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isotropic turbulence

Sepand Ossia and Marcel Lesieur
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Abstract. Numerical simulations using either molecular or hyper-viscosity are
carried out to study the temporal evolution of large-scale energy and pressure
statistics in decaying two-dimensional incompressible isotropic turbulence. Initial
Gaussian velocity fields peaking at small scales are considered. For each set
of initial parameters, multiple realizations are performed to achieve reasonable
statistical convergence. A wide range of Reynolds numbers (based on an
equivalent Taylor microscale) is explored. For an initial energy spectrum
E(k, 0) ∝ ks0 as k → 0 with s0 ≥ 3, and at high enough Reynolds number, the
numerical simulations display an important energy backscatter at subsequent
times: E(k, t) ∝ tγeks, where s ≈ 3 and γe converges at high times towards
2.5. The pressure spectrum Epp(k, 0) is initially proportional to k1 at small
wavenumbers, in agreement with the predictions of quasi-normal theory. After a
short transient decay, the infrared pressure spectrum increases significantly with
time, while becoming steeper than k1. However, a Gaussian randomization of the
velocity allows the k1 pressure spectrum to be recovered. In the high-Reynolds-
number regime, the infrared pressure spectrum increases enough to induce a
temporal growth of the pressure variance. We examine self-similar behaviours
based on Taylor, integral and dissipative scales. Finally, we determine pressure
pdf’s, which compare favourably with earlier analytic predictions based on shell
models made by Holzer and Siggia.
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1. Introduction

Two-dimensional isotropic turbulence has been the subject of intensive research in the last fifty

years, since it constitutes a sort of lowest-order model in terms of Rossby number for the study

of large-scale geophysical and astrophysical flows. Moreover, two-dimensional regimes may

be partially attained in laboratory experiments by means of solid-body rotation or the action of

a magnetic field (in MHD turbulence). Furthermore, it represents an interesting mathematical

model displaying unpredictability, mixing, large-scale vorticity concentration and important

inverse transfers; a model which can be solved through deterministic numerical simulations at

a much lower cost than its 3D counterpart. The dynamics of two-dimensional stationary-forced

homogeneous turbulence is believed to be governed by two distinct cascade processes: if energy

is injected at a given wavenumber kf , it is transferred back to scales larger than 1/kf , while

enstrophy cascades downscale. According to Kraichnan’s phenomenological theories of two-

dimensional turbulence [1], the flux of the cascading quantity in either case is assumed to be

constant. Using a Kolmogorov-like argument, one then concludes that the energy spectrum

follows k−5/3 and k−3 laws in the inverse-energy and direct enstrophy cascades, respectively.

The simultaneous occurrence of these two cascades stems from the conservation of both energy
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and enstrophy by the nonlinear terms of the Navier–Stokes equation. The k−3 spectrum in the

enstrophy inertial range implies a total-enstrophy divergence, which led Kraichnan to propose a

logarithmic correction to the energy spectrum, in the form [2]

E(k) = Cβ2/3k−3 [ln(k/k1)]
−1/3 , (1)

where k1 is some reference wavenumber in the enstrophy inertial range, β is the enstrophy

dissipation rate per unit mass and C is a constant. In general, numerical simulations of two-

dimensional turbulence recover quite well the predicted law for the inverse-energy cascade.

It was shown in [3] that departures from the inverse-energy cascade were attributable to the

choice of the large-scale drag formulation. When the drag is chosen to be consistent with the

classical phenomenology, the k−5/3 energy spectrum is recovered over a substantial wavenumber

range. By contrast, the form of the energy spectrum in the stationary enstrophy cascade is still a

controversial question. From numerical simulations, many researchers find an energy spectrum

steeper than k−3 and attribute this steepening to the formation of coherent structures (see e.g.

Legras et al [4]). To some extent, this steepening may also be akin to the logarithmic correction

and some uncontrolled correlation between the force and the vorticity fields. To finish with the

shape of the energy spectrum in the forced enstrophy cascade, let us mention that, in a simulation

with resolutions up to 40962 and regular molecular viscosity, it was found in [5] that Kraichnan’s

logarithmic correction is required in order to properly represent the inertial-range spectrum (the

highest Reynolds number based on the forcing scale was 9.2 × 104). A little later, the 20482 and

40962 simulations of [6] using both molecular viscosity and hyper-viscosity exhibited a nearly

perfect k−3 spectrum in the constant enstrophy flux range (the forcing scheme was explicitly

designed to be uncorrelated from the vorticity).

The dynamics of freely-decaying two-dimensional turbulence in a periodic box is also very

complicated. The decay of the system from random initial conditions can be divided into different

stages. The first stage consists of the appearance of a collection of coherent vortices. The final

stage corresponds to the formation of a single dipole. The most interesting and complicated

phase occurs in between these two states where the dynamics of vortex interactions is thought to

be either dissipative or conservative, depending on the separating distance between vortices (see

e.g. [7, 8]). Benzi et al [9] also showed that a vortex population with a wide distribution of sizes

gives rise to a broadband spectrum. Provided that the vortex centres are uniformly distributed in

space, these authors demonstrated that the energy spectrum E(k) behaves as kα−6, where −α is

the exponent of the pdf of the vortex radii.

One of the basic requirements of statistical models is to predict successfully the time

evolution of low-order, spatially-averaged moments of the flow field. The evolution equations

of the kinetic energy E(t) = 1
2
〈�u2〉(t) and enstrophy Ω(t) = 1

2
〈ω2〉(t) are

dE

dt
= −2ν (2)

and

dΩ

dt
= −ν〈(�∇ω)2〉, (3)

where �u and ω are respectively the velocity vector and vorticity intensity, ν is the molecular

viscosity and 〈.〉 denotes an ensemble average. As remarked by Batchelor [10], and in the limit

of vanishing viscosity, the energy is conserved, since the enstrophy is upper bounded by its

initial value. Thus, Batchelor proposed that at high but finite Reynolds number, a self-similar
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enstrophy decay, based on E(0), should take place. From this, he proposed a model of kinetic-

energy spectrum proportional to t−2k−3 at high wavenumbers, and t4k3 at low wavenumbers,

with a peak decaying like t−1. This implies a t−2 decay law for the enstrophy. In this sense,

Batchelor’s k−3 range is analogous to Kraichnan’s, since β2/3 ∼ t−2 in the decaying case.

However, it has been well known for quite a long time that Batchelor’s model is insufficient, in

particular for the enstrophy temporal decay.

As can be seen from the above-quoted papers, apart from a few exceptions, efforts during the

last two decades were put into analysing the validity of classical phenomenological predictions

in the inertial ranges of two-dimensional turbulence. The present paper is instead devoted to

a quantitative study of the consequences of the upscale energy transfer in two-dimensional

turbulence, which we will call energy backscatter. Let kI be the kinetic-energy spectrum peak.

We recall that in studies involving two-point closure of isotropic 2D turbulence, expansions of the

kinetic-energy transfer at a given k << kI in powers of k/kI yield among other terms a positive

one proportional to k3. This was noticed first by Kraichnan [11] using the test-field model, and

recovered by Basdevant et al [12] using the EDQNM (eddy-damped quasi-normal Markovian)

theory (see also Lesieur and Herring [13]). Such a transfer is due physically to a nonlinear

resonance resulting from wavevector triads such that k ≪ p ≈ q ≈ kI . In the framework of

these models, it yields in general the formation of a k3 energy spectrum for k < kI , with a

coefficient proportional to t4 in the time-decaying case, as in Batchelor’s [10] prediction. In the

forced-turbulence case, it was proposed in Lesieur [14] (see also Lesieur [15]) that the infrared

k3 spectrum should be still present below the energy peak kI at which the inverse-energy cascade

stops. This was in fact verified by Frisch and Sulem [16] with the aid of a large-eddy simulation

using a hyper-viscosity.

Prediction of the infrared-scale dynamics is of fundamental importance because these scales

may carry a significant part of the total energy. Besides, one can derive the decay laws of the

relevant dynamical quantities (energy in three dimensions and enstrophy in two dimensions) if

an appropriate set of self-similarity parameters is found to describe the infrared dynamics (see

section 5).

