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An EM algorithm for estimation in the Mixture

Transition Distribution model
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UMR 8071 Université Evry Val d’Essonne/CNRS UMR8071/INRA 1152
523, place des Terrasses de l’Agora, 91000 Evry, France.

Abstract

The Mixture Transition Distribution (MTD) model was introduced
by Raftery to face the need for parsimony in the modeling of high-order
Markov chains in discrete time. The particularity of this model comes
from the fact that the effect of each lag upon the present is considered
separately and additively, so that the number of parameters required is
drastically reduced. However, the efficiency for the MTD parameter es-
timations proposed up to date still remains problematic on account of
the large number of constraints on the parameters. In this paper, an it-
erative procedure, commonly known as Expectation-Maximization (EM)
algorithm, is developed cooperating with the principle of Maximum Like-
lihood Estimation (MLE) to estimate the MTD parameters. Some ap-
plications of modeling MTD show the proposed EM algorithm is easier
to be used than the algorithm developed by Berchtold. Moreover, the
EM Estimations of parameters for high-order MTD models led on DNA
sequences outperform the corresponding fully parametrized Markov chain
in terms of Bayesian Information Criterion.

A software implementation of our algorithm is available in the library
seq++ at http://stat.genopole.cnrs.fr/seqpp.

keywords: Markov chain; mixture transition distribution (MTD); Par-
simony; Maximum likelihood; EM algorithm;

1 Introduction

While providing a useful framework for discrete-time sequence mod-
eling, higher-order Markov chains suffer from the exponential growth
of the parameter space dimension with respect to the order of the
model, which results in the inefficiency of the parameters’estimations
when a limited amount of data is available. This fact motivates
the developments of approximate versions of higher-order Markov
chains, such as the Mixture Transition Distribution (MTD) model
[11, 3] and variable length Markov chains [4]. Thanks to a simple
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structure, where each lag contributes to the prediction of the cur-
rent letter in a separate and additive way, the dimension of model
parameter space grows only linearly with respect to the order of the
MTD model.

Nevertheless, Maximum Likelihood Estimation (MLE) in the MTD
model is subject to such constraints that analytical solutions are be-
yond the reach of present methods. One has thus to retort to numer-
ical optimization procedures. The most powerful method proposed
to this day is due to Berchtold [2], and relies on an ad-hoc opti-
mization method. In this paper, we propose to fit the MTD model
into the general framework of hidden variable models, and derive
a version of the classical EM algorithm for the estimations of its
parameters.

In this first section, we define the MTD model and recall its main
features and some of its variants. Parametrization of the model
is discussed in section 2, where we establish that under the most
general definition, it is not identifiable. Then we shed light on an
identifiable set of parameters. Derivations of the update formulas
involved by the EM algorithm are detailed in section 3. We finally
illustrate our method by some applications to biological sequence
modeling.

Need for parsimony Markov models are pertinent to analyze m-
letter words’ composition of a sequence of random variables [7, 6].
Nevertheless, the length m of the words the model accounts for has
to be chosen by the statistician. On the one hand, a high order
is always preferred since it can capture strictly more information.
On the other hand, since the parameter’s dimension increases expo-
nentially fast with respect to the order of the model, higher order
models cannot be accurately estimated. Thus, a trade-off has to be
drawn to optimize the amount of information extracted from the
data.

We illustrate this phenomenon by running a simple experiment:
by using a randomly chosen Markov chain transition matrix of order
5, we sample 1000 sequences of length 5000. Each of them is then
used to estimate a Markov model transition matrix of order varying
from 2 to 6. For each of these estimates, we have plotted the total
variation distance with respect to the generating model (see Figure
1), computed as the quantity DV T (P, Q) =

∑

x∈Yn |P (x) − Q(x)|
for distributions P and Q. It turns out that the optimal estimation
in terms of total variation distance between genuine and estimated
distributions is obtained with a model of order 2 whereas the gen-
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Figure 1: Total variation distance between distributions estimated from ran-
domly generated sequences and the generating distribution. The generating
model is of order 5, and the random sequences are 5000 letters long.

erating model is of order 5.
Mixture Transition Distributions aim at providing a model ac-

counting for the number of occurrences of m-letter words, while
avoiding the exponential increase with respect to m of the full Markov
model parameter’s dimension (See Table 1 for a comparison of the
models’ dimensions).

MTD modeling Let Y = (Y1, . . . , Yn) be a sequence of random
variables taking values in the finite set Y = {1, . . . , q}. We use the
notation,

Y t2
t1

= (Yt1 , Yt1+1, . . . , Yt2)

to refer to the subsequence of the t2 − t1 +1 successive variables. In
the whole paper, vectors and matrices are denoted by bold letters.

