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), (ii) to "exploding" quadratic functionals of a Brownian sheet, and (iii) to a continuous-time version of the Breuer-Major CLT for functionals of a fractional Brownian motion.

Introduction

Let {F n : n 1} be a sequence of zero-mean real-valued random variables, and consider a standard Gaussian variable N ∼ N (0, 1). Assume that each F n is a functional of an infinite-dimensional Gaussian field and suppose that, as n → ∞,

F n Law -→ N.
(1.1)

In the paper [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], we demonstrated that one can naturally combine Malliavin calculus (see e.g. [START_REF] Janson | Gaussian Hilbert Spaces[END_REF][START_REF] Nualart | The Malliavin calculus and related topics[END_REF]) with Stein's method (see e.g. [START_REF] Chen | Stein's method for normal approximation[END_REF][START_REF] Reinert | Three general approaches to Stein's method[END_REF][START_REF] Ch | A bound for the error in the normal approximation to the distribution of a sum of dependent random variables[END_REF][START_REF] Ch | Approximate computation of expectations[END_REF]) in order to obtain explicit bounds of the type

d(F n , N ) ϕ(n), n 1, (1.2) 
where d(F n , N ) stands for some appropriate distance (for example, the Kolmogorov distance or the total variation distance) between the laws of F n and N , and ϕ(n) is some positive sequence converging to zero. The aim of the present work is to develop several techniques, allowing to asses the optimality of the bound ϕ(n) appearing in (1.2), for a given sequence {F n }. Formally, one says that the bound ϕ(n) is optimal for the sequence {F n } and the distance d, whenever there exists a constant c ∈ (0, 1) (independent of n) such that, for n sufficiently large, c < d(F n , N )/ϕ(n) 1.

(1.3)

We shall establish relations such as (1.3) by pushing one step further the Malliavin-type approach to Stein's method initiated in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF]. In particular, the findings of this paper represent a new substantial refinement of the central limit theorems (CLTs) for functionals of Gaussian fields previously proved in [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF][START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF][START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF][START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]. Once again, our techniques do not require that the random variables {F n } have the specific form of partial sums. Indeed, we will see in Sections 4-6 below that our results yield optimal Berry-Esséen type bounds for CLTs involving objects as diverse as: (i) Toeplitz quadratic functionals of continuous-time stationary processes, (ii) quadratic functionals of a Brownian motion or of a Brownian sheet indexed by a compact set of R d (d 2), and (iii) polynomial functionals constructed from a fractional Brownian motion.

Note that, in the subsequent sections, we shall focus uniquely on the normal approximation of random variables with respect to the Kolmogorov distance. This distance is defined as

d Kol (X, Y ) = sup z∈R |P (X z) -P (Y z)| (1.4) 
for any pair of random variables X and Y . It will become clear later on that many results of the present paper extend almost verbatim to alternate distances, such as the Wasserstein or the total variation distances, between laws of real-valued random variables.

Our basic approach can be described as follows. Fix z ∈ R, and consider the Stein equation

1 (-∞,z] (x) -Φ(z) = f ′ (x) -xf (x), x ∈ R, (1.5) 
where, here and for the rest of the paper, we use the standard notation Φ(z) = P (N z) (N ∼ N (0, 1)) and 1 A stands for the indicator of a set A. It is well-known that, for every fixed z, equation (1.5) admits a solution f z such that f z ∞ √ 2π/4 and f ′ z ∞ 1 (see e.g. [START_REF] Chen | Stein's method for normal approximation[END_REF]Lemma 2.2] or formulae (2.20)-(2.21) below). Now suppose that the elements of the sequence {F n } appearing in (1.1) are functionals of some Gaussian field, say X, and assume that each F n is differentiable in the sense of Malliavin calculus (see Section 2.1 for details). Denote by DF n the Malliavin derivative of F n and write L -1 for the pseudo-inverse of the Ornstein-Uhlenbeck generator (see again Section 2.1). Recall that DF n is a random element with values in an appropriate Hilbert space H. In [20, Section 3], we proved and applied the following relations, that are direct consequences of the fact that f z solves (1.5) on the one hand, and of the celebrated integration by parts formula of Malliavin calculus on the other hand: for every z ∈ R,

P (F n z)-Φ(z) = E[f ′ z (F n )-F n f z (F n )] = E[f ′ z (F n )(1-DF n , -DL -1 F n H )].
(1.6) By using (1.4), by applying the Cauchy-Schwarz inequality to the RHS of (1.6) and by using the fact that f ′ z is bounded by 1, one immediately obtains that

d Kol (F n , N ) E[(1-DF n , -DL -1 F n H ) 2 ]. (1.7) 
The starting point of [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] was that, in several crucial cases (for instance, when each F n is a multiple Wiener-It integral of a fixed order), the upper bound

ϕ(n) := E[(1-DF n , -DL -1 F n H ) 2 ], n 1, (1.8) 
is such that: (i) the quantity ϕ(n) can be explicitly computed (for instance in terms of contraction operators), (ii) ϕ(n) → 0 as n → ∞, and (iii) ϕ(n) is directly related to quantities playing a fundamental role in the CLTs for functionals of Gaussian fields proved in [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF][START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF][START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF][START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]. The aim of the present paper is to establish conditions on the sequence {F n } ensuring that the ratios

E[f ′ z (F n )(1-DF n , -DL -1 F n H )] ϕ(n) , n 1, (1.9) 
involving (1.8) and the RHS of (1.6), converge to a nonzero limit for all z outside some finite set. Such a result yields immediately the existence of a constant c, verifying (1.3) for d = d Kol .

We will show that a very effective way to prove the convergence of the quantities appearing in (1.9) is to characterize the joint convergence in distribution of the random vectors

F n , 1 -DF n , -DL -1 F n H ϕ(n) , n 1, (1.10) 
towards a two-dimensional Gaussian vector with non-zero covariance. The applications presented in Sections 4-6 will show that this specific convergence takes place in several crucial situations, involving for instance quadratic or polynomial functionals of stationary Gaussian processes. We will see that, in order to prove a CLT for the vector appearing in (1.10), a useful tool is the multi-dimensional version of the CLT for multiple stochastic integrals proved in [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]. Also, it is interesting to note that, if each F n in (1.1) is a double stochastic integral, then our conditions can be expressed exclusively in terms of the second, third, fourth and eighth cumulants associated with the sequence {F n } -see Section 3.3 below. The rest of the paper is organized as follows. Section 2 deals with preliminaries about Malliavin calculus, Stein's method and related topics. Section 3 contains our main results, with special attention devoted to random variables belonging to the second Wiener chaos of a Gaussian field. In Section 4 we develop an application to Toeplitz quadratic functionals of stationary continuous-time Gaussian processes, thus extending and refining some results by Ginovyan [START_REF] Ginovyan | On Toeplitz type quadratic functionals in Gaussian stationary process[END_REF] and Ginovyan and Sahakyan [START_REF] Ginovyan | Limit theorems for Toeplitz quadratic functionals of continuous-time stationary processes[END_REF]. Section 5 is devoted to quadratic functionals of Brownian motion and of the Brownian sheet, whereas Section 6 focuses on a continuous-time version of the Breuer-Major CLT for processes subordinated to a fractional Brownian motion.