Since most of these results are based on statistical models, it is thus of interest to check

the existence of the k3 backscatter and its importance in the frame of direct and large-eddy

simulations of two-dimensional isotropic turbulence. This is one of the purposes of the present

paper, in which we have performed several numerical simulations of freely-decaying turbulence

in a doubly-periodic square. Since one of the problems of this type of simulation is the lack of

statistical reliability, especially at low k, due to an insufficient number of realizations, we will

present calculations involving a very large number of realizations. Furthermore, and since the

spectral behaviour of the pressure field in two-dimensional turbulence has not received much

attention so far, we shall also look at the time evolution of the pressure spectra, with special

focus on their low-k end. We recall that the pressure spectrum characterizes the noise emitted

by the flow, and its study is therefore very important for aero-acoustics applications, both at

small and small scales. The present work will provide new quantitative results concerning

the behaviour of the infrared energy and pressure scales. The organization of this paper is as

follows: we first recall in section 2 some theoretical results concerning the infrared energy and

pressure spectra in two-dimensional incompressible isotropic turbulence. Details concerning the

numerical simulations are given in section 3. The time evolution of energy and pressure spectra,

in a quite broad set of direct and large-eddy simulations, will then be presented and discussed

in section 4. The issue of infrared self-similarity is examined in section 5, and extensive data
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concerning the intensity of energy and pressure backscatter are given in section 6. Section 7

presents a study of the pressure spectra when the flow is made artificially Gaussian through a

random phase scrambling. It provides also pdfs of pressure, and a comparison with a shell-model

prediction.

2. Infrared energy and pressure spectra

2.1. Infrared energy spectra

In three-dimensional isotropic turbulence, it was shown by Batchelor [17] and Orszag [18] that

if all the integrals
∫

rα1
. . . rαn

Uij(�r)d�r converge (where Uij(�r) = 〈ui(�x, t)uj(�x + �r, t)〉 is the

second-order velocity correlation tensor), then the spectral tensor Ûij(�k), Fourier transform

of Uij(�r), can be expanded in powers of ki, components of the wavevector �k. Using

incompressibility and the fact that Ûij(�k) is Hermitian and hence positive definite, one finally

gets the following expansion for k → 0

Ûii(k) = Ck2 + o(k2), (4)

where the symbol o() means ‘of higher order than’. Noticing that Ûii(k) is proportional to

the kinetic energy spectrum E(k, t) (such that
∫ +∞

0
E(k, t)dk = E(t)) divided by k2, it turns

out that E(k, t) ∝ k4 + o(k4) at low k. In fact, it has been known for a long time that such

regularity conditions may be relaxed, and other infrared exponents (even non-integer) could be

considered, as was done by [19]. In two dimensions, equation (4) is still valid, and E(k) is

now proportional to kUii(k). Within the same assumptions regarding the fast decay at infinity

of Uij(�r), the infrared expansion of E(k, t) can now be written

E(k, t) ∝ k3 + o(k3). (5)

Within this framework, the initial kinetic-energy spectrum exponent s0 should then be equal

to 3. However, if some of the above regularity conditions are relaxed, and one makes the

assumption that all initial integral moments of cumulants of the vorticity field converge†, then

Ûii(k) = C ′ +O(k2), where O() means ‘of same order as’. The infrared expansion of the energy

spectrum is now

E(k, t) = k
[

c0(t) + c2(t)k
2 + o(k2)

]

. (6)

We have an equipartition-type infrared energy spectrum.

Classical two-point closures such as the test-field or EDQNM models show that s0 affects the

evolution of the infrared scales at subsequent times (see Lesieur and Herring [13]). The infrared

region consists in principle of wavenumbers k ≪ kI(t), but we will see that the corresponding

predictions may apply up to wavenumbers quite close to kI .

Thus, it is useful to give a brief picture of the infrared-scale time evolution in high-Reynolds-

number 2D isotropic turbulence.

• s0 = 1 (c0(0) �= 0 in equation (6)): the analysis of nonlocal interactions in the EDQNM

theory shows that the resonant triads leading to backscatter can only affect the second

term in the expansion (6) [12]. Thus, in the idealized context of unbounded decaying

† This was done by Saffman [20] in the three-dimensional case (see also Orszag [18]), and leads to E(k, t) ∝ k2

for k → 0.
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turbulence, the infrared modes should theoretically remain time invariant at low k. However,

TFM calculations of [13] and the numerical simulations of section 4 show that in the left-

neighbourhood of kI(t) (k � kI(t)), the energy spectrum develops a ks′

scaling-range with

s′ ≈ 3. This is due to the spectral backscatter discussed in the introduction. The same

behaviour should hold for 1 < s0 < 3, if one relaxes the regularity conditions leading to the

expansion (6).

• s0 ≥ 3: now c0(0) = 0, the existence of the k3 spectral backscatter implies that, after some

short transient and to the leading order,

E(k, t) = c2(t) k3 with c2(t) ∝ tγe , (7)

where γe is a positive constant.

In fact, in two dimensions, the value found for the infrared growth exponent γe (see below) is

much higher than its counterpart in three dimensions. In the latter case, backscatter gives rise to

a k4 infrared energy spectrum. Note that in two-dimensional homogeneous turbulence, c2 can

be related to the angular momentum of the flow as follows [21]

c2(t) = − 1

16π

∫

R2

r2Uii(r)d�r, (8)

where Uij(�r) has already been defined above. For a recent theoretical discussion on the role

of the angular momentum in two-dimensional turbulence, the reader is referred to the paper

by Davidson [21]. In the framework of Batchelor’s self-similarity assumption for freely-

decaying two-dimensional turbulence, the relevant velocity and length scales are E(t0)
1/2 and

L = tE(t0)
1/2 respectively. Here, t0 refers to the initial instant above which energy is conserved

during a sufficient time. Thus, at wavenumbers preserved from viscous damping, the energy

spectrum should take the following form (for t ≥ t0)

E(k, t) = tE(t0)
3/2F

(

tE(t0)
1/2k

)

, (9)

where F (x) is a non-dimensional function. Considering now the infrared limit, equations (7)

and (9) lead to

E(k, t) ∝ t4E(t0)
3k3,

implying a t4 energy backscatter, as already mentioned. Batchelor’s similarity theory, once

combined with an EDQNM nonlocal-expansion analysis, yields a logarithmic correction in

the enstrophy cascade, as was shown in [13]. However, subsequent numerical simulations

invalidated Batchelor’s predictions regarding the enstrophy time-decay and the associated t4

energy backscatter (see e.g. Bartello and Warn [22] and Chasnov [23]). In fact, the essential part

of the vorticity is formed by a collection of vortices which are reasonably well described by a

Hamiltonian system and are self similar in shape (see e.g. [24]). It is then tempting to attribute

energy backscatter, at least to some extent, to a continuous sequence of mergings taking place

between like-sign vortices which come into close contact (see the animation presented below in

figure 5). According to numerical simulations [8, 25, 26, 27], the vorticity peak in the vortices,

ωm, is another invariant of high-Reynolds-number two-dimensional turbulence and is actually

missed with Batchelor’s model. Yet, ωm displays some weak time dependence in hyper-viscous

simulations because of finite Reynolds number effects. For example, it was found in [27] that

ωm ∝ t−ζ with ζ = 0.01. Due to the presence of coherent vortices, the phenomenological picture

of the enstrophy cascade is somehow distorted and the resulting enstrophy decay is weaker than
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Batchelor’s t−2 prediction. One of the objectives sought in the present work is to estimate

the growth rate of the infrared scales from numerical simulations, considering different initial

conditions and ultraviolet dampings. We shall come to this point below.

2.2. Infrared pressure spectra

Now we turn our attention to the infrared pressure spectrum. The equation for the second-order

moment of the pressure (divided by the density) p, involves velocity fourth-order moments.

Batchelor [28] used an assumption of quasi-normality to factorize the latter into products of

second-order quantities. Later, it was shown by Larchevêque [29] that the quasi-normal (QN)

and EDQNM models lead to the same closure equations for the pressure spectrum. Making use

of the QN closure, the pressure spectrum Epp(k, t), density in wavenumber space of 1
2
〈p2〉(t),

can be related to the energy spectrum E(k, t). Now, consider the infrared region k ≪ kI(t).
By means of leading-order expansions in powers of k/kI(t), Lesieur et al [30] showed that in

incompressible isotropic turbulence†,

Epp(k, t) = Apd(t) kd−1 + O(kd+1), (10)

with

Ap3(t) =
8

15

∫ +∞

0

(

E(q, t)

q

)2

dq, (11)

Ap2(t) =
3

2

∫ +∞

0

E(q, t)2

q
dq. (12)

Here, d represents the dimension of space (2 or 3). This result is independent of both the

infrared shape of E(k, t) and the Reynolds number. The self-similarity expression for the two-

dimensional pressure spectrum, equivalent to (9), is readily obtained by dimensional arguments

Epp(k, t) = tE(t0)
5/2 G

(

tE(t0)
1/2k

)

. (13)

If one accepts for a while that the infrared pressure spectrum is ∝ k, as predicted by the QN model,

then equation (13) implies that the pressure spectrum increases as t2 in the limit k → 0. The same

result can be found by substituting (9) into the right-hand side of (12). Although Batchelor’s

self-similarity form for the energy spectrum is known to be invalid, one could still view the t2

law as a first indication for the existence of some significant pressure growth at the largest scales

of the flow. A more realistic self-similar expression for the pressure spectrum will be proposed

in section 5, supporting the occurrence of pressure ‘backscatter’ in high-Reynolds-number two-

dimensional turbulence. However, large-scale intermittency and non-Gaussian effects due to the

energy-containing eddies are likely to alter the intensity of pressure backscatter and the infrared

pressure spectrum scaling. In section 4, we will present results of numerical simulations of

decaying two-dimensional isotropic turbulence displaying the occurrence of some significant

pressure backscatter which is asymptotically weaker than t2. Moreover, as the energy and

pressure integral scales grow in time, the infrared pressure spectra become progressively steeper

thank1. We recall that in a previous work [30], we checked numerically by large-eddy simulations

that the three-dimensional pressure spectrum was ∝ k2 at small k and exhibited a strong temporal

decay.