Definition 1 The random sequence Y is said to be an mth order
MTD sequence if

∀t > m, ∀y1, . . . , yt ∈ Y , P(Yt = yt|Y
t−1

1 = yt−1
1 ) =

m
∑

g=1

ϕg P(Yt = yt|Yt−g = yt−g)

=

m
∑

g=1

ϕgπg(yt−g, yt). (1)
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where the vector ϕ = (ϕ1, . . . , ϕm) is subject to the constraints:

∀g ∈ {1, . . . , m}, ϕg ≥ 0, (2)
m
∑

g=1

ϕg = 1. (3)

and the matrices {πg = [P(Yt = j|Yt−g = i)]
i,j∈Y ; 1 ≤ g ≤ m} are

q × q stochastic matrices.

A mth-order MTD model is thus defined by a vector parameter,

θ =
(

ϕg, (πg(i, j))i,j∈Y

)

1≤g≤m

which belongs to the space

Θ =

{

θ; ∀ 1 ≤ g ≤ m, 0 ≤ ϕg ≤ 1 ;
m
∑

g=1

ϕg = 1 ;

∀i, j ∈ Y , 0 ≤ πg(i, j) ≤ 1 and
∑

j∈Y

πg(i, j) = 1

}

.

It is obvious from the first equality in equation (1) that the MTD
model fulfills the Markov property. Thus, MTD models are Markov
models with the particularity that each lag Yt−1, Yt−2, . . . contributes
additively to the distribution of the random variable Yt. Berchtold
and Raftery [3] published a complete review of the MTD model.
They recall theoretical results on the limiting behavior of the model
and on its auto-correlation structure. Details are given about sev-
eral extensions of this model, such as infinite-lag models, or infinite
countable and continuous state space.

We have to point out that Raftery [11] defined the original model
with the same transition matrix π for each lag {Yt−g}g=1,...,m. In
the sequel, we refer to this model as the single matrix MTD model.
Later, Berchtold [1] introduced a more general definition of the MTD
models as a mixture of transitions from different subsets of lagged
variables {Yt−m, . . . , Yt−1} to the present one Yt, eventually discard-
ing some of the dependencies. In this paper, we focus on a slightly
more restricted model having a specific but same order transition
matrix πg for each lag Yt−g. We denote by MTDl the MTD model
which has a l-order transition matrix for each lag (Definition 2).
From now on, the MTD model defined by (1) is denoted accord-
ingly by MTD1.
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Definition 2 The random sequence Y is a m-order MTDl sequence
if, for all l, m ∈ N such that l < m, and all yt

1 ∈ Y t :

P(Yt = yt|Y
t−1

1 = yt−1
1 ) = P(Yt = it|Y

t−1
t−m = yt−1

t−m)

=
m−l+1
∑

g=1

ϕg P(Yt = yt|Y
t−g

t−g−l+1 = y
t−g
t−g−l+1)

=
m−l+1
∑

g=1

ϕg πg(y
t−g
t−g−l+1, yt).

holds, where πg is a ql × q transition matrix.

Trade-off between dimension and maximal likelihood Even though
MTD models involve a restricted amount of parameters compared
to Markov chains, increasing the order l of the model may result
in efficiency of the MLE decreased. The quality of the trade-off
between goodness-of-fit and generalization error a model achieves
can be assessed against classical model selection criteria, such as
the Bayesian Information Criterion (see illustrations in section 4.2).

However, computing the BIC requires the knowledge of the di-
mension of the model. This dimension is usually computed as
the dimension of the parameter space for a bijective parametriza-
tion. In the specific case of the MTD models, the original single-
matrix model is parametrized in a bijective way, whereas its gener-
alized version with specific transition matrices for each lag is over-
parametrized: in appendix A is given an example of two distinct
values of the parameters (ϕ, π), which both define the same MTD1

distribution. The dimension of the model is thus lower than the
dimension of the parameter space, and computing the BIC using
the parameter space dimension would over-penalize the models. A
tighter upper bound of the dimension of the MTDl model is derived
in section 2, a bound which is used later to compute the BIC.

The question of estimation As a counterpart for their parsimony,
MTD parameters are difficult to be estimated due to the constraints
that the transition probabilities {P(im . . . i1; i0); im, . . . , i0 ∈ Y} have
to comply to. There is indeed no analytical solution to the maxi-
mization of the log-likelihood Ly(θ) = Pθ(Y = y) of the MTD
models under the constraints the vector ϕ and the stochastic matri-
ces πg have to fulfill. For a given sequence y = y1, . . . , yn of length
n, we recall that the loglikelihood of the sequence y under the MTD1
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model writes

Ly(θ) = log Pθ(Y
n

1 = yn
1 )

= log

{

P(Y m
1 = ym

1 )

n
∏

t=m+1

(

m
∑

g=1

ϕgπg(yt−g, yt)

)}

.

The estimation of the original single matrix MTD model already
aroused a lot of interest. Although any distribution from this model
is defined by a unique parameter θ, the maximum likelihood can
not be analytically determined. Li and Kwok [10] propose an inter-
esting alternative to the maximum likelihood with a minimum chi-
square method. Nevertheless, they carry out estimations by using
a non-linear optimization algorithm that is not explicitly described.
Raftery and Tavaré [12] obtain approximations of both maximum
likelihood and minimum chi-square estimates with numerical proce-
dures from the NAG library which is not freely available. They also
show that the MTD model can be estimated using GLIM (Gener-
alized Linear Interactive Modeling) in the specific case where the
state space’s size q equals 2. Finally, Berchtold [2] developed an ad
hoc iterative method implementing a constrained gradient descent
optimization. This algorithm is based on the assumption that the
vector ϕ and each row of the matrix π are independent. It consists
in successively updating each of these vectors constrained to have a
sum of components equal to 1 as follows.