Preliminaries

Gaussian fields and Malliavin calculus

We shall now provide a short description of the tools of Malliavin calculus that will be needed in the forthcoming sections. The reader is referred to the monographs [START_REF] Janson | Gaussian Hilbert Spaces[END_REF] and [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] for any unexplained notion or result.

Let H be a real separable Hilbert space. We denote by X = {X(h) : h ∈ H} an isonormal Gaussian process over H. By definition, X is a centered Gaussian family indexed by the elements of H and such that, for every h, g ∈ H,

E X(h)X(g) = h, g H . (2.11)
In what follows, we shall use the notation L 2 (X) = L 2 (Ω, σ(X), P ). For every q 1, we write H ⊗q to indicate the qth tensor power of H; the symbol H ⊙q stands for the qth symmetric tensor power of H, equipped with the norm √ q! • H ⊗q . We denote by I q the isometry between H ⊙q and the qth Wiener chaos of X. It is well-known (see again [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Ch. 1] or [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]) that any random variable F belonging to L 2 (X) admits the chaotic expansion:

F = ∞ q=0 I q (f q ), (2.12) 
where I 0 (f 0 ) := E[F ], the series converges in L 2 and the kernels f q ∈ H ⊙q , q 1, are uniquely determined by F . In the particular case where H = L 2 (A, A , µ), where (A, A ) is a measurable space and µ is a σ-finite and non-atomic measure, one has that H ⊙q = L 2 s (A q , A ⊗q , µ ⊗q ) is the space of symmetric and square integrable functions on A q . Moreover, for every f ∈ H ⊙q , I q (f ) coincides with the multiple Wiener-Itô integral (of order q) of f with respect to X (see [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Ch. 1]). It is well-known that a random variable of the type I q (f ), f ∈ H ⊙q , has finite moments of all orders (see e.g. [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]Ch. VI]). Moreover, any non-zero finite sum of multiple stochastic integrals has a law which is absolutely continuous with respect to Lebesgue measure (see e.g. Shigekawa [START_REF] Shigekawa | Absolute continuity of probability laws of Wiener functionals[END_REF] for a proof of this fact; see [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Ch. 1] or [START_REF] Rota | Stochastic integrals: a combinatorial approach[END_REF] for a connection between multiple Wiener-It integrals and Hermite polynomials on the real line). For every q 0, we write J q to indicate the orthogonal projection operator on the qth Wiener chaos associated with X, so that, if F ∈ L 2 (σ(X)) is as in (2.12), then J q F = I q (f q ) for every q 0. Let {e k , k ≥ 1} be a complete orthonormal system in H. Given f ∈ H ⊙p and g ∈ H ⊙q , for every r = 0, . . . , p ∧ q, the rth contraction of f and g is the element of H ⊗(p+q-2r) defined as

f ⊗ r g = ∞ i 1 ,...,ir=1
f, e i 1 ⊗ . . . ⊗ e ir H ⊗r ⊗ g, e i 1 ⊗ . . . ⊗ e ir H ⊗r .

(2.13)

In the particular case where H = L 2 (A, A , µ) (with µ non-atomic), one has that

f ⊗ r g = A r
f (t 1 , . . . , t p-r , s 1 , . . . , s r ) g(t p-r+1 , . . . , t p+q-2r , s 1 , . . . , s r )dµ(s 1 ) . . . dµ(s r ).

Moreover, f ⊗ 0 g = f ⊗ g equals the tensor product of f and g while, for p = q, f ⊗ p g = f, g H ⊗p . Note that, in general (and except for trivial cases), the contraction f ⊗ r g is not a symmetric element of H ⊗(p+q-2r) . The canonical symmetrization of f ⊗ r g is written f ⊗ r g. We also have the following multiplication formula: if f ∈ H ⊙p and g ∈ H ⊙q , then

I p (f )I q (g) = p∧q r=0 r! p r q r I p+q-2r (f ⊗ r g). (2.14)
Let S be the set of all smooth cylindrical random variables of the form

F = g X(φ 1 ), . . . , X(φ n ) ,
where n 1, g : R n → R is a smooth function with compact support and φ i ∈ H. The Malliavin derivative of F with respect to X is the element of L 2 (Ω, H) defined as

DF = n i=1 ∂g ∂x i X(φ 1 ), . . . , X(φ n ) φ i .
Also, DX(h) = h for every h ∈ H. By iteration, one can define the mth derivative D m F (which is an element of L 2 (Ω, H ⊗m )) for every m 2. As usual, for m 1, D m,2 denotes the closure of S with respect to the norm • m,2 , defined by the relation

F 2 m,2 = E F 2 + m i=1 E D i F 2 H ⊗i .
Note that, if F is equal to a finite sum of multiple Wiener-It integrals, then F ∈ D m,2 for every m 1. The Malliavin derivative D verifies the following chain rule:

if ϕ : R n → R is in C 1 b
(that is, the collection of bounded continuously differentiable functions with a bounded derivative) and if {F i } i=1,...,n is a vector of elements of D 1,2 , then ϕ(F 1 , . . . , F n ) ∈ D 1,2 and

Dϕ(F 1 , . . . , F n ) = n i=1 ∂ϕ ∂x i (F 1 , . . . , F n )DF i .
Observe that the previous formula still holds when ϕ is a Lipschitz function and the law of (F 

| c u F L 2 for any F ∈ S ,
where c u is a constant depending uniquely on u. If u ∈ Domδ, then the random variable δ(u) is defined by the duality relationship (i.e., the "integration by parts formula"):