† A factor 2 is missing in the expression for Ap2
given by [30], since the integration over the angle β in their

equation (33) should be performed over [0, 2π].
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3. Initial conditions and run parameters

It is well known that in numerical simulations of the large-scale dynamics of decaying isotropic

turbulence, one is faced with two problems: (i) statistical convergence of any quantity based

on the lowest spectral modes can hardly be achieved and (ii) the periodicity condition, which

is commonly used to simulate isotropic turbulence, will spuriously alter the dynamics of

the latter modes as the integral scale of the motion becomes comparable to the size of the

computational domain. We have circumvented the first problem by performing numerous

independent realizations. The second problem is unavoidable at long times because of the

up-scale energy transfer. Yet, if the initial conditions are such that energy is mainly distributed

over the smallest resolved scales, one can increase the time period during which the large-scale

dynamics is preserved from finite-size effects.

The evolution of two-dimensional incompressible turbulence is simulated by means of a

Fourier–Galerkin pseudo-spectral code. The computational domain is the doubly-periodic square

of length 2π. The number of collocation points is N2, resulting in discrete non-dimensional

wavenumbers expanding from kmin = 1 to kmax = N/2. Time-stepping is performed using a

low-storage second-order Runge–Kutta scheme. The equations of motion for the velocity field

written in Fourier space are as follows

û,t = PPP(û × ω) − νnk
2n

û, (14)

�k · û = 0, (15)

where PPP is the projection tensor on the space of solenoidal fields, û and ω̂ = i�k × û are

respectively the spectral velocity and vorticity fields, and νn represents the ultraviolet damping

coefficient. Hereafter, ν1 will be simply denoted ν (molecular viscosity). The need for

performing hyper-viscous simulations (n ≥ 2) will be justified below. The pressure field is

computed from the pressure head h = p + �u2/2 by solving

∇2h = �∇ · (�u × �ω), (16)

in Fourier space. We then take 〈p〉 = 0. For any scalar quantity which will be defined hereafter,

if not specified otherwise, we adopt the convention that the subscript 0 refers to its initial value.

The initial energy spectrum decreases rapidly above a prescribed wavenumber kI0 and is given

by

E(k, 0) =
As0

kI0

1

2
u2

0

(

k

kI0

)s0

exp

(

−s0

2

k2

kI0
2

)

, (17)

where As0
is a normalization constant chosen such that

∫ kc

0
E(k, 0)dk = 1

2
u2

0 = 1, and kc is

the numerical cutoff wavenumber. Thus, u0 denotes the initial velocity r.m.s. value. s0 is the

infrared exponent of E(k, 0), a parameter which will be varied in the numerical simulations

in order to determine its effect upon the time evolution of the infrared pressure and energy

spectra. Choosing kI0 as close as possible to kc allows for reducing the computational cost of

each simulation as well as enhancing the statistical convergence of the largest scales in a single

realization (constraint (i)). Moreover, this enables us to overcome for a while the obstacle (ii)

mentioned above. As a result of this specific choice for kI0 , the smallest scales will contain

significant energy, and aliasing errors are certainly not negligible. The present simulations are

fully dealiased using circular truncation of Fourier modes greater than kc = N/3, so that modes

between N/3 and N/2 are not taken into account.
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The energy spectrum is computed as

E(k, t) = πk〈ûi(�k, t)ûi(−�k, t)〉Sk,M , (18)

where summation over repeated indices is assumed and 〈.〉Sk,M denotes averaging over both the

circular shell Sk = {k − 1
2

≤ |�k| < k + 1
2
}, and all the M realizations. The pressure spectrum is

computed in the same fashion. From preliminary numerical experiments, it was concluded that,

in general, a few hundred realizations were sufficient to provide reliable information about the

statistical behaviour of the infrared energy scales. As for the infrared pressure field, convergence

of the statistical quantities required a greater number of realizations, since pressure spectra are

related to fourth-order velocity correlations.

The initial velocity field is generated in Fourier space with random phases and with amplitude

consistent with (17) and (18). Now, some relevant scales will be defined. One important

characteristic length scale which comes out from the DNS of Chasnov [23] is

λ(t) =

( 〈�u2〉(t)
〈ω2〉(t)

)1/2

. (19)

It is equivalent to the Taylor microscale traditionally used in 3D turbulence. In section 5,

the length scale λ will be used to express self similarity over the infrared wavenumbers. In the

remainder of this paper, the angle brackets will denote averaging over space and the total number

of realizations. Let ω0 be the initial vorticity r.m.s. value. We take the initial large-eddy turnover

time,

τe =
λ0

u0

=
1

ω0

, (20)

as time unit.

3.1. Direct numerical simulations (DNS)

Two DNS at different Reynolds number have been performed. The initial Reynolds number is

defined by

Rλ0
=

u0λ0

ν
. (21)

Table 1 summarizes the pertinent parameters of the DNS. N is the number of collocation points

in each direction of space, and tf represents the final time of the simulation (normalized by τe).

Before presenting the DNS results in detail, let us mention that the values of Rλ0
we could

afford with such a technique were not sufficiently high to provide a reliable picture of the infrared

dynamics at high Reynolds number (see appendix for details). Yet, the Reynolds number can

increase in time in some special cases (see below), and thus Rλ(t) may achieve higher values.

Nevertheless, in order to ensure sufficient infrared resolution, there will be a maximum time

at which the simulation should be stopped. Therefore, it is also of interest to perform hyper-

viscous simulations. Then, all the relevant statistics of these hyper-viscous simulations should

be compared with those obtained in DNS.

Let us first briefly comment on some general behaviours expected from the DNS. Figure

1(a) shows the temporal evolution of kc/kd(t) in the DNS, where kd(t) represents the enstrophy

dissipation wavenumber (see equation 42 in the appendix). The latter ratio remains always greater

than 1. Yet, the resolution of run 1024Dns6 is somewhat better, since Rλ0
is very small in this
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Table 1. DNS parameters.

Run M × N2 s0 kI0
Rλ0

τe tf

1024Dns6 256 × 10242 6 200 6.64 3.32 × 10−3 80
2048Dns3 180 × 20482 3 100 131 6.13 × 10−3 163

Figure 1. Temporal evolution of the non-dimensional dissipative scale kc/kd(t)
(a) and the Reynolds number (b). Broken curves: run 1024Dns6 at Rλ0

= 6.64;
full curves: run 2048Dns3 at Rλ0

= 131. Time is expressed in initial large-eddy
turnover time units.

case. The time evolution of Rλ is plotted in figure 1(b). Chasnov [23, 31] discovered numerically

the existence of a critical Reynolds number, R
(c)
λ0

≈ 15.4, such that, for Rλ0
< R

(c)
λ0

, the Reynolds

number decayed monotonically. On the other hand, and for Rλ0
> R

(c)
λ0

, the Reynolds number

decreased initially and then increased in time, while the energy remained essentially constant.

Runs 1024Dns6 and 2048Dns3 correspond respectively to the former and latter cases and are

in agreement with Chasnov’s predictions. At Rλ0
= Rc

λ0
and for t ≥ t

(c)
1 ≈ 30, the Reynolds

number will remain equal to Rλ(t
(c)
1 ) ≈ 12.0 (see figures 4 and 5 of [31]). The precise values of

R
(c)
λ0

and t
(c)
1 are likely to be dependent on the nature of the initial conditions. The present DNS

have been performed with the same narrow-band initial conditions as Chasnov’s [23, 31].

3.2. Hyper-viscous simulations

Let us come back to equation (14), where (for n ≥ 2), the hyper-viscous damping term on the

right-hand side of (14) permits us to confine the dissipation in a narrow band near the cutoff kc

and prevents at high wavenumbers the enstrophy from piling up at the smallest resolved scales. In

this sense, hyper-viscous simulations can be regarded as large-eddy simulations (LES) allowing

the effective Reynolds number to be increased for a given resolution. Use of hyper-viscosity as

subgrid-scale (SGS) model in numerical simulations of forced two-dimensional turbulence turns

out to be an efficient way of capturing the dynamics of inertial-scale dynamics (see e.g [32, 33]).