Berchtold’s Algorithm

• Compute partial derivatives of the log likelihood according to
each element of the vector,

• choose a value δ in [0, 1],

• add δ to the the component with the largest derivative, and
subtract δ from the one with the smallest derivative.

This algorithm has been shown to perform at least better than the
previous methods, and it can be extended to the case of the MTDl

models. In this latter case, it estimates one of the parameter vec-
tors {(ϕg, πg); 1 ≤ g ≤ m} describing the maximum-likelihood MTD
distribution. Nevertheless, the choice of the alteration parameter δ

remains an issue of the method. An in-depth discussion of the strat-
egy used to update the alteration parameter δ can be found in [2].

We propose to approximate the maximum likelihood estimate of

the MTD model
{

P̂ML(im . . . i1; i0); im, . . . , i0 ∈ Y
}

by coming down
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to a better known problem: estimation of incomplete data with an
Expectation-Maximization (EM) algorithm [5]. We introduce a sim-
ple estimation method which allows to approximate one parameter
vector θ = {(ϕg, πg); 1 ≤ g ≤ m} maximizing the log-likelihood.

2 Upper bound of the MTD model dimension

The MTD1 model is over-parametrized. We provide an example
of two distinct parameter values (ϕ, π) defining the same 2nd-order
MTD1 model in appendix A. Moreover, we propose a new parameter
set whose dimension is lower. It stems from the straightforward re-
mark that the mth-order MTD1 model satisfies the following propo-
sition:

Proposition 1 Transition probabilities of a mth-order MTD1 model satisfy:

∀im, ..., ig, ..., i0, i
′
g ∈ Y ,

P(im...ig...i1; i0) − P(im...i′g...i1; i0) = ϕg

[

πg(ig, i0) − πg(i
′
g, i0)

]

.

(4)

This simply means that the left-hand side of equation (4) only de-
pends on the parameter components associated to lag g.

Consider a given distribution from MTD1 with parameter (ϕg, πg)1≤g≤m,
and let u be an arbitrary element of Y . Each transition probability
P(im...i1; i0) may be written :

P(im...i1; i0) =

m
∑

g=1

ϕg [πg(ig, i0) − πg(u, i0)] +

m
∑

g=1

ϕgπg(u, i0). (5)

From Proposition 1, it follows that each term of the first sum ϕg [πg(ig, i0) − πg(u, i0)]
equals the difference of probabilities P(u...uigu...u; i0)− P(u...u; i0).
The second sum is trivially the transition probability from the m-
letter word u . . . u to i0.

Let us denote the transition probabilities from m-letter words to
the letter j, restricting to words differing from u . . . u by at most
one letter :

pu(g ; i, j) := P(u...uiu...u; j), (6)

where u...uiu...u is the m-letter word whose letter in position g (from
right to left) is i. The quantities in (6) are sufficient to describe the
model, as stated in the following proposition.
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Proposition 2 The transition probabilities of a mth-order MTD1 model satisfy:

∀u ∈ Y , ∀im, ..., ig, ..., i0 ∈ Y ,

P(im, ..., i1; i0) =
∑m

g=1

[

pu(g ; ig, i0) − m−1
m

pu(i0)
]

.

where pu(j) denotes the value of pu(g; u, j), whatever the value of g.

For any arbitrary u element of Y , a MTD1 distribution can be
parametrized by a vector θu from the (q−1)[1+m(q−1)]-dimensional
set Θ̄u,

Θ̄u =

{

((pu(g; i, j))1≤g≤m,i,j∈Y such that ∀g ∈ {1, . . . , m}, ∀i ∈ Y ,

∑

j∈Y

pu(g; i, j) = 1 and ∀g, g′ ∈ {1, . . . , m}, pu(g; u, j) = pu(g
′; u, j)

}

(7)

Note that not all θu in Θ̄u define a MTD1 distribution: the sum
∑m

g=1 pu(g; ig, i0) −
m−1

m
pu(i0) may indeed fall outside the interval

[0, 1]. For this reason, we can only claim that some subset Θu of Θ̄u

is a parameter space for the MTD1 model. However, as the com-
ponents of a parameter θu ∈ Θu are transition probabilities, two
different parameter values can not define the same MTD distribu-
tion. The mapping of Θu on the MTD1 model is thus bijective,
which results in the dimension of Θ̄u being an upper bound of the
dimension of the MTD model.

Whereas the original definition of the MTD1 model (1) involves
an m−1+mq(q−1)-dimensional parameter set, this new parametriza-
tion lies in a smaller dimensional space, dropping q(m − 1) param-
eters.