E(F δ(u)) = E DF, u H , (2.15) 
which holds for every F ∈ D 1,2 . The operator L, acting on square integrable random variables of the type (2.12), is defined through the projection operators {J q } q 0 as L = ∞ q=0 -qJ q , and is called the infinitesimal generator of the Ornstein-Uhlenbeck semigroup. It verifies the following crucial property: a random variable F is an element of DomL (= D 2,2 ) if, and only if, F ∈ DomδD (i.e. F ∈ D 1,2 and DF ∈ Domδ), and in this case: δDF = -LF. Note that a random variable F as in (2.12) is in D 1,2 (resp. D 2,2 ) if, and only if,

∞ q=1 q f q 2 H ⊙q < ∞ ( resp. ∞ q=1 q 2 f q 2 H ⊙q < ∞),
and also E DF 2 H = q 1 q f q 2 H ⊙q . If H = L 2 (A, A , µ) (with µ non-atomic), then the derivative of a random variable F as in (2.12) can be identified with the element of L 2 (A × Ω) given by

D a F = ∞ q=1 qI q-1 f q (•, a) , a ∈ A.
(2.16)

We also define the operator L -1 , which is the pseudo-inverse of L, as follows: for every F ∈ L 2 (X), we set L -1 F = q 1 1 q J q (F ). Note that L -1 is an operator with values in D 2,2 and that LL -1 F = F -E(F ) for all F ∈ L 2 (X).

The following lemma generalizes Lemma 2.1 in [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF].

Lemma 2.1 Let F ∈ D 1,2 be such that E(F ) = 0. Suppose that, for some integer s

0, E|F | s+2 < ∞. Then, E F s DF, -DL -1 F H = 1 s + 1 E F s+2 .
(2.17)

Proof. Since L -1 F ∈ D 2,2
, we can write:

E F s DF, -DL -1 F H = 1 s + 1 E D(F s+1 ), D(-L -1 F ) H = - 1 s + 1 E δDL -1 F × F s+1 (by integration by parts (2.15)) = 1 s + 1 E F s+2 (by the relation -δDL -1 F = F ). 2 Remark 2.2 If F = I q (f ), for some q 2 and f ∈ H ⊙q , then DF, -DL -1 F H = DI q (f ), -DL -1 I q (f ) H = 1 q DI q (f ) 2 H , (2.18) 
so that (2.17) yields that, for every integer s 1,

E I q (f ) s DI q (f ) 2 H = q s + 1 E I q (f ) s+2 . (2.19)

Stein's method and normal approximation on a Gaussian space

We start by recalling that, for every fixed z ∈ R, the function

f z (x) = e x 2 /2 x -∞ [1 (-∞,z] (a) -Φ(z)]e -a 2 /2 da (2.20) =    √ 2πe x 2 /2 Φ(x)(1 -Φ(z)) if x z, √ 2πe x 2 /2 Φ(z)(1 -Φ(x)) if x > z, (2.21) 
is a solution to the Stein's equation (1.5), verifying moreover

f z ∞ √ 2π/4 and f ′ z ∞
1. The following lemma will play a crucial role in the sequel, see also (1.6). Its content is the starting point of [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF].

Lemma 2.3 Let F ∈ D 1,2
have zero mean. Assume moreover that Z has an absolutely continuous law with respect to the Lebesgue measure. Then, for every z ∈ R,

P (F z) -Φ(z) = E[f ′ z (F )(1 -DF, -DL -1 F H )]. Proof. Fix z ∈ R. Since f z solves the Stein's equation (1.5), we have P (F z) -Φ(z) = E[f ′ z (F ) -F f z (F )]
. Now, observe that one can write F = LL -1 F = -δDL -1 F . By using the integration by parts formula (2.15) and the fact that Df z (F ) = f ′ z (F )DF (note that, for this formula to hold with f z only Lipschitz, one needs F to have an absolutely continuous law, see Section 2.1), we deduce

E[F f z (F )] = E[-δDL -1 F f z (F )] = E[ Df z (F ), -DL -1 F H ] = E[f ′ z (F ) DF, -DL -1 F H ]. It follows that E[f ′ z (F ) -F f z (F )] = E[f ′ z (F )(1 -DF, -DL -1 F H )
] and the proof of the lemma is done.

2

As an application, we get the following result proved in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] (we reproduce the proof here for sake of completeness).

Theorem 2.4 Let F ∈ D 1,2 have zero mean, and N ∼ N (0, 1). Then,

d Kol (F, N ) E[(1 -DF, -DL -1 F H ) 2 ]. (2.

22)

If F = I q (f ), for some q 2 and f ∈ H ⊙q , then DF, -DL -1 F H = q -1 DF 2 H , and therefore

d Kol (F, N ) E[(1 -q -1 DF 2 H ) 2 ]. (2.23)
Proof. If f is a bounded continuously differentiable function such that f ′ ∞ 1 then, using the same arguments than in the proof of Lemma 2.3 (here, since f belongs to C 1 b , observe that we do not need to assume that the law of F is absolutely continuous), we have

E[f ′ (F ) -F f (F )] = E[f ′ (F )(1 -DF, -DL -1 F H )] E|1 -DF, -DL -1 F H |.
In fact, the inequality

E[f ′ (F ) -F f (F )] E|1 -DF, -DL -1 F H | continues to hold with f = f z (
which is bounded and Lipschitz with Lipschitz constant less than one), as we see it easily by convoluting f z by an approximation of the identity. Hence Lemma 2.3, combined with Cauchy-Schwarz inequality, imply the desired conclusion. 2

Remark 2.5 In general, the bound appearing on the RHS of (2.22) may be infinite. Indeed, the fact that F ∈ D 1,2 only implies that DF, -DL -1 F H ∈ L 1 (Ω). By using twice the Cauchy-Schwarz inequality, one sees that a sufficient condition, in order to have that DF, -DL -1 F H ∈ L 2 (Ω), is that DF H and DL -1 F H belong to L 4 (Ω). Note also that, if F is equal to a finite sum of multiple integrals (for instance, F is a polynomial functional of X), then the random variable DF, -DL -1 F H is also a finite sum of multiple integrals, and therefore has finite moments of all orders. In particular, for F = I q (f ) the RHS of (2.23) is always finite.

The bounds appearing in Theorem 2.4 should be compared with the forthcoming Theorem 2.6, dealing with CLTs on a single Wiener chaos (Part A) and on a fixed sum of Wiener chaoses (Part B).