There have been some attempts to parametrize the SGS transfer in quasi-two-dimensional flows,
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Table 2. LES parameters.

Run M × N2 s0 kI0
νn τe tf Re

λ(tf )

256H4s3 1800 × 2562 3 70 9.2 × 10−14 1.3 × 10−2 915 2320
256H8s3 512 × 2562 3 70 3.9 × 10−29 1.3 × 10−2 915 2740
512H8s1 128 × 5122 1 120 3.3 × 10−34 6.4 × 10−3 623 16 800
512H4s5 160 × 5122 5 120 6.4 × 10−16 5.9 × 10−3 802 2490
1024H4s5 400 × 10242 5 220 4.4 × 10−18 3.1 × 10−3 753 3850

the most advanced method being the anticipated potential vorticity method of Sadourny and

Basdevant [34]. This approach turns out to be more accurate than use of hyper-viscosity and

produces a realistic amplitude of the large-scale barotropic modes when the cutoff is of the order

of the input scale. In an apparently simpler approach [36], it is proposed that the value of the

hyper-viscosity be computed using the inverse r.m.s. vorticity as timescale and k−1
c as length

scale. More recently, [35] developed an eddy-viscosity model based on hyper-viscosity in the

context of two-dimensional drift wave turbulence in plasma physics. However, it was shown

in [37] that hyper-viscosity significantly modifies the dynamics of the smallest scales of the

simulation and inhibits the vorticity-gradient intensification. Yet, we do not think this problem

affects really the large-scale dynamics, which is the main objective of the present study.

For the present hyper-viscous simulations (hereafter called LES), the hyper-viscosity

constant is chosen so as to ensure numerical stability: Δtνnk
2n
c = 0.5. The time step Δt is

independently fixed once and for all by the CFL condition at the initial instant. It was checked a

posteriori by examining the spectra that this procedure did not cause any enstrophy pile-up at the

largest wavenumbers. We also define an effective Reynolds number Re
λ based on the equivalent

viscosity νe as follows

Re
λ(t) =

(2E(t))1/2λ(t)

νe(t)
, (22)

νe(t) =
β(t)

∫ kc

0
2k4E(k, t)dk

, (23)

where β, the enstrophy dissipation rate, is given by (43). The pertinent parameters of the LES

are listed in table 2. The number which follows the letter H in the run label refers to the hyper-

viscosity order. For all runs, the hyper-viscosity was constant except for run 512H8s1 where

ν8(t) was updated every few time steps and set equal to 0.9 ωrms(t) k−2n
c , as proposed by [36].

The value of νn given for run 512H8s1 represents ν8(0). The values of Re
λ(tf ) are also given in

table 2. The next section is devoted to the presentation of the numerical simulations.

4. Numerical energy and pressure spectra

4.1. DNS

The time evolution of energy and pressure spectra in the DNS is shown in figure 2. Note that

the initial infrared exponent of the energy spectrum in run 1024Dns6 is an even integer, which

breaks the regularity condition expressed by equation (6). One can see that in the latter case,

a k3 infrared energy spectrum develops quasi-instantaneously (figure 2(a)). Figure 2(c) shows
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Figure 2. Temporal evolution of energy (top) and pressure spectra (bottom)
in DNS. Arrows denote the direction of temporal evolution. For run 1024Dns6
(parts (a) and (b)), the spectra are shown from t0 = 0 (broken curve) to tF = 78
by ∆t = 6. For run 2048Dns3 (parts (c) and (d)), t0 = 0 (broken curve),
tF = 156 and ∆t = 13. The represented non-integer slopes were computed using
a least-squares fit.

that the growth of the infrared energy scales is much more significant in run 2048Dns3. At

the final stages of the latter simulation, finite-size effects gradually affect the infrared part of

E(k, t), which behaves now like k2.77. Run 2048Dns3 displays two distinct scaling ranges for

wavenumbers greater than kI(t). The first one is steeper than the theoretical k−3 prediction.

Some small energy pile-up is also observed at the vicinity of the cutoff. It was checked over a

few runs that increasing the resolution, while keeping the same Rλ0
did not significantly modify

the results. The same features can be observed in the DNS of Chasnov [23].

The infrared pressure spectrum is initially ∝ k1 over almost two decades in both DNS

(figures 2(b) and 2(d)). Indeed, since the initial velocity field is Gaussian, the QN closure gives

the exact result for the initial pressure spectrum. However, it exhibits a strong temporal decay

in the lower Reynolds number simulation, whereas it increases over the whole infrared scales

in the other case. At the final time of our DNS, a least-squares fit was used to compute the
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Figure 3. Temporal evolution of the energy spectra in runs 256H4s3 (a) and
256H8s3 (b). The spectra are shown from t0 = 0 (broken curve) to tF = 876 by
∆t = 36.5.

exponent of the infrared pressure spectrum. For Rλ0
= 6.64 (run 1024Dns6), the exponent of

the infrared pressure spectrum is in agreement with the QN value during the whole simulation,

with Epp(k, tf ) ∝ k1.03. For Rλ0
= 131 (run 2048Dns3), the infrared pressure spectrum departs

gradually from the theoretical equipartion spectrum, and becomes much steeper (∝ k1.42 at the

final time of the simulation). Although finite-size effects are not completely negligible at these

times, the steepening might be due to the non-Gaussian effects associated with the emergence

of strong coherent structures. We will come back to this point later.

4.2. Influence of the hyper-viscosity order

Let us turn our attention to the temporal evolution of the infrared spectra in LES. Several runs with

different resolutions, s0, kI0 and νn were carried out. Figure 3 shows the energy spectra in the

lowest-resolution LES, i.e. runs 256H4s3 and 256H8s3, using n = 4 and n = 8, respectively. It

gives useful information on the influence of the hyper-viscosity order upon large-scale dynamics,

since the small number of collocation points allows here for a considerable increase of the

number of realizations M . Apart from νn and M , all other run parameters are identical. In both

simulations, the k3 infrared energy spectrum persists until kI(t) approaches approximately 10.

For the simulation with n = 8, one observes a significant energy pile-up at wavenumbers slightly

smaller than the beginning of the ‘exponential’ decay. This is obviously an artefact of high-order

hyper-viscosity (n ≥ 8) rather than a universal behaviour of the pre-dissipative wavenumbers in

decaying two-dimensional turbulence at high Rλ.

The corresponding pressure spectra are shown in figure 4. In both simulations, Epp(k, t)
first decays for all k until t ≈ 25 while conserving its infrared k1 scaling. Above the latter

transition time, the infrared pressure spectrum increases in time and becomes gradually steeper

than k1. The pressure backscatter is apparently stronger in run 256H8s3. To illustrate the

coherent-vortex dynamics of these flows and the associated pressure distributions, we present

a synchronized animation of the pressure (left) and vorticity (right) in run 256H4s3 (between

t = 0 and t = 180) in figure 5. It shows many pairings and ‘triplings’ of vortices, and also some

Batchelor’s dipoles. Initially, the vortices resemble very much spiral-tail Kelvin–Helmholtz
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Figure 4. Temporal evolution of the pressure spectra for runs 256H4s3 (left) and
256H8s3 (right). In parts (a) and (c), the spectra are shown from t0 = 0 (broken
curve) to tF = 21.9 by ∆t = 3.65. For parts (b) and (d), t0 = 36.5 (broken
curve), tF = 876 and ∆t = 36.5.

vortices obtained in plane mixing layers (see Brown and Roshko [38], and also Lesieur [15] for a

review). Later, these vortices become weakly elliptical, with some thread-like structures at their

periphery. These spiral vorticity filaments are known to be created during vortex coalescence

or vortex sheet rollup (see e.g. [39, 40]). The vorticity animation shows that a wide part of

each vortex has a bright colour (red or blue, according to the rotation sense) close to the initial

maximal values, and hence that the vorticity ωm within the vortex is spread out, and very close

to its initial value. This confirms the importance of this invariant already mentioned above. The

pressure structures are more of elliptic shape at the beginning of the evolution, then circular later.

4.3. Other hyper-viscous simulations (LES)

We now consider LES with s0 = 5 at two different resolutions. As for run 1024Dns6, starting

with s0 > 3, the energy spectrum in runs 512H4s5 and 1024H4s5 (figures 6(a) and 6(c)) picks

up a k3 component over the infrared wavenumbers. Here again, the pressure spectra decay for a

while before increasing over the infrared range (figures 6(b) and (d)).
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Figure 5. Animations showing evolution of pressure (left) and vorticity (right)
in run 256H4s3 from t = 0 to t = 180.

