31st.
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Fig. 4: Distributions of altitude and depolarization for cloud points at temperatures colder 
and warmer than 188K.
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Fig. 5 : 2D distribution of PSCs (in number of points) as a function of scattering ratio and 
depolarization ratio, using a logarithmic color scale. Areas are identified using boundaries 
from Table 1 in Massoli et al. 2006.

7/8



Fig. 6: Percentages of PSC types as a function of time using the Massoli et al. classifica-
tion scheme.

8/8

06/16 06/24 07/01 07/08 07/16 07/24 08/01 08/08 08/16 08/24 08/31
0

10

20

30

40

50

60

Weeks

Pe
rc

en
ta

ge

 

 

NAT (  0.4 %)
NAT Rock (  5.2 %)
STS ( 21.7 %)
ICE (  7.8 %)
Enhanced NAT (  2.6 %)
Mixed ( 62.3 %)
All NAT (  8.2 %)


	Cal_PSC
	Cal_PSC_Figures