Theorem 2.6 (see [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF][START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF][START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF][START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]) Fix q 2 and let the sequence

F n = I q (f n ), n 1, where {f n } ⊂ H ⊙q , be such that E[F 2 n ] → 1 as n → ∞. (A)
The following four conditions are equivalent as n → ∞:

(i) F n Law -→ N ∼ N (0, 1); (ii) E(F 4 n ) → 3;
(iii) f n ⊗ j f n H ⊗2(q-j) → 0, for every j = 1, ..., q -1;

(iv) 1 -q -1 DF n 2 H → 0 in L 2 .
(B) Assume that either one of conditions (i)-(iv) of Part A is satisfied. Let the sequence G n , n 1, have the form

G n = M p=1 I p (g (p) n ), n 1,
for some M 1 (independent of n) and some kernels g

(p) n ∈ H ⊙p (p = 1, ..., M , n 1). Suppose that, as n → ∞, E(G 2 n ) = M p=1 p! g (p)
n 2

H ⊗p -→ c 2 > 0 and g (p) n ⊗ j g (p) n H ⊗2(p-j) -→ 0,
for every p = 1, ..., M and every j = 1, ..., p -1.

If the sequence of covariances E(F n G n ) converges to a finite limit, say ρ ∈ R, then (F n , G n ) converges in distribution to a two- dimensional Gaussian vector (N 1 , N 2 ) such that E(N 2 1 ) = 1, E(N 2 2 ) = c 2 and E(N 1 N 2 ) = ρ.
The equivalence between points (i)-(iii) in Part A of the previous statement has been first proved in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] by means of stochastic calculus techniques; the fact that condition (iv) is also necessary and sufficient has been proved in [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF]. Part B (whose proof is straightforward and omitted) is a consequence of the main results established in [START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF][START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]. Note that, in Part B of the previous statement, we may allow some of the kernels g

(p)
n to be equal to zero. See [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF] and [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF]Section 3.3] for some extensions of Theorems 2.4 and 2.6 to the framework of non-central limit theorems.

Remark on notation.

In what follows, given two numerical sequences {a n } and {b n }, the symbol a n ∼ b n means that lim a n /b n = 1, whereas a n ≍ b n means that the ratio a n /b n converges to a non-zero finite limit.

A useful computation

We shall denote by {H q : q 0} the class of Hermite polynomials, defined as: H 0 ≡ 1 and, for q 1, H q (z) = (-1) q e z 2 /2 d q dz q e -z 2 /2 , z ∈ R;

(2.24)

for instance, H 1 (z) = z, H 2 (z) = z 2 -1, and so on. Note that the definition of the class {H q } implies immediately the recurrence relation

d dz H q (z)e -z 2 /2 = -H q+1 (z)e -z 2 /2 , (2.25) 
yielding that the Hermite polynomials are related to the derivatives of Φ(z) = P (N z) (N ∼ N (0, 1)), written Φ (q) (z) (q = 1, 2, ...), by the formula

Φ (q) (z) = (-1) q-1 H q-1 (z) e -z 2 /2 √ 2π . (2.26)
We also have, for any q 1: The following result, connecting f z with the Hermite polynomials and the derivatives of Φ, will be used in Section 3.

d dz H q (z) = q H q-1 (z). (2.
Proposition 2.7 For every q 1 and every z ∈ R,

+∞ -∞ f ′ z (x)H q (x) e -x 2 /2 √ 2π dx = 1 q + 2 H q+1 (z) e -z 2 /2 √ 2π = 1 q + 2 (-1) q+1 Φ (q+2) (z).
(2.28)

Proof. By integrating by parts and by exploiting relations (2.21) and (2.25), one obtains that

+∞ -∞ f ′ z (x)H q (x) e -x 2 /2 √ 2π dx = +∞ -∞ f z (x)H q+1 (x) e -x 2 /2 √ 2π dx = 1 √ 2π +∞ -∞ H q+1 (x) x -∞ 1 (-∞,z] (a) -Φ(z) e -a 2 /2 da dx (2.29)
By integrating by parts, using

H q+1 = 1 q+2 H ′ q+2 (see (2.27)
) and in view of (2.25), one easily proves that

+∞ -∞ H q+1 (x) x -∞ 1 (-∞,z] (a) -Φ(z) e -a 2 /2 da dx = - 1 q + 2 +∞ -∞ H q+2 (x) 1 (-∞,z] (x) -Φ(z) e -x 2 /2 dx = - 1 q + 2 z -∞ H q+2 (x)e -x 2 /2 dx -Φ(z) +∞ -∞ H q+2 (x)e -x 2 /2 dx = 1 q + 2 H q+1 (z).
By plugging this expression into (2.29), we immediately deduce the desired conclusion. 2

For instance, by specializing formula (2.28) to the case q = 1 one obtains, for N ∼ N (0, 1):

E[f ′ z (N ) × N ] = 1 3 (z 2 -1) e -z 2 /2 √ 2π = 1 3 Φ (3) (z).
(2.30)

3 Main results

Two general statements

We start by studying the case of a general sequence of Malliavin derivable functionals.

Theorem 3.1 Let F n , n 1, be a sequence of centered and square-integrable functionals of some isonormal Gaussian process X = {X(h) : h ∈ H}, such that E(F 2 n ) -→ 1 as n → ∞. Suppose that the following three conditions hold: (i) for every n, one has that F n ∈ D 1,2 and F n has an absolutely continuous law (with respect to the Lebesgue measure);

(ii) the quantity ϕ(n

) = E (1 -DF n , -DL -1 F n H ) 2 (as defined in (1.8
)) is such that: (a) ϕ(n) is finite for every n, (b) as n → ∞, ϕ(n) converges to zero, and (c) there exists m 1 such that ϕ(n) > 0 for n m;

(iii) as n → ∞, the two-dimensional vector F n , 1-DFn,-DL -1 Fn H ϕ(n)

(as defined in formula (1.10)) converges in distribution to a centered two-dimensional Gaussian vector

(N 1 , N 2 ), such that E(N 2 1 ) = E(N 2 2 ) = 1 and E(N 1 N 2 ) = ρ;
Then, the upper bound d Kol (F n , N ) ϕ(n) holds. Moreover, for every z ∈ R:

ϕ(n) -1 [P (F n z) -Φ(z)] -→ n→∞ ρ 3 (z 2 -1) e -z 2 /2 √ 2π = ρ 3 Φ (3) (z). (3.31)
As a consequence, if ρ = 0 there exists a constant c ∈ (0, 1), as well as an integer n 0 1, such that relation (1.3) holds for d = d Kol and for every n n 0 .