Next, we examine the case of LES starting with a k equipartioned energy spectrum at low

wavenumbers (run 512H8s1). The time evolution of the resulting energy spectra is plotted in

figure 7(a). First, the initial shape of the energy spectrum is preserved at the smallest numerical

wavenumbers (k ≈ kmin). But the violent temporal growth of the integral scale O(k−1
I ),

inevitable in two-dimensional turbulence at high Reynolds numbers because of kinetic-energy

and enstrophy conservation by nonlinear terms, is such that the energy spectrum rapidly steepens

at low k with a close to k3 component of the energy spectrum just below kI . This behaviour is in

agreement with the TFM calculations of Lesieur and Herring [13], and contrasts with its three-

dimensional counterpart, where in a LES with s0 = 2, one observes that the energy spectrum

below k � kI(t) remains constant in time [19, 30]. Returning to the two-dimensional case, one

should keep in mind that for s0 = 1 and within an unbounded domain, the energy spectrum in

the limit k/kI → 0 should remain unaffected by the backscatter arising at k � kI(t). Now, the

pressure spectra display no noticeable transient decay, but the occurrence of pressure backscatter

and the steepening of the infrared pressure spectra is still true (see figure 7(b)).

It is worth noticing that in all numerical simulations (DNS and LES), the pressure spectra

display no inertial range above their peak, even when E(k, t) is close to k−3 over almost one

decade (see figure 6). Furthermore, the peak of Epp(k, t) is very close to kI(t) at all times.

5. Self similarity within the infrared scales

This section is devoted to a discussion on the issue of large-scale self similarity. Here, we

intend to relate the intensity of energy and pressure backscatter to the decay rates of energy and

enstrophy. First, it is of interest to review some existing numerical investigations of energy self-

similarity forms (section 5.1). We then propose equivalent self-similarity forms for the pressure

spectra (section 5.2). Finally, we present numerical tests in order to check the validity of these

self-similarity forms (section 5.3).
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Figure 6. Temporal evolution of the energy (top) and pressure spectra (bottom)
for runs 512H4s5 and 1024H4s5. For run 512H4s5 (figures (a) and (b)), the
spectra are shown from t0 = 0 (broken curve) to tF = 800 by ∆t = 50. For run
1024H4s5 (figures (c) and (d)), t0 = 0 (broken curve) , tF = 751.5 and ∆t = 83.5.

5.1. Review of self-similarity forms for the energy spectra

As was discussed above, Batchelor’s self-similarity theory based on energy conservation fails

because it does not account for the emergence of strong coherent vortices and the existence

of a new rugged invariant ωm. Thus, Bartello and Warn [22] considered the possibility for a

self-similar evolution of E(k, t) outside the enstrophy dissipation range, based on a functional

dependance upon (tωm), t and E(t). When the dependence on (tωm) is assumed to be simply

algebraic, the following self-similar expression for the energy spectrum is obtained

E(k, t) =
tE(t)3/2

(ωmt)q
F1

(

tE(t)1/2k

(ωmt)q

)

. (24)

The latter form, although somewhat heuristic in nature, turned out to be effective in collapsing

the spectra of a DNS at Rλ0
= 120. We now neglect finite-size effects so that equation (7) should

hold at small k. The intensity of energy backscatter is determined by the exponent γe defined in
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Figure 7. Temporal evolution of the energy (a) and pressure spectra (b) in run
512Hd8s1. The spectra are shown from t0 = 0 (broken curve) to tF = 617.5 by
∆t = 32.5.

(7). Let us now compute the value of γe consistent with (24). Equations (7) and (24) imply that

c2(t) ∝ t4(1−q)ω−4q
m E(t)3. Moreover, [22] found that to be consistent with the enstrophy time

evolution, one must have 1 − q = 0.2. Since, in the DNS, ωm(t) and E(t) ultimately decayed as

t−0.5 and t−0.11 respectively, we have

γe = 4(1 − q) − 4q(−0.5) + 3(−0.11) = 2.07. (25)

Thus, we can conclude an approximate t2.07 energy-spectrum backscatter from this DNS.

Interestingly, in the hyper-viscous simulation of [22], equation (24) was completely unsuccessful,

whereas ωm was nearly conserved! Since we believe that hyper-viscous simulations can also

be a candidate for infrared self similarity, this suggests that the rate of temporal growth of the

infrared energy scales cannot be captured by the heuristic formulation (24). For this reason, no

attempt was made to check the validity of (24) in our numerical simulations.

The observation of the existence of Rc
λ0

predicted by his DNS prompted Chasnov [23] to

consider the following form of self similarity

E(k, t) = E(t)λ(t) F2 (λ(t)k) , (26)

which turns out to collapse successfully the spectra in the energy-containing scales, although, as

for the DNS of [22], the statistical convergence of the data is minimal since a single realization

was performed for each run. Now the infrared limit of (26) leads to c2(t) ∝ λ(t)4E(t). Let

us assume that the energy and enstrophy decay respectively as tαe and tαω . Thus, by definition

λ(t)4 ∝ t2(αe−αω) and equation (26) yields

γe = 3αe − 2αω. (27)

If the self-similarity form given by (26) holds at high-Reynolds-number turbulence, then

3|αe| ≪ 2|αω|, and equation (27) indicates that a reduced enstrophy decay goes along with

a weaker energy backscatter. From his DNS at Rλ0
= 4096, Chasnov extrapolated a t1.6 energy

backscatter, since αω = −0.8 and energy was nearly conserved in this simulation. Nevertheless,

in the latter DNS, the infrared resolution was poor and the simulation was not continued long

enough to establish without doubt that the 0.8 exponent did represent an asymptotic enstrophy
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Table 3. Asymptotic statitistical laws of decaying two-dimensional turbulence
with s0 ≥ 3.

γe γp −αe −αω dRλ/dt Validity

Rλ0
< R

(c)
λ0

0 −3 2 3 < 0 t ≫ 1

Rλ0
= R

(c)
λ0

1 −1 1 2 0 t ≥ t
(c)
1

Rλ0
≫ R

(c)
λ0

−2αω −αω
1+sp

2 ≈ 0 < 1 > 0 t ≫ 1

decay law. Therefore, the t1.6 numerical law can be viewed only as a particular measure of the

intensity of energy backscatter under significant finite-size effects. In our present study, we have

rather directly measured the strength of energy backscatter in the numerical simulations and

found a t2.5 law. The results will be presented below. Let us mention also that equations (24)

and (26) are the same if Bartello and Warn [22] scaling is used for the enstrophy.

5.2. Self-similarity form for the pressure spectra

The self-similarity expression for Epp(k, t) consistent with (26) is the following

Epp(k, t) = E(t)2λ(t) G2 (λ(t)k) . (28)

Taking into consideration the steepening of the infrared pressure spectra in our high-Reynolds-

number simulations, we may assume that in general and in the limit k → 0, Epp(k, t) ∝ tγpksp ,

where sp is a non-integer exponent greater than or equal to unity. From equation (28), one can

then evaluate the intensity of pressure backscatter

γp = αe
5 + sp

2
− αω

1 + sp

2
. (29)

In the remainder of this section, we discuss the time evolution of the infrared pressure spectrum,

considering different values of Rλ0
. All the statistical laws which will derived hereafter are

summarized in table 3.

• Rλ0
< R

(c)
λ0

: we shall focus on the final period of decay, where the non-linear terms in

the governing equations can be discarded. As noticed by Chasnov [23], c2 will be time-

invariant (i.e. γe = 0) during the latter time period, E(t) ∝ c2(νt)−2, (t) ∝ c2(νt)−3 and

Rλ(t) ∝ t−1/2. These energy and enstrophy decay laws can be found either analytically or

by means of dimensional arguments. Since we expect the QN model to be valid in this case,

sp = 1 and equation (29) yields

γp = −3, t ≫ 1. (30)

Such a result may also be obtained from dimensional analysis: Epp(k, t) ∝ c2
2(νt)−3k.

Thus, the infrared pressure spectrum should display a strong temporal decay within the

final period of decay. Indeed, in run 1024Dns6 at Rλ0
< R

(c)
λ0

, energy backscatter is quite

weak at the final time of the simulation, indicating that nonlinear terms are nearly negligible

(figure 2(a)). On the other hand, the pressure spectrum decays in time at a significant rate

(figure 2(c)).
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• Rλ0
= R

(c)
λ0

: Chasnov [23] derived analytically the energy and enstrophy decay laws:

for t ≥ t
(c)
1 one has E(t) ∝ t−1, (t) ∝ t−2 and c2(t) ∝ ν3t (t

(c)
1 is defined above). Here,

Batchelor’s enstrophy decay law is recovered, indicating that no coherent structure is present

in the flow. In fact, the vorticity flatness factor remains equal to its initial Gaussian value.

As a result, it is justified to trust the QN closure at t ≥ t
(c)
1 . Using equation (29), we now

have

γp = −1 = −γe, t ≥ t
(c)
1 . (31)

Despite the occurrence of significant energy backscatter, the infrared pressure spectrum

decays in time. This is due to the fact that energy decays at a non-negligible rate within this

particular regime. No DNS was performed at R
(c)
λ0

, since we are mainly interested in the

high-Reynolds-number regimes.