Equivalent parametrization can be set for MTD models having
higher order transition matrix for each lag. For any l ≥ 1, a MTDl

model can be described by a vector composed of the transition prob-
abilities pl

u(g; il...i1, j) = P(u...uil...i1u...u; j) for all l-letter words
il...i1. Denoting by Θl

u the corresponding parameter space, its di-

mension |Θl
u| =

∑l

k=2[q
k−2(q−1)3(m−k+1)]+(1+m(q−1))(q−1)

is again much smaller than the number of parameters originally re-
quired to describe the MTDl model (see [8], section 2.2, for the
counting details). A comparison of the dimensions according to
both parametrizations appears in Table 1. We will now make use of
the upper bound |θl

u| of the model’s dimension to penalize the like-
lihood in the assessment of MTD models goodness-of-fit (see section
4.2).
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Table 1: Number of independent parameters required to describe full
Markov and MTDl models (state space size: q = 4). Except for the single
matrix MTD model, MTD models originally defined with parameters (ϕ, π) are
over parametrized: the parameter θl

u, introduced in section 2, requires far less
independent parameters. Note that the 1st order MTD1 model (resp. 2nd order
MTD2 model) is equivalent to the 1st order (resp. 2nd order) full Markov model.

Full MTD1 MTD2

Order m Markov |(ϕ,π)| |θ1
u| |(ϕ,π)| |θ2

u|
1 12 12 12
2 48 25 21 48 48
3 192 38 30 97 84
4 768 51 39 146 120
5 3 072 64 48 195 156

3 Estimation

In this section, we expose an EM algorithm for the estimation of
MTD models. Firstly, this procedure allows to maximize the like-
lihood without assuming the independence of parameters ϕ and π

and offers the convergence properties of an EM algorithm. Secondly,
from a technical point of view, the EM algorithm does not require
any trick to fulfill the constraints holding on the (ϕ,π) parameters as
Berchtold’s algorithm does. We expose here our estimation method
of the MTD1 model (1) having a specific 1st order transition matrix
for each lag. The method can easily be adapted for single matrix
MTD models as well as for MTD models having different types of
transition matrix for each lag. Detailed derivations of the formu-
las for identical matrix MTD and MTDl models are presented in
appendix B.

To estimate the transition probabilities {P(im....i1; i0); im, ..., i0 ∈ Y}
of a mth-order MTD1 model, we propose to compute an approxima-
tion of one set of parameters θ = (ϕg, πg)1≤g≤m which maximizes
the likelihood.

3.1 Introduction of a hidden process

Our approach lies on a particular interpretation of the model. The
definition of the MTD1 model (1) is equivalent to a mixture of m

hidden models where the random variable Yt is predicted by one
of the m Markov chains πg with the corresponding probability ϕg.
Indeed, the coefficients (ϕg)g=1,..,m define a probability measure on
the finite set {1, ..., m} since they satisfy the constraints (2) and (3).

From now on, we consider a hidden state process S1, ..., Sn that
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Y t−2

S t−2
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t−1 t
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Y t+1

S t−3

Y t−3

Figure 2: DAG dependency structure of a 2nd order MTD1 model.

determines the way according to which the prediction is carried
out. The hidden state variables {St}, taking values in the finite set
S = {1, ..., m}, are independent and identically distributed, with
distribution

∀t ≤ n, ∀g ∈ S, P(St = g) = ϕg.

The MTD1 model is then defined as a hidden variable model. The
observed variable Yt depends on the current hidden state St and on
the m previous variables Yt−1, ..., Yt−m. This dependency structure
of the model is represented as a Directed Acyclic Graph (DAG) in
Figure 2. The hidden value at one position indicates which of those
previous variables of transition matrices are to be used to draw the
current letter: conditional on the state St, the random variable Yt

only depends on the variable Yt−St
:

∀t > m, ∀g ∈ S, P(Yt = yt|Y
t−1
t−m = yt−1

t−m, St = g) = πg(yt−g, yt).

So we carry out estimation in the MTD1 models as estimation
in a mixture model where the components of the mixture are m

Markov chains, each one predicting the variable Yt from one of the
m previous variables.

3.2 EM algorithm

By considering a hidden variables model, we want to compute the
maximum likelihood estimate from incomplete data. The EM algo-
rithm introduced by Dempster et al. [5] is a very classical framework
for achieving such a task. It has proved to be particularly efficient
at estimating various classes of hidden variable models. We make it
entirely explicit in the case of the MTD models.

The purpose of the EM algorithm is to approximate the maxi-
mum of the log-likelihood of the incomplete data Ly(θ) = log Pθ(Y =
y) over θ ∈ Θ using the relationship

∀θ, θ′ ∈ Θ, Ly(θ) = Q(θ|θ′) − H(θ|θ′)

10



where the quantities Q and H are defined as follows :

Q(θ|θ′) = E [log Pθ(Y , S)|Y = y, θ′]

H(θ|θ′) = E [log Pθ(Y , S|Y = y)|y, θ′]

The EM algorithm is divided in two steps: E-step (Expectation)
and M-step (Maximization). Both steps consist of, respectively,
computing and maximizing the function Q(θ|θ(k)), that is the log-
likelihood of the complete model conditional on the observed se-
quence y and on the current parameter θ(k). Using the fact that the
function θ → H(θ|θ(k)) is maximal in θ(k), Dempster et al. proved
that this procedure necessarily increases the log-likelihood Ly(θ).
See [14] for a detailed study of the convergence properties of the
EM algorithm.