Proof. Fix z ∈ R. From assumption (i) and Lemma 2.3, recall that

ϕ(n) -1 [P (F n z) -Φ(z)] = E[f ′ z (F n )ϕ(n) -1 (1 -DF n , -DL -1 F n H )].
The facts that f ′ z is bounded by 1 on the one hand, and that ϕ(n) -1 (1 -DF n , -DL -1 F n H ) has variance 1 on the other hand, imply that the sequence

f ′ z (F n )ϕ(n) -1 (1 -DF n , -DL -1 F n H ), n 1, is uniformly integrable. Now deduce from (2.20) that x → f ′ z (x
) is continuous at every x = z. This yields that, as n → ∞ and due to assumption (iii),

E[f ′ z (F n )ϕ(n) -1 (1 -DF n , -DL -1 F n H )] -→ E(f ′ z (N 1 )N 2 ) = ρ × E(f ′ z (N 1 )N 1 ).
Relation (3.31) now follows from formula (2.30). If in addition ρ = 0, one can obtain the lower bound (1.3), by using the elementary relation

|P (F n 0) -Φ(0)| d Kol (F n , N ). 2 
Remark 3.2 Plainly, the conclusion of Theorem 3.1 still holds when n is replaced by some continuous parameter. The same remark holds for the forthcoming results of this section.

The next Proposition connects our results with one-term Edgeworth expansions. Note that, in the following statement, we assume that E(F n ) = 0 and E(F 2 n ) = 1, so that the first term in the (formal) Edgeworth expansion of

P (F n z) -Φ(z) coincides with -(3!) -1 E(F 3 n )Φ (3) (z).
For an introduction to Edgeworth expansions, the reader is referred e.g. to McCullagh [START_REF] Mccullagh | Tensor Methods in Statistics[END_REF]Chapter 3] or Hall [START_REF] Hall | Bootstrap and Edgeworth Expansions[END_REF]Chapter 2]. See also Rotar [START_REF] Rotar | Stein's method, Edgeworth's expansions and a formula of Barbour[END_REF] for another application of Stein's method to Edgeworth expansions.

Proposition 3.3 (One-term Edgeworth expansions) Let F n , n
1, be a sequence of centered and square-integrable functionals of the isonormal Gaussian process X = {X(h) : h ∈ H}, such that E(F 2 n ) = 1. Suppose that conditions (i)-(iii) of Theorem 3.1 are satisfied, and also that (a) for every n, one has that

E|F n | 3 < ∞; (b) there exists ε > 0 such that sup n 1 E|F n | 2+ε < ∞.
Then, as n → ∞,

1 2ϕ(n) E(F 3 n ) -→ -ρ, (3.32) 
and, for every z ∈ R, one has the following one-term local Edgeworth expansion

P (F n z) -Φ(z) + 1 3! E(F 3 n )Φ (3) (z) = o z (ϕ(n)), (3.33) 
where o z (ϕ(n)) indicates a numerical sequence (depending on z) such that ϕ(n

) -1 o z (ϕ(n)) → 0, as n → ∞.
Remark 3.4 Of course, relation (3.33) is interesting only when ρ = 0. Indeed, in this case one has that, thanks to Theorem 3.1, P (F n z) -Φ(z) ≍ ϕ(n) (the symbol ≍ means asymptotic equivalence), so that, for a fixed z, the addition of 1 3! E(F 3 n )Φ (3) (z) actually increases the rate of convergence to zero.

Proof of Proposition 3.3. Since assumption (a) is in order and E(F n ) = 0, one can deduce from Lemma 2.1, in the case s = 1, that

E F n × 1 -DF n , -DL -1 F n H ϕ(n) = - 1 2ϕ(n) E(F 3 n ).
Assumption (b) combined with the fact that ϕ(n) -1 (1 -DF n , -DL -1 F n H ) has variance 1 immediately yields that there exists δ > 0 such that sup

n 1 E F n × ϕ(n) -1 (1 -DF n , -DL -1 F n H ) 1+δ < ∞.
In particular, the sequence

F n × ϕ(n) -1 (1 -DF n , -DL -1 F n H ) : n 1 is uniformly in- tegrable.
Therefore, since assumption (iii) in the statement of Theorem 3.1 is in order, one deduce that, as n → ∞,

1 2ϕ(n) E(F 3 n ) -→ -E(N 1 N 2 ) = -ρ.
As a consequence, 

ϕ(n) -1 P (F n z) -Φ(z) + 1 3! E(F 3 n )Φ (3) (z) P (F n z) -Φ(z) ϕ(n) - ρ 3 Φ (3) (z) + |Φ (3) (z)| 3 1 2ϕ(n) E(F 3 n ) + ρ ,
F n × ϕ(n) -1 (1 -DF n , -DL -1 F n H ), n 1,
is uniformly integrable.

Multiple integrals

The following statement specializes the content of the previous subsection to multiple integrals with respect to some isonormal Gaussian process X = {X(h) : h ∈ H}. Recall that a non-zero finite sum of multiple integrals of arbitrary orders is always an element of D 1,2 , and also that its law admits a density with respect to Lebesgue measure (this implies that assumption (i) in the statement of Theorem 3.1 is automatically satisfied in this section), see Shigekawa [START_REF] Shigekawa | Absolute continuity of probability laws of Wiener functionals[END_REF].

Proposition 3.6 Let q 2 be a fixed integer, and let the sequence F n , n 1, have the form

F n = I q (f n ), where, for n 1, f n ∈ H ⊙q . Suppose that E(F 2 n ) = q! f n 2 H ⊗q → 1.
Then, the quantity ϕ(n) appearing in formula (1.8) is such that

ϕ(n) 2 = E[(1 -q -1 DF n 2 H ) 2 ] (3.34) = (1 -q! f n 2 H ⊗q ) 2 (3.35) + q 2 q-1 r=1 (2q -2r)!(r -1)! 2 q -1 r -1 4 f n ⊗ r f n 2 H ⊗2(q-r) .
Now suppose that, as n → ∞,

f n ⊗ r f n H ⊗2(q-r) → 0, (3.36) 
for every r = 1, ..., q -1, and also

1 -q! f n 2 H ⊗q ϕ(n) -→ 0. (3.37)
Then, assumption (ii) in the statement of Theorem 3.1 is satisfied, and a set of sufficient conditions, implying that assumption (iii) in the same Theorem holds, are the following relations (3.38)-(3.39): as n → ∞,