• Rλ0
> R

(c)
λ0

: the palinstrophy 1
2
〈�∇ω〉2 increases to a maximum attained at t∗ and decreases

monotonically for t ≥ t∗, while enstrophy is dissipated after this time. Then the flow

organizes itself into a collection of coherent vortices and the enstrophy decay rate becomes

even weaker, as these coherent vortices, if strong enough, can inhibit to some extent the

enstrophy cascade [25]. As a result, there will be a critical time t
(c)
2 when the competitive

effects between energy and enstrophy temporal decays cancel out exactly in equation (29).

Furthermore, if we assume that sp = 1 at t
(c)
2 and impose γp = 0 in (29), we find

αω

αe

= 3, t = t
(c)
2 . (32)

Thus, pressure backscatter cannot start before t
(c)
2 . In the next subsection, we will check

numerically the validity of equation (32). At times considerably greater than t
(c)
2 , equation

(29) implies that γp = −αω(1+ sp)/2 > 0, i.e. a substantial pressure backscatter is induced

by the enstrophy decay and energy conservation. Using (27), one may alternatively write

γp = γe
1 + sp

4
, t ≫ t

(c)
2 . (33)

Nevertheless, the exponent sp remains unknown and must be determined by other means. We

recall that the QN model in a Batchelor-like decaying turbulence would yield γp = 2 = γe/2,

in agreement with (33). Nonetheless, due to the continuous temporal growth of Rλ(t), the

self-similarity form (28) cannot be asymptotically successful over the infrared wavenumbers,

as will be shown below.

5.3. Numerical assessment of infrared self similarity

In order to check the possibility for a self-similar evolution of the spectra, we chose to work

with Chasnov’s expression (26). The energy spectra of the DNS are divided by E(t)λ(t) and

plotted in figures 8(a, c). The corresponding pressure spectra compensated according to (28)

are also shown (figures 8(b) and 8(d)). For the lowest Reynolds-number DNS, self similarity

in (E(t), λ(t)) units is almost perfect, as can be seen in figure 8(a). In the other DNS, a less

convincing collapse is observed at low wavenumbers (figure 8(c)). In fact, a closer examination

of the normalized energy spectra in run 2048Dns3 shows that a factor t (in τe units) is missing

from the right-hand side of (26) for the non-dimensional energy spectra to collapse perfectly at

low λk. The normalized pressure spectra of run 1024Dns6 are plotted in figure 8(b) and display
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Figure 8. Normalized energy (according to (26), top) and pressure (according
to (28), bottom) spectra in DNS. Run 1024Dns6 (a, b): spectra are shown from
t0 = 48 to tF = 78 by ∆t = 6. Run 2048Dns3 (c, d): t0 = 72, tF = 163 and
∆t = 13.

a perfect collapse. The latter spectra in run 2048Dns3 are also reasonably well described by

the λ-scaling (figure 8(d)). This contrasts with the behaviour of the energy spectra in the same

DNS.

Among all LES, we shall only discuss the behaviour of the normalized spectra of run

1024H4s5, but the conclusions are essentially similar for other runs. Figures 9(a) and (b) show

the energy and pressure spectra respectively of run 1024H4s5 expressed in (E(t), λ(t)) units.

Now, the collapse of the compensated energy spectra is even less convincing than in the DNS.

Once again, examination of figure 9(a) reveals that nearly a factor of t is missing in the λ-based

normalization of the energy spectra. Hence, equation (26) underestimates the intensity of energy

backscatter in run 1024H4s5.

The failure of infrared self similarity based upon λ at high Reynolds number can be

understood as follows. By definition, λ is representative of wavenumbers greater than kI(t).
The shallower the energy spectrum above kI(t) is, the more significant the contribution of

scales much smaller than kI(t)
−1 to (t) and E(t) is. Since in all simulations E(k, 0) decreases
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Figure 9. Normalized energy (left) and pressure spectra (right) in run 1024H4s5
(plotted from t0 = 334 to tF = 751.5 by 41.75).

rapidly above kI0 , λ(t) ≈ kI(t)
−1 for short times, and equations (26), (28) are successful in the

description of the early-stage infrared dynamics. In run 1024Dns6, E(k, t) decays rapidly above

kI(t), even at the final stages of the simulation. Therefore, the collapse of the whole energy and

pressure spectra using λ(t) is quite effective through the total duration of the simulation. When

the Reynolds number is larger (to some extent in run 2048Dns3, and more particularly in the

LES), the energy spectrum is slightly steeper but close to k−3 above its peak. Thus, a wider range

of modes greater than kI(t) contributes to (t) and to λ(t). As a result, the temporal evolution of

E(k, t) and Epp(k, t) at low k cannot be captured using λ(t). We thus consider the possibility

of self similarity based upon the integral scale

Lu(t) =
1

E(t)

∫ kc

0

k−1E(k, t)dk, (34)

defined as in three dimensions by the integral from 0 to ∞ of the normalized longitudinal velocity

correlation. Lu(t) seems more appropriate in describing the time evolution of the infrared spectra,

as it weights the spectra at low k. Once normalized by E(t)Lu(t), the energy spectra collapse

more effectively at small wavenumbers (figure 9(c)), but for kLu(t) ≥ 2, the collapse starts

21



(
)

Figure 10. Energy (a) and pressure (b) spectra in run 1024H4s5, normalized in
enstrophy-dissipative units (same instants as in figure 9). k⋆ represents k/kd.

to fail. The same conclusion holds for the compensated pressure spectra, which is shown in

figure 9(d). Notice that the appropriate self-similarity units for the smallest energy and pressure

scales should be based on (β, kd) as can be inferred from figure 10 (we recall that kd is the

enstrophy-dissipation wavenumber, defined in (42)).

In order to check the validity of (32), we computed the kinetic-energy decay exponent as

αe =
log [E(t + Δt)/E(t)]

log [1 + Δt/t]
. (35)

The enstrophy (αω) and pressure-variance (αp) decay exponents were computed similarly. Figure

11(a) shows the time evolution of αω/αe in run 1024H4s5. The latter ratio reaches the theoretical

value 3 at t
(c)
2 = 21. The pressure spectra of the same run are plotted in 11(b), from t = 0 to

41.6 by Δt = 10.4. Epp(k, 2Δt), Epp(k, 3Δt) and Epp(k, 4Δt) collapse almost perfectly at

their low-k end, implying γp = 0 for t
(c)
3 ≥ t ≥ 2Δt ≈ t

(c)
2 , where t

(c)
3 represents the time

above which γp becomes positive. Moreover, a least-square fit over [3, 60] yields a k0.99 infrared

component, validating the underlying QN assumption in the derivation of equation (32). The

same conclusion holds for the early stages of the pressure backscatter in run 2048Dns3, where

t
(c)
2 = 3.5 (figure 11(a)).

We conclude this section by noticing that at high Reynolds numbers, no trivial parameter

set was found to express self similarity in the infrared energy and pressure scales. Due to a

satisfactory statistical convergence of the largest scales, we have verified that the expression put

forward by Chasnov (equation (26)) is approximate at high Reynolds numbers. We will consider

another approach later to obtain quantitative information regarding the temporal growth of the

infrared energy and pressure spectra. Since it is difficult to achieve a fully-relaxed solution at

the infrared scales with s0 = 1, only the case s0 ≥ 3 will be treated hereafter.

6. Direct determination of energy and pressure backscatter

It might be appropriate to look first at the time evolution of some low-order moments of the

flow. We first examine the case Rλ0
< R

(c)
λ0

: the time evolutions of αe, αω and 0.5αp in run
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Figure 11. (a) Time evolution of αω/αe in runs 1024H4s5 (full curve) and
2048Dns3 (dotted curve). (b) Pressure spectra in run 1024H4s5 at t = 0 (short-
dashed broken curve), ∆t = 10.4 (long-dashed broken curve), 2∆t (chain curve),
3∆t (dotted curve) and 4∆t (full curve).

1024Dns6 are shown in figure 12(a). In agreement with the discussion of section 5.2, αe and

αω seem to approach the theoretical values −2 and −3, respectively. Figure 12(a) also shows

that the pressure variance decays as E(t)2. This result can be obtained by simple dimensional

arguments.

Let us now approximate the energy spectrum at small k as E(k, t) ∝ tγeks. The exponent

γe can be computed by fitting the lowest modes of the energy spectrum to C(t)ks(t) at two

consecutive instants and then taking the logarithmic derivative of C(t). This procedure provides

a local-in-time measure of the intensity of energy backscatter. Figure 12(b) shows that γe tends

to 0, indicating that nonlinear effects are damped away by viscosity. The same procedure was

used to compute γp, the temporal exponent of the infrared pressure spectrum. The latter tends

towards the theoretical value −3, as was predicted in section 5.2.