We now derive analytical expressions for both E-step and M-
step. In this particular case, the log-likelihood of the complete data
(Y n

m+1, S
n
m+1) conditional on the first m observations Y m

1 writes:

log Pθ(Y
n

m+1, S
n
m+1|Y

m
1 ) =

n
∑

t=m+1

m
∑

g=1

∑

i∈Y

∑

j∈Y

1l{Yt−g=i,Yt=j,St=g} log πg(i, j)

+
n
∑

t=m+1

m
∑

g=1

1l{St=g} log ϕg. (8)

E-step The Estimation step is computing the expectation of this
function (8) conditional on the observed data y and the current
parameter θ(k), that is calculating, for all t > m and for all element
g in {1, ..., m}, the following quantity,

E(1l{St=g}|y, θ(k)) = P(St = g|y, θ(k)). (9)

Then, function Q writes:

Q(θ|θ(k)) =

n
∑

t=m+1

m
∑

g=1

∑

i∈Y

∑

j∈Y

[

P(St = g|y, θ(k)) log πg(i, j)
]

1l{yt−g=i,yt=j}

+

n
∑

t=m+1

m
∑

g=1

P(St = g|y, θ(k)) log ϕg. (10)

So E-step reduces to computing the probabilities (9), for which
we derive an explicit expression by using the theory of graphical
models in the particular case of DAG structured dependencies [9].
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Figure 3: Moral graph of a 2nd order MTD1 model.

First, remark that the state variable St depends on the sequence Y

only through the m + 1 variables {Yt−m, ..., Yt−1, Yt}:

∀t ≤ n, ∀g ∈ {1, ..., m}, P(St = g|y, θ) = P(St = g|Y t
t−m = yt

t−m, θ).
(11)

Indeed, independence properties can be derived from the moral
graph (Fig. 3) which is obtained from the DAG structure of the
dependencies (Fig. 2) by “marrying” the parents, that is adding an
edge between the common parents of each variable, and then delet-
ing directions. In this moral graph, the set {Yt−m, ..., Yt} separates
the variable St from the rest of the sequence {Y1, ..., Yt−m−1} so that
applying corollary 3.23 from [9] yields:

St ⊥⊥ (Y t−m−1
1 , Y n

t+1) | Y t
t−m

From now on, we denote i0
m = imim−1...i1i0 any (m + 1)-letter

word composed of elements of Y . For all g in {1, ..., m}, for all i0
m

elements of Y , Bayes’ Theorem gives:

P( St = g|Y t
t−m = i0

m, θ)

=
P(St = g, Yt = i0|Y

t−1
t−m = i1

m, θ)

P(Yt = i0|Y
t−1

t−m = i1
m, θ)

=
P(Yt = i0|St = g, Y t−1

t−m = i1
m, θ)P(St = g|Y t−1

t−m = i1
m, θ)

∑m

l=1 P(Yt = i0|St = l, Y t−1
t−m = i1

m, θ)P(St = l|Y t−1
t−m = i1

m, θ)
.(12)

We show below that the probabilities P(Yt = i0|St = g, Y t−1
t−m =

i1
m, θ) and P(St = g|Y t−1

t−m = i1
m, θ) in expression (12) are entirely

explicit. First, conditional on θ, the state St and the variables Y t−1
t−m,

the distribution of Yt writes:

P(Yt = i0|St = g, Y t−1
t−m = i1

m, θ) = πg(ig, i0).

Second, although the state St depends on the (m + 1)-letter word
Y t

t−m, which brings information about the probability of transition
from Y t−1

t−m to Yt, it does not depend on the m-letter word formed by
the only variables Y t−1

t−m. This again follows from the same corollary
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Figure 4: In black: graph of the smallest ancestral set containing St and the
two variables (Yt−2, Yt−1) in the particular case of a 2nd order MTD1 model.
(The part of the structure dependency DAG that is excluded from the smallest
ancestral set appears here in light blue.)
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Figure 5: Moral graph of the smallest ancestral set in Figure 4. There is no
path between St and the subset of 2 variables {Yt−2, Yt−1}.

in [9]. The independence of the variables St and Y t−1
t−m is derived from

the graph of the smallest ancestral set containing these variables,
that is the subgraph containing St, Y t−m

t−1 and the whole line of their
ancestors (See Figure 4 for an illustration when n = 2). It turns out
that, when considering the moralization of this subgraph (Figure
5), there is no path between St and the set Y t−1

t−m. This establishes
St ⊥⊥ Y t−1

t−m and we have

P(St = g|Y t−1
t−m = i1

m, θ) = P(St = g|θ) = ϕg.