ϕ(n) -2 (f n ⊗ r f n ) ⊗ l (f n ⊗ r f n ) H ⊗2(2(q-r)-l) → 0, (3.38) 
for every r = 1, ..., q -1 and every l = 1, ..., 2(qr) -1, and, if q is even, 

-qq!(q/2 -1)! q -1 q/2 -1 2 ϕ(n) -1 f n , f n ⊗ q/2 f n H ⊗q -→ ρ. ( 3 
(n) -→ 0 is immediate (recall that f n ⊗ r f n H ⊗2(q-r) f n ⊗ r f n H ⊗2(q-r) ). According again to [20, formula (3.42)], one has that 1 -q -1 DI q (f n ) 2 H ϕ(n) = 1 -q! f n 2 H ⊗q ϕ(n) -q q-1 r=1 (r -1)! q -1 r -1 2 I 2(q-r) f n ⊗ r f n ϕ(n) . (3.40)
Finally, the fact that (3.38) and (3.39) (for q even) imply that assumption (iii) in Theorem 3.1 is satisfied, is a consequence of representation (3.40) and Part B of Theorem 2.6, in the case

G n = -q q-1 r=1 (r -1)! q -1 r -1 2 I 2(q-r) f n ⊗ r f n ϕ(n) ,
and c 2 = 1, by taking into account the fact that, for q even, 

E(F n G n ) = -qq!(q/2 -1)! q -1 q/2 -1 2 ϕ(n) -1 f n , f n ⊗ q/2 f n H ⊗q , whereas E(F n G n ) = 0 for q odd. 2 

Second Wiener chaos

In this subsection, we focus on random variables in the second Wiener chaos associated with an isonormal Gaussian process X = {X(h) : h ∈ H}, that is, random variables of the type F = I 2 (f ), where f ∈ H ⊙2 . To every kernel f ∈ H ⊙2 we associate two objects: (I) the Hilbert-Schmidt operator

H f : H → H; g → f ⊗ 1 g, (3.41) 
where the contraction f ⊗ 1 g is defined according to (2.13), and (II) the sequence of kernels {f ⊗

(p) 1 f : p 1} ⊂ H ⊙2 , defined as follows: f ⊗

1 f = f , and, for p 2,

f ⊗ (p) 1 f = f ⊗ (p-1) 1 f ⊗ 1 f . (3.42)
We write {λ f,j } j 1 to indicate the eigenvalues of H f . Now, for p 1, denote by κ p (I 2 (f )) the pth cumulant of I 2 (f ). The following relation, giving an explicit expression for the cumulants of I 2 (f ), is well-known (see e.g. [START_REF] Fox | Central limit theorems for quadratic forms in random variables having long-range dependence[END_REF] for a proof): one has that κ 1 (I 2 (f )) = E(I 2 (f )) = 0, and, for p 2,

κ p (I 2 (f )) = 2 p-1 (p -1)! × Tr(H p f ) (3.43) = 2 p-1 (p -1)! × f ⊗ (p-1) 1 f, f H ⊗2 = 2 p-1 (p -1)! × ∞ j=1 λ p f,j ,
where Tr(H p f ) stands for the trace of the pth power of H f . Proposition 3.8 Let F n = I 2 (f n ), n 1, be such that f n ∈ H ⊙2 , and write κ

(n) p = κ p (F n ), p 1. Assume that κ (n) 2 = E(F 2 n ) -→ 1 as n → ∞. Then, as n → ∞, F n Law -→ N ∼ N (0, 1) if,

and only if, κ

(n) 4 -→ 0. In this case, we have moreover

d Kol (F n , N ) κ (n) 4 6 + (κ (n) 2 -1) 2 . (3.44)
If, in addition, we have, as n → ∞,

κ (n) 2 -1 κ (n) 4 6 + (κ (n) 2 -1) 2 -→ 0, (3.45) κ (n) 3 κ (n) 4 6 + (κ (n) 2 -1) 2 -→ α and κ (n) 8 κ (n) 4 6 + (κ (n) 2 -1) 2 2 -→ 0, (3.46) then P (F n z) -Φ(z) κ (n) 4 6 + (κ (n) 2 -1) 2 -→ α 3! 1 √ 2π 1 -z 2 e -z 2 2 , as n → ∞. (3.47)
In particular, if α = 0, there exists c ∈ (0, 1) and n 0 1 such that, for any n n 0 , 

sup z∈R |P (F n z) -Φ(z)| c κ (n) 4 6 + (κ (n) 2 -1) 2 . (3.48) Remark 3.9 1. If E(F 2 n ) = κ (n) 2 = 1,
P (F n z) -Φ(z) ∼ κ (n) 3 3! √ 2π 1 -z 2 e -z 2 2 ,
whenever z = ±1 and α = 0.

Proof of Proposition 3.8. First, since E(F n ) = 0, we have κ

(n) 4 = E(F 4 n ) -3 E(F 2 n ) 2 . Thus, the equivalence between κ (n) 4 -→ 0 and F n Law -→ N (0, 1) is a direct consequence of Part A of Theorem 2.6. Now observe that 1 2 DF n 2 -1 = 2 I 2 (f n ⊗ 1 f n ) + E(F 2 n ) -1 = 2 I 2 (f n ⊗ 1 f n ) + κ (n) 2 -1.
In particular

Var 1 2 DZ n 2 -1 = 8 f n ⊗ 1 f n 2 H ⊗2 + κ (n) 2 -1 2 = κ (n) 4 6 + (κ (n) 2 -1) 2 ,
where we have used (3.43) in the case p = 4 (note that f ⊗

(3)

1 f, f H ⊗2 = f ⊗ 1 f 2 H ⊗2
). This implies that the quantity ϕ(n) appearing in (1.7) equals indeed κ

(n) 4 /6 + (κ (n) 2 -1) 2 .
To conclude the proof, it is sufficient to apply Proposition 3.6 in the case q = 2, by observing that 1κ

(n) 2 κ (n) 4 6 + (κ (n) 2 -1) 2 = 1 -2 f n 2 H ⊗2 ϕ(n) ,
and also, by using (3.43), respectively, in the case p = 3 and p = 8,

κ (n) 3 κ (n) 4 6 + (κ (n) 2 -1) 2 = 8 f n , f n ⊗ 1 f n H ⊗2 ϕ(n) and κ (n) 8 κ (n) 4 6 + (κ (n) 2 -1) 2 2 = 2 7 7! × f ⊗ (7) 1 f, f H ⊗2 ϕ(n) 4 = 2 7 7! × (f n ⊗ 1 f n ) ⊗ 1 (f n ⊗ 1 f n ) 2 H ⊗2 ϕ(n) 4 .