The time evolutions of αe, αω and αp in the highest-Rλ0
DNS are shown in figure 13(a). For

t ≥ 20, the energy decays as t−0.16, whereas the pressure variance decay slows down for t ≥ 10
and does not display any asymptotic decay exponent. One may imagine that if the simulation were

pursued longer, 〈p2〉(t) could even display a temporal growth. It can be noticed from figure 2(d)

that Epp(k, t) plotted at t = 13 is already slightly steeper than k for all wavenumbers smaller,

but close to the peak of the pressure spectrum. The steepening over the same spectral range

becomes more significant for the next plotted pressure spectrum (t = 26). The enstrophy decay

exponent at the final stages of the simulation is approximately −1.3. This result is consistent

with the DNS of [23] at similar Reynolds number.

Figure 13(b) shows that in run 2048Dns3, γe increases from 0.5 and saturates approximately

at 2.55 for t ≥ 100. The same procedure was used to compute γp, the growth exponent of the

infrared pressure spectrum, but the data display some significant sampling fluctuations, especially

at the end of the calculation, although 180 realizations were carried out here. The value 0.7 seems

to represent best the order of magnitude of γp in the stabilized regime.

The time evolutions of αe, αp and αω in runs 256H4s3 and 1024H4s5 are shown in figure

14(a). Interestingly, the pressure variance increases in all LES after some transient decay. This
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Figure 12. Run 1024Dns6. (a) Time evolution of αe (full curve), 0.5αp (dotted
curve) and αω (broken curve). (b) Temporal exponent of the infrared energy (γe,
full curve) and pressure (γp, dotted curve) spectra.

Figure 13. Run 2048Dns3: same quantities as in figure 12.

is certainly due to the strong pressure backscatter of these simulations. The temporal evolution

of γe in runs 256H4s3 and 1024H4s5 is shown in figure 14(b). Growing from some initial value

and after some transient time period, γe saturates at approximately 2.5, as it was found for run

2048Dns3. Because of a constant energy up-scale transfer, finite-size effects must eventually

inhibit the large-scale growth. The occurrence of this apparently universal t2.5 law (of course,

for our particular initial conditions) suggests that after some transient period, turbulence reaches

some mature state where the memory of the initial conditions and ultraviolet damping is lost

within the infrared energy scales. This approximately universal behaviour holds until finite-size

effects start to act.

Results corresponding to the pressure backscatter intensity in runs 256H4s3 and 1024H4s5
are also shown in figure 14(b). Only the measured γp in run 256H4s3 can be viewed as reliable.
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Figure 14. Runs 1024H4s5 (heavy symbols) and 256H4s3 (light symbols): same
quantities as in figure 12.

Figure 15. Time evolution of the compensated pressure spectra in runs 1024H4s5
(a) and 2048Dns3 (b). Time goes from right to left.

As was indicated above, our numerical experiments suggest that statistical convergence of the

infrared pressure spectra (in the sense that a smooth curve for γp(t) is obtained) requires an

excessive number of realizations, typically of the order of 1000. Such computations can hardly

be performed for N ≥ 512. However, from figure 14(b), one can deduce an approximate t1.4

law for the pressure backscatter. At this stage, one may be tempted to believe that the t1.4 law is

only an approximate measure of the large-scale pressure growth under finite-size effects, since

γp saturates only at the latest stages of run 256H4s3 (t ≥ 550). In fact, according to the present

numerical simulations, the steepening of the infrared pressure spectrum proceeds in a continuous

manner. Hence, it is not certain that pressure backscatter takes place at a constant rate, i.e. with

a constant γp.

It is useful to relate the time evolution of 〈p2〉(t) to the temporal behaviour of Epp(k, t). Since

in examining the pressure spectra we seek to determine the wavenumbers which contribute most
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to the pressure variance, the most suitable feature for representing the spectra is to plot kEpp(k, t)
in semi-log coordinates. Figure 15 displays such a representation for the pressure spectra in runs

1024H4s5 and 2048Dns3. It shows that in the selected LES, there is an asymptotic growth of

the area beneath the compensated pressure spectra. This is certainly due to the strong temporal

growth of the low-k end of these spectra, which compensates for the loss of pressure at high

wavenumbers. The latter area decreases monotonically in the DNS. Nevertheless, there is still a

substantial pressure backscatter at low k.

7. Further pressure statistics

We will provide in this section two sets of statistics related to the pressure. the first one concerns

the pressure spectrum obtained when the velocity field is made artificially Gaussian. The second

concerns pressure pdfs which are compared to shell-model predictions.

7.1. Pressure spectra of random velocity fields

A useful approach in evaluating the role of coherent structures in the pressure scaling laws is to

compare the pressure statistics of the turbulent flow with those obtained from a Gaussian velocity

field having the same energy spectrum. In the following, explicit dependence upon the variable

t will be ignored in the notation. The procedure is as follows: first, compute the randomized

vorticity from the numerical one as

ω̂g(�k) = ω̂(�k) exp
(

iθ�k

)

, (36)

where θ�k is a Gaussian random number uniformly distributed over [0, 2π] and generated at

each wavenumber �k = (k1, k2), subject to the constraint θ−�k = −θ�k. The components of the

randomized velocity field are then simply given by

û1g
(�k) = i

k2

k2
ω̂g(�k), (37)

û2g
(�k) = −i

k1

k2
ω̂g(�k). (38)

Thus, the energy and zero-divergence of each two-dimensional mode are preserved. Hereafter,

pg will refer to the pressure field computed from �ug. Figure 16 shows the result of the above

procedure applied to run 1024H4s5 at tf = 753, the final instant of the simulation. Both

Epp(k) and Epgpg
(k) have been plotted in figure 16 and display different infrared scalings: a

least-squares fit over k ∈ [1, 4] yields respectively k1.59 and k1.02 for Epp(k) and Epgpg
(k).

Furthermore, kp/kpg
≈ 1.2, where kp = 17 and kpg

= 14 denote respectively the peak of Epp(k)
and Epgpg

(k). The relative amplitudes of the Gaussian and turbulent pressure spectra displays

different behaviours

Epgpg
(k) > Epp(k), for k < kpg

, (39)

Epgpg
(k) ≤ Epp(k), for k ≥ kpg

. (40)

The results also show that for k ≥ kd = 173, Ep
g
p

g
and Epp collapse onto each other. Notice

also that in all simulations, even after the emergence of vortices, kp ≈ kI . Since the size of the

most intense vortices is typically O(k−1
I ), one may be tempted to associate the steepening of the
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Figure 16. Run 1024H4s5 at tf = 753. Full curve: Epp(k, tf ); dotted curve:
Epgpg(k, tf ); full squares: pressure spectrum resulting from scrambling the phase

of ω̂(�k, tf ) for k ∈ [kω/2, kω], where kω = 20 represents the peak of the enstrophy
spectrum.

infrared pressure spectra with the emergence of the latter vortices. The vorticity iso-contours in a

typical realization of run 1024H4s5 are displayed in figure 17 (top). To best visualize the form of

the coherent vortices, a 1282 lattice from the total field is shown. The typical size of the vortices

spans approximately over 15 grid points. The stuctures observed (dipoles, pairings, spiral braids

of vorticity) resemble of course what was seen in the animation, and already simulated by many

researchers in the past. Figure 17 (bottom) shows the vorticity iso-contours in the fully-scrambled

field: one can check that the vortices have disappeared.

It is therefore interesting to see that a Gaussian randomization of the velocity field, which

destroys the coherent vortices, allows the QN infrared pressure-spectrum predictions to be

recovered. This supports the remark made above that the departure from Gaussianity of this

spectrum is due to the emergence of coherent vortices.

7.2. Pressure pdfs and moments

Let us now compare different moments of p with those of pg. The pressure skewness and flatness

factors are defined respectively as

Sp =
〈p3〉
p3

rms

,

Fp =
〈p4〉
p4

rms

.
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Figure 17. Run 1024H4s5 at tf = 753: vorticity iso-contours in 1/16 of the total
domain. Numerical turbulent vorticity (top); fully-scrambled vorticity (bottom).

The results obtained from runs 2048Dns3 and 1024H4s5 are summarized in table 4. As pointed

out by [41], in three-dimensional isotropic turbulence, the QN approximation underestimates

the pressure variances. The present numerical simulations confirm this result in decaying two-

dimensional turbulence, where it is found that 〈p2
g〉/〈p2〉 ≈ 0.6 and 0.7 respectively in LES

and DNS. Next, we look at the pressure probability density function (pdf) (see figure 18). For
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Figure 18. Run 1024H4s5 at tf = 753. Normalized pdf of the pressure. The
symbols refer to the same conditions as in figure 16. Broken curve: Gaussian
distribution.

Table 4. Comparison between some pressure moments at the final instants of
runs 2048Dns3 and 1024H4s5.