Finally, the probability (12), is entirely determined by the current
parameter θ and does not depend on the time t.

As a result, the kth iteration of Estimation-step consists in cal-
culating, for all g in {1, ..., m} and for all m + 1-letters word i0

m of
elements of Y ,

∀g ∈ {1, ..., m}, ∀ im, ..., i1, i0 ∈ Y ,

P
(k)
S (g|i0

m) = P(St = g|Y t
t−m = i0

m, θ(k)) =
ϕ

(k)
g π

(k)
g (ig, i0)

∑m

l=1 ϕ
(k)
l π

(k)
l (il, i0)

.

(13)

M-Step Maximization of the function Q(θ|θ(k)) with respect to the
constraints imposed on the vector ϕ and on the elements of the tran-
sition matrices π1, ..., πm is easily achieved using Lagrange method:
∀g ∈ {1, ..., m}, ∀i, j ∈ Y ,

13



ϕ(k+1)
g =

1

n − m

∑

im...i0

P
(k)(g|i0

m)N(i0
m) (14)

π(k+1)
g (i, j) =

∑

im...ig+1ig−1...i1
P

(k)(g|ig+1
m ii1

g−1j)N(ig+1
m ii1

g−1j)
∑

im...ig+1ig−1...i1i0
P(k)(g|ig+1

m ii0
g−1)N(ig+1

m ii0
g−1)

(15)

where sums are carried out for the variables im, ..., ig+1, ig−1, ..., i1, i0
taking values in Y , n is the length of the observed sequence y and
N(i0

m) the number of occurrences of the word i0
m in this sequence.

Initialization To maximize the chance of reaching the global max-
imum, we run the algorithm from various starting points. One ini-
tialization is derived from contingency tables between each lag yt−g

and the present yt as proposed by Berchtold [2] and several others
are randomly drawn from the uniform distribution.

EM-Algorithm for MTD models

• Compute the number of occurrences of each (m+1)-letters word
N(i0

m),

• initialize parameters (ϕ(0), π(0)),

• choose a stopping rule, i.e. an upper threshold ε on the increase
of the log-likelihood,

• iterate E and M steps given by equations (13,14,15),

• stop when Ly(θ
(k+1)) − Ly(θ

(k)) < ε.

A software implementation of our algorithm is available in the
library seq++ at http://stat.genopole.cnrs.fr/seqpp.

4 Applications

4.1 Comparison with Berchtold’s Estimation

In this paper, we focus on estimation of the MTDl model (see Defini-
tion 2) which has a specific but same order matrix transition for each
lag. We evaluate the performance of the EM algorithm with compar-
ison to the last and best algorithm to date, developed by Berchtold
[2]. Among others, Berchtold estimates the parameters of MTDl

models on two sequences analyzed in previous articles: a time serie
of the twilight song of the wood pewee and the mouse αA-Crystallin

14



Table 2: Maximum log-likelihood of MTD1 models estimated by EM and Berch-
told’s algorithm (see [2], section 5.1 and 6.2).

Order m q = |Y| Berchtold EM Sequence

2 3 -486.4 -481.8 Pewee
4 -1720.1 -1718.5 αA-Crystallin

3 3 -484.0 -480.0 Pewee
4 -1710.6 -1707.9 αA-Crystallin

Gene sequence (the complete sequences appear in [12], Tables 7 and
12). The song of the wood pewee is a sequence composed of 3 dis-
tinct phrases (referred to as 1, 2, 3), whereas the αA-Crystallin Gene
is composed of 4 nucleotides: a, c, g, t.

We apply our estimation method to these sequences and obtain
comparable or higher value of the log-likelihood for both (see Tab.
2). Since the original parametrization of the MTD1 model is not
injective, it is not reasonable to compare their values. To overcome
this problem, we computed the parameters from the set Θ̄u defined
in (7). The estimated parameters (using a precision parameter ε =
0.001) of the 2nd order MTD1 model on the song of wood Pewee
(first line of the Table 2) are exposed in Figure 6. Complete results
appear in appendix C, namely estimated parameters ϕ̂, π̂1, π̂2 and
their corresponding full 2nd order transition matrices Π̂.

For both sequences under study, Pewee and αA-crystallin, EM
and Berchtold algorithms lead to comparable estimations. The EM
algorithm proves here to be an effective method to maximize the log-
likelihood of MTD models. Nevertheless, EM algorithm offers the
advantage to be very easy to use. Whereas Berchtold’s algorithm
requires to set and update a parameter δ to alter the vector ϕ and
each row of the matrices πg, running the EM algorithm only requires
the choice of the threshold ε in the stopping rule.

4.2 Estimation on DNA coding sequences

DNA coding regions are translated into proteins with respect to the
genetic code, which is defined on blocks of three nucleotides called
codons. Hence, the nucleotides in these regions are constrained in
different ways according to their position in the codon. It is common
in bioinformatics to use three different transition matrices to predict
the nucleotides in the three positions of the codons. This model is
called the phased Markov model.