4 Toeplitz quadratic functionals of continuous-time stationary processes

In this section, we apply our results to establish (possibly optimal) Berry-Esséen bounds in CLTs involving quadratic functionals of continuous-time stationary Gaussian processes. Our results represent a substantial refinement of the CLTs proved in the papers by Ginovyan [START_REF] Ginovyan | On Toeplitz type quadratic functionals in Gaussian stationary process[END_REF] and Ginovyan and Sahakyan [START_REF] Ginovyan | Limit theorems for Toeplitz quadratic functionals of continuous-time stationary processes[END_REF], where the authors have extended to a continuous-time setting the discrete-time results by Avram [START_REF] Avram | On bilinear forms in Gaussian random variables and Toeplitz matrices[END_REF], Fox and Taqqu [START_REF] Fox | Central limit theorems for quadratic forms in random variables having long-range dependence[END_REF] and Giraitis and Surgailis [START_REF] Giraitis | A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate[END_REF]. In the discrete-time case, Berry-Esséen type bounds for CLTs involving special quadratic functionals of stationary Gaussian processes are obtained in [START_REF] Taniguchi | Berry-Esséen theorems for quadratic forms of Gaussian stationary processes[END_REF], and Edgeworth expansions are studied e.g. in [START_REF] Lieberman | Valid Edgeworth expansion for the sample autocorrelation function under long dependence[END_REF]. However, to our knowledge, the results proved in this section are the first (exact) Berry-Esséen bounds ever proved in the continuous-time case. Observe that it is not clear whether one can deduce bounds in continuous-time, by using the discrete-time findings of [START_REF] Lieberman | Valid Edgeworth expansion for the sample autocorrelation function under long dependence[END_REF] and [START_REF] Taniguchi | Berry-Esséen theorems for quadratic forms of Gaussian stationary processes[END_REF]. We refer the reader to [START_REF] Bhansalia | Approximations and limit theory for quadratic forms of linear processes[END_REF] and [START_REF] Gtze | Asymptotic expansion in the central limit theorem for quadratic forms[END_REF] (and the references therein) for CLTs and one-term Edgeworth expansions concerning quadratic functionals of general discrete-time processes. Let X = (X t ) t∈R be a centered real-valued Gaussian process with spectral density f : R → R. This means that, for every u, t ∈ R, one has

E(X u X u+t ) := r(t) = +∞ -∞ e iλt f (λ)dλ, t ∈ R,
where r : R → R is the covariance function of X. We stress that the density f is necessarily an even function. For T > 0, let

Q T = [0,T ] 2 g(t -s)X t X s dtds where g(t) = +∞ -∞ e iλt g(λ)dλ, t ∈ R,
is the Fourier transform of some integrable even function g : R → R. The random variable Q T is customarily called the Toeplitz quadratic functional of X, associated with g and T . We also set

QT = Q T -E(Q T ) √ T and QT = QT σ(T )
with σ(T ) 2 = Var( QT ). The cumulants of QT and QT are denoted, respectively, by κ(T ) j = κ j ( QT ) and κ(T ) j = κj ( QT ), j 1.

Given T > 0 and ψ ∈ L 1 (R), we denote by B T (ψ) the truncated Toeplitz operator associated with ψ and T , acting on a square-integrable function u as follows:

B T (ψ)(u)(λ) = T 0 u(x) ψ(λ -x)dx, λ ∈ R,
where ψ is the Fourier transform of ψ. Given ψ, γ ∈ L 1 (R), we denote by B T (ψ)B T (γ) the product of the two operators B T (ψ) and B T (γ); also, [B T (ψ)B T (γ)] j , j 1, is the jth power of B T (ψ)B T (γ); the symbol Tr(U ) indicates the trace of an operator U .

The following statement collects some of the results proved in [START_REF] Ginovyan | On Toeplitz type quadratic functionals in Gaussian stationary process[END_REF][START_REF] Ginovyan | Limit theorems for Toeplitz quadratic functionals of continuous-time stationary processes[END_REF].

Theorem 4.1 (See [START_REF] Ginovyan | On Toeplitz type quadratic functionals in Gaussian stationary process[END_REF][START_REF] Ginovyan | Limit theorems for Toeplitz quadratic functionals of continuous-time stationary processes[END_REF]) 1. For every j 1, the jth cumulant of QT is given by

κ(T ) j = 0 if j = 1 T -j/2 2 j-1 (j -1)! Tr[B T (f )B T (g)] j if j 2. 2. Assume that f ∈ L p (R) ∩ L 1 (R) (p ≥ 1), that g ∈ L q (R) ∩ L 1 (R) (q ≥ 1)
, and that

1 p + 1 q 1 j . Then κ(T ) j ∼ T →∞ T 1-j/2 × 2 j-1 (j -1)!(2π) 2j-1 +∞ -∞ f (x) j g(x) j dx. 3. If 1 p + 1 q 1 2 , then σ 2 (T ) = κ(T ) 2 -→ T →∞ σ 2 (∞) := 16π 3 +∞ -∞ f 2 (x)g 2 (x)dx,
and

QT Law -→ Z ∼ N (0, 1) as T → ∞.
The next statement shows that one can apply Proposition 3.8 in order to obtain Berry-Esséen bounds for the CLT appearing at Point 3 of Theorem 4.1. Observe that, since the variance of QT is equal to 1 by construction, to establish an upper bound we need to control uniquely the fourth cumulant of QT : this will be done by using Point 2 of Theorem 4.1 and by assuming that 1 p + 1 q 1 4 . On the other hand, to prove lower bounds one needs to have a precise estimate of the asymptotic behaviour of the eighth cumulant of QT : in view again of Point 2 of Theorem 4.1, this requires that

1 p + 1 q 1 8 . Theorem 4.2 Assume that f ∈ L p (R) ∩ L 1 (R) (p 1) and that g ∈ L q (R) ∩ L 1 (R) (q 1). Let Φ(z) = P (N z)
, where N ∼ N (0, 1).