Run
<p2

g
>

<p2>
Sp Spg

Fp Fpg

2048Dns3 0.72 −1.86 −1.50 8.81 7.86
1024H4s5 0.60 −2.25 −1.45 11.3 7.58

any fluctuating quantity x which will be considered hereafter, P (x′) will stand for the pdf of

x′ = (x − 〈x〉)/xrms, multiplied by xrms in order to normalize to unity. Figure 18 shows that

at positive pressure fluctuations, P (p′) does not follow the Gaussian distribution observed by

several authors in three-dimensional isotropic turbulence [41, 42, 43]. Notice that P (p′
g) is also

sub-Gaussian at positive values of p′
g. The behaviour of the left wing of P (p′) results in a

negatively skewed pressure distribution (see table 4), as in three dimensions.

Holzer and Siggia [44] demonstrated analytically that when the velocity field is Gaussian,

the pressure skewness is always definite negative in three- and two-dimensional incompressible

isotropic turbulence, regardless of the energy spectrum. Furthermore, they evaluated all pressure

moments in a two-dimensional shell model, yielding in particular Spg
= −1.924 and Fpg

= 9.

This has to be compared with the data of table 4. It is also of interest to compare the shape of

P (p′) at negative excursions with the analytical result of [44] for p′
g → −∞

P (p′
g) ∝

(

−p′
g

)−1/2
exp

(

αp′
g

)

, (41)

where α =
√

3
2

≈ 0.866. In figure 19, we have plotted ln[(−p′)1/2P (p′)] as a function of p′.
If the pressure distribution follows (41), then a linear curve should be observed in figure 19

and α will be given by the slope of this line. The pressure pdf in the LES is not too far from

expression (41). Applying a least-square fit to the LES pressure pdf over −10 ≤ p′ ≤ −5, we
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Figure 19. Comparison of the numerical pressure pdf with equation (41).
ln[(−p′)1/2P (p′)] is plotted against p′. Runs 256H4s3, full triangles; 256H8s3,
full squares; 1024H4s5, open stars; and 2048Dns3, full curve. The broken curve
represents the theoretical exponent α =

√
3/2.

find α = 0.880 ± 0.05. In the DNS, P (p′) falls off too quickly at large negative excursions,

most probably due to the small value of Rλ. We also considered the possibility for stretched

exponential law to characterize the left wing of P (p′), i.e. P (p′) ∝ exp(−a|p′|α′

). Using a

convenient representation of the data, it was found for −4 ≤ p′ ≤ −1 that a = 2.06 and

α′ = 0.625. It should be noticed that the pressure pdfs from DNS and LES collapse almost

perfectly for −6 ≤ p′ ≤ p′
max, indicating that except for large negative pressure values, our DNS

and LES yield the same pressure distribution.

In order to check the sensitivity of the pressure pdf with respect to the hyper-viscosity order,

the results of runs 256H4s5 and 256H8s5 were compared at similar dynamical times (figures

not shown). The pressure pdfs collapse perfectly for −10 ≤ p′ ≤ p′
max. For p′ ≤ −10, the pdf

of the fourth-order LES falls below the other one.

8. Conclusions

A wide set of numerical simulations has been performed to achieve quantitative information

about the intensity of energy and pressure backscatter in decaying two-dimensional isotropic

turbulence. The results include two DNS at initial Reynolds number (based upon λ0 =
urms(0)/ωrms(0)) of 6.64 and 131, as well as hyper-viscous simulations with second- and fourth-

order hyper-viscosities. Special care has been taken to resolve properly the infrared part of the

energy spectra and multiple realizations (up to several hundreds) have been performed to improve

the statistical convergence of the data. Different values have been chosen for s0, the infrared

exponent of the initial energy spectrum.
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For s0 ≥ 3 and during the fully-developed state (high Reynolds number), E(k, t) ∝ t2.5ks

as k → 0, where s ≈ 3 as long as finite-size effects are not predominant. This invalidates

in two dimensions theories based on angular-momentum conservation (which would yield an

infrared k3 spectrum with a time-invariant coefficient, see [21, 45]). Furthermore, the self-

similarity form based upon (E, λ) and proposed by Chasnov [23] perfectly describes the time-

evolution of the infrared energy spectra in the lowest-Reynolds-number DNS, whereas it is only

approximate at Rλ0
= 131. In the hyper-viscous simulation, the above self-similarity form

fails even more drastically.

The time evolution of the pressure spectrum has also been considered. Since the initial

velocity field is Gaussian, the infrared pressure is ∝ k1, as predicted by the quasi-normal

approximation. In the DNS at Rλ0
= 131 and all hyper-viscous simulations, the pressure

spectrum, after a short transient decay, starts increasing with time at its low-k end, while becoming

progressively steeper than k1. In the infrared limit, Epp(k, t) ∝ tγpksp where sp ≈ 1.5 and the

asymptotic values of γp are 0.7 in the latter DNS, and 1.4 in the hyper-viscous simulations. In

the DNS at Rλ0
= 131, the pressure variance decays monotonically in time, but the latter decay

slows down considerably as a result of the pressure backscatter. In all hyper-viscous simulations,

the pressure variance first decays and then grows in time as soon as pressure backscatter starts.

All these infrared energy- and pressure-spectra behaviours seem not to be affected by the

hyper-viscosity order.

A question which remains still open concerns the possible relation between departure from

Gaussianity in the infrared pressure spectrum (slope steeper than k1) and the appearance of

coherent vortices. In this regard, we have shown that a Gaussian scrambling of the velocity field

destroys the vortices and restores the k1 pressure spectrum. One should stress however that the

relationship between the two phenomena is not so clear in view of preliminary selective phase

scramblings (not published here) we have done.

The pdfs of the pressure fields have been computed and are negatively skewed, as in three

dimensions. We have shown that the distributions are not far from analytic predictions made by

Holzer and Siggia [44] on the basis of a shell model.
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Appendix: Reynolds numbers and dissipative scales

We will evaluate the order of magnitude of Rλ0
which can be obtained in our simulations. When

performing DNS, it is essential to have well-resolved simulations. It is well known that a three-

dimensional grid must be fine enough to capture scales smaller than the Kolmogorov dissipative

scale η = (ν3/ε)1/4, where ε is the energy dissipation rate. Here, the molecular viscosity is

typically chosen such that ηkc > 1. In our DNS or hyper-viscous simulations of freely decaying
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two-dimensional turbulence, the relevant dissipative wavenumber is

kd(t) =

(

β(t)

ν3
n

)1/6n

, (42)

where

β(t) =

∫ kc

0

2νnk
2n+2E(k, t)dk (43)

is the enstrophy dissipation rate (per unit mass). Following the same philosophy as in three

dimensions, the criteria for defining a well-resolved DNS will be kc/kd > 1.

Taking into consideration the necessity of performing at least a hundred realizations to

ensure convergence of the energy spectra at the smallest numerical wavenumbers, the highest

resolution we could afford was 20482. For an initial energy spectrum given by equation (17),

Rλ0
can be analytically computed, provided that kc/kI0 is large enough. The following result

will be used hereafter
∫ ∞

0

e−ak2

ks0dk =
1

2
a− 1+s0

2 Γ

(

1

2
(1 + s0)

)

. (44)

Given equation (17), equation (44) allows determination of the initial r.m.s. vorticity. Thus,

using (21), the expression for the initial Reynolds number will take the following form

Rλ0
= bs0

u0

νkI0

, (45)

where

bs0
=

(

2

s0

Γ
(

1
2
(s0 + 3)

)

Γ
(

1
2
(s0 + 1)

)

)1/2

. (46)

The molecular viscosity is fixed by the requirement kd(0) = qkc, where q is some prescribed

constant smaller than unity. Moreover, according to (43), and using (17), (44)

β(0) = νu2
0k

4
I0

(

2

s0

)2 Γ
(

1
2
(s0 + 5)

)

Γ
(

1
2
(s0 + 1)

) . (47)

Finally, since qkc = [β(0)/ν3]1/6, use of (45) and (47) enables us to express Rλ0
in terms of

kc/kI0 . One finds

Rλ0
= cs0

(

qkc

kI0

)3

, (48)

with

cs0
=

(s0

2

)3/2 Γ
(

1
2
(s0 + 1)

)

[

Γ
(

1
2
(s0 + 3)

)

Γ
(

1
2
(s0 + 5)

)]1/2
. (49)

In order to minimize confinement effects and ensure sufficient infrared resolution, kI0/kmin

should be at least of the order of 100. Noticing that cs0
is a constant of the order of unity (e.g.

c3 = 0.306), it can be inferred from equation (48) that in a fully-dealiased well-resolved DNS

properly simulating the infrared scales, the maximal permissible values of Rλ0
are O(40 q3) and

O(320 q3) with respectively 10242 and 20482 grid points.
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