Since we aim at comparing the goodness-of-fits of models with
different dimensions, the maximal value of a penalized likelihood

15



Figure 6: Estimation of a 2nd order MTD1 model on the song of the wood
pewee. We use u=1 (song n◦1) as reference letter to express the parameters
defined in (7).

Estimates obtained with:

• Berchtold’s algorithm (Ly(θ̂) = −486.4):

[p̂1(1; i, j)]1≤i,j≤3 =





0.754169 0.198791 0.073356
0.991696 0. 0.03462
0.993579 0.003497 0.02924





[p̂1(2; i, j)]1≤i,j≤3 =





0.754169 0.198791 0.073356
0.137205 0.213411 0.649384
0.048023 0.927598 0.044116





• EM-algorithm (Ly(θ̂) = −481.8):

[p̂1(1; i, j)]1≤i,j≤3 =





0.75305 0.200475 0.046475
0.991475 0. 0.008525
0.996425 0.003575 0.





[p̂1(2; i, j)]1≤i,j≤3 =





0.75305 0.200475 0.046475
0.137525 0.21135 0.651125
0.02805 0.925475 0.046475





16



Figure 7: Difference according to the BIC criterion between MTD models and
the corresponding fully parametrized Markov Model.

function against the dimension of parameter space will be used to
assess each model. The Bayesian Information criterion [13] for this
evaluation is defined as:

BIC(M) = −2Ly(θ̂M) + d(M) logn,

where θ̂M stands for the maximum likelihood estimate of model M.
The lower the BIC a model achieves, the more pertinent it is.

BIC evaluation has been computed on DNA coding sequence sets
from bacterial genomes. Each of these sequence sets has length
ranging from 1 500 000 to 5 000 000. Displayed values in Figure 7
are averages over the 15 sequences set of the difference between the
BIC value achieved by the full Markov model and the one achieved
by the MTD model of the same order. Whenever this figure is
positive, the MTD model has to be preferred to the full Markov
model.

The full Markov model turns out to outperform the MTD1 model
when the order is inferior to 4. This is not surprising since the
estimation is computed over large datasets that provide a sufficient
amount of information with respect to the number of parameters
of the full model. However, the 5th order MTD1 model and full
Markov model have comparable performances, and the MTD1 model

17



outperforms the full Markov model for higher orders. This is an
evidence that although MTD1 only approximate the full Markov
models, their estimation accuracy decreases slower with the order.

Even more striking is the comparison of the MTD2 model with
the full Markov model. Whatever the order of the model, its goodness-
of-fit is at least equivalent to the one achieved by the full Markov
model. The MTDl model turns out to be a satisfactory trade-off
between dimension and estimation accuracy.
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A Example of equivalent parameters defining the
same MTD1 model

Let the size state space be 4 as for DNA sequences Y = {a, c, g, t} and consider
these two 2nd order MTD1 model parameters θ, θ′.

ϕ = (0.3, 0.7) π1 =









0.1 0.2 0.3 0.4
0.4 0.3 0.2 0.1
0.2 0.2 0.2 0.4
0.4 0.2 0.2 0.2









π2 =









0.1 0.1 0.1 0.7
0.2 0.2 0.4 0.2
0.3 0.3 0.3 0.1
0.3 0.2 0.3 0.2









ϕ′ = (0.2, 0.8) π′
1 =









0.2 0.1 0.2 0.5
0.65 0.25 0.05 0.05
0.35 0.1 0.05 0.5
0.65 0.1 0.05 0.2









π′
2 =









0.075 0.1375 0.15 0.6375
0.1625 0.225 0.4125 0.2
0.25 0.3125 0.325 0.1125
0.25 0.225 0.325 0.2









Both parameters define the same 2nd order Markov transition matrix Π.
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a c g t

Π =

aa

ac

ag

at

ca

cc

cg

ct

ga

gc

gg

gt

ta

tc

tg

tt

























































0.1 0.13 0.16 0.61
0.19 0.16 0.13 0.52
0.13 0.13 0.13 0.61
0.19 0.13 0.13 0.55
0.17 0.2 0.37 0.26
0.26 0.23 0.34 0.17
0.2 0.2 0.34 0.26
0.26 0.2 0.34 0.2
0.24 0.27 0.3 0.19
0.33 0.3 0.27 0.1
0.27 0.27 0.27 0.19
0.33 0.27 0.27 0.13
0.24 0.2 0.3 0.26
0.33 0.23 0.27 0.17
0.27 0.2 0.27 0.26
0.33 0.2 0.27 0.2

























































B EM algorithm for other MTD models

B.1 Single matrix MTD model: iteration k.

E-Step ∀g ∈ {1, ..., m}, ∀ im, ..., i1, i0 ∈ {1, ..., q},

P
(k)
S (g|i0m) =

ϕ
(k)
g π(k)(ig, i0)

∑m

l=1 ϕ
(k)
l π(k)(il, i0)

.