1. If 1 p + 1 q 1 4
, there exists C = C(f, g) > 0 such that, for all T > 0, we have

sup z∈R P ( QT z) -Φ(z) C √ T . 2. If 1 p + 1 q 1 8 and +∞ -∞ f 3 (x)g 3 (x)dx = 0,
there exists c = c(f, g) > 0 and T 0 = T 0 (f, g) such that T T 0 implies

sup z∈R P ( QT z) -Φ(z) c √ T .
More precisely, for any z ∈ R, we have

√ T P ( QT z) -Φ(z) -→ T →∞ 2 3 +∞ -∞ f 3 (x)g 3 (x)dx ( +∞ -∞ f 2 (x)g 2 (x)dx) 3/2 1 -z 2 e -z 2 2 . (4.49)
Proof. It is a standard result that each random variable QT can be represented as a double Wiener-It integral with respect to X. It follows that the statement can be proved by means of Proposition 3.8. Now, whenever 1 p + 1 q 1 j , one easily obtains from Points 2 and 3 in Theorem 4.1 that

κ(T ) j ∼ T →∞ T 1-j 2 2 j-1 (j -1)! (2π) 2j-1 (16π 3 ) j 2 +∞ -∞ f j (x)g j (x)dx +∞ -∞ f 2 (x)g 2 (x)dx j 2 , (4.50) 
and the desired conclusion is then obtained by a direct application of Proposition 3.8. In particular, Point 1 in the statement is immediately deduced from the fact that 1 p + 1 = 1 by construction). On the other hand, Point 2 is a consequence of the fact that, if 1 p + 1 q 1 8 , then (4.50) implies that condition (3.46) is met. The exact value of the constant appearing on the RHS of (4.49) is deduced from elementary simplifications. 2

Exploding quadratic functionals of a Brownian sheet

In this section, we apply our results to the study of some quadratic functionals of a standard Brownian sheet on

[0, 1] d (d 1), noted W = {W(t 1 , ..., t d ) : (t 1 , ..., t d ) ∈ [0, 1] d }.
We recall that W is a centered Gaussian process such that, for every (t 1 , ...,

t d ), (u 1 , ..., u d ) ∈ [0, 1] d , E[W(t 1 , ..., t d )W(u 1 , ..., u d )] = i=1,...,d min(u i , t i ),
so that, if d = 1, the process W is indeed a standard Brownian motion on [0, 1]. It is easily proved that, for every d 1, the Gaussian space generated by W can be identified with an isonormal Gaussian process of the type

X = {X(f ) : f ∈ L 2 ([0, 1] d , dλ)},
where dλ indicates the restriction of Lebesgue measure on [0, 1] d . It is also well-known that the trajectories of W enjoy the following remarkable property:

[0,1] d W(t 1 , ..., t d ) t 1 • • • t d 2 dt 1 • • • dt d = +∞, a.s.-P.
(5.51) Relation (5.51) is a consequence of the scaling properties of W and of the well-known Jeulin's Lemma (see [14, Lemma 1, p. 44] or [START_REF] Peccati | On the convergence of multiple random integrals[END_REF]). In the case d = 1, the study of phenomena such as (5.51) arose at the end of the seventies, in connection with the theory of enlargement of filtrations (see [START_REF] Th | Semimartingales et Grossissement d'une Filtration[END_REF][START_REF] Th | Inégalité de Hardy, semi-martingales et faux-amis[END_REF]); see also [START_REF] Th | Une dcomposition non-canonique du drap brownien[END_REF] for some relations with non-canonical representations of Gaussian processes. Now denote, for every ε > 0 ,

B d ε = [ε,1] d W(t 1 , ..., t d ) t 1 • • • t d 2 dt 1 • • • dt d -log 1 ε d ,
and observe that B d ε is a centered random variable with moments of all orders. The CLT stated in the forthcoming Proposition gives some insights into the "rate of explosion around zero" of the random function

(t 1 , ..., t d ) → W(t 1 , ..., t d ) t 1 • • • t d 2 .
Proposition 5.1 For every d 1, as ε → 0,

B d ε := (4 log 1/ε) -d/2 × B d ε

Law

-→ N ∼ N (0, 1).

(5.52) Proposition 5.1 has been established in [START_REF] Peccati | Hardy's inequality in L 2 ([0, 1]) and principal values of Brownian local times[END_REF] (for the case d = 1), [START_REF] Deheuvels | On quadratic functionals of the Brownian sheet and related processes[END_REF] (for the case d = 2) and [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] (for the case d > 2). See [START_REF] Peccati | Hardy's inequality in L 2 ([0, 1]) and principal values of Brownian local times[END_REF][START_REF] Peccati | Four limit theorems for quadratic functionals of Brownian motion and Brownian bridge[END_REF] for an application of the CLT (5.52) (in the case d = 1) to the study of Brownian local times. See [START_REF] Deheuvels | On quadratic functionals of the Brownian sheet and related processes[END_REF] for some applications to conditioned bivariate Gaussian processes and to statistical tests of independence. The next result, which is obtained by means of the techniques developed in this paper, gives an exact description (in terms of the Kolmogorov distance) of the rate of convergence of B d ε towards a Gaussian random variable. 

d Kol [ B d ε , N ] C(d)(log 1/ε) -d/2
and, for

ε < η(d), d Kol [ B d ε , N ] c(d)(log 1/ε) -d/2 .
Proof. We denote by κ j (d, ε), j = 1, 2, ..., the sequence of the cumulants of the random variable B d ε . We deal separately with the cases d = 1 and d 2.

(Case d = 1) In this case, W is a standard Brownian motion on [0, 1], so that B 1 ε takes the form B 1 ε = I 2 (f ε ), where I 2 is the double Wiener-It integral with respect to W, and

f ε (x, y) = (4 log 1/ε) -1/2 [(x ∨ y ∨ ε) -1 -1].
(5.53)

Lengthy (but standard) computations yield the following estimates: as ε → 0

κ 2 (1, ε) -→ 1, κ j (1, ε) ≍ log 1 ε 1-j/2
, j 3. (5.54) By using (3.43), one sees that the following relation holds

(2 j-1 (j -1)!) -1 × κ j (d, ε) = [(2 j-1 (j -1)!) -1 × κ j (1, ε)] d ,
so that the conclusion derives once again from Proposition 3.8. 2

6 Exact asymptotics in the Breuer-Major CLT

Let B be a fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1 2 ), that is, {B x : x 0} is a centered Gaussian process with covariance given by

E(B x B y ) = 1 2 x 2H + y 2H -|x -y| 2H , x, y 0.
It is well-known that, for every choice of the parameter