M-Step ∀g ∈ {1, ..., m}, ∀i, j ∈ {1, ..., q},

ϕ(k+1)
g =

1

n − m

∑

im...i0

P
(k)(g|i0m)N(i0m)

π(k+1)(i, j) =

∑m

g=1

∑

im...ig+1ig−1...i1
P

(k)(g|ig+1
m ii1g−1j)N(ig+1

m ii1g−1j)
∑m

g=1

∑

im...ig+1ig−1...i1i0
P(k)(g|ig+1

m ii0g−1)N(ig+1
m ii0g−1)

where sums are carried out for the variables im, ..., ig+1, ig−1, ..., i1, i0 varying
from 1 to q, n is the length of the observed sequence y and N(i0m) the number
of occurrences of the word i0m in this sequence.

B.2 MTDl model: iteration k.

E-Step ∀g ∈ {1, ..., m− l + 1}, ∀im, ...i1, i0 ∈ {1, ..., q},

P
(k)
S (g|i0m) =

ϕ
(k)
g π

(k)
g (ig

g+l−1, i0)
∑m−l+1

h=1 ϕ
(k)
h π

(k)
h (ih

h+l−1, i0)
.
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M-Step ∀g ∈ {1, ..., m}, ∀il, ..., i1, j ∈ {1, ..., q},

ϕ(k+1)
g =

1

n − m

∑

um...u0

P
(k)
S (g|u0

m)N(u0
m)

π(k+1)
g (ilil−1...i1, j) =

∑

um...ug+lug−1...u1
P

(k)
S (g|ug+l

m i1l u
1
g−1j)N(ug+l

m i1l u
1
g−1j)

∑

um...ug+lug−1...u1u0
PS(g|ug+l

m i1l u
0
g−1)N(ug+l

m i1l u
0
g−1)

,

where sums are carried out for the variables um, ..., ug+l, ug−1, ..., u1, u0 varying
from 1 to q, n is the length of the observed sequence y and N(i0m) the number
of occurrences of the word i0m in this sequence.

C 2nd order MTD1 estimates obtained on both
the song of wood pewee and the mouse αA-

Crystallin Gene sequence (Section 4.1).

1. Song of wood pewee

Berchtold’s algorithm (see [2], section 5.1): Ly(θ̂) = −486.4.

ϕ̂ = (0.269, 0.731) π̂1 =





0.097 0.739 0.164
0.980 0 0.020
0.987 0.013 0



 π̂2 =





0.996 0 0.004
0.152 0.020 0.828
0.003 0.997 0



 .

EM-algorithm: Ly(θ̂) = −481.8).

ϕ̂ = (0.275, 0.725) π̂1 =





0.102 0.729 0.169
0.969 0 0.031
0.987 0.013 0



 π̂2 =





1 0 0
0.151 0.015 0.834

0 1 0



 .

These estimated parameters define respectively the following 2nd order
Markov transition matrices Π̂B and Π̂EM .

Π̂B =





























0.754169 0.198791 0.047040
0.991696 0. 0.008304
0.993579 0.003497 0.02924
0.137205 0.213411 0.649384
0.374732 0.01462 0.610648
0.376615 0.018117 0.605268
0.028286 0.927598 0.044116
0.265813 0.728807 0.00538
0.267696 0.732304 0.





























Π̂EM =





























0.75305 0.200475 0.046475
0.991475 0. 0.008525
0.996425 0.003575 0.

0.137525 0.21135 0.651125
0.37595 0.010875 0.613175
0.3809 0.01445 0.60465
0.02805 0.925475 0.046475
0.266475 0.725 0.008525
0.271425 0.728575 0.




























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2. Mouse αA-Crystallin Gene sequence

EM-algorithm: Ly(θ̂) = −1718.5.

ϕ̂ = (0.562, 0.438),

π̂1 =









0.225 0.140 0.506 0.129
0.354 0.300 0.008 0.338
0.271 0.123 0.456 0.150
0.166 0.191 0.430 0.213









π̂2 =









0.094 0.600 0.149 0.157
0.335 0.271 0.153 0.241
0.185 0.415 0.099 0.301
0.192 0.370 0.129 0.309









.

These estimated parameters define respectively the following 2nd order
Markov transition matrix Π̂EM .

Π̂EM =

























































0.167622 0.341480 0.349634 0.141264
0.240120 0.431400 0.069758 0.258722
0.193474 0.331926 0.321534 0.153066
0.134464 0.370142 0.306922 0.188472
0.273180 0.197378 0.351386 0.178056
0.345678 0.287298 0.071510 0.295514
0.299032 0.187824 0.323286 0.189858
0.240022 0.226040 0.308674 0.225264
0.207480 0.260450 0.327734 0.204336
0.279978 0.350370 0.047858 0.321794
0.233332 0.250896 0.299634 0.216138
0.174322 0.289112 0.285022 0.251544
0.210546 0.240740 0.340874 0.207840
0.283044 0.330660 0.060998 0.325298
0.236398 0.231186 0.312774 0.219642
0.177388 0.269402 0.298162 0.255048

























































No detail on the 2nd order MTD1 estimates from the mouse αA-Crystallin
Gene sequence is given in [2].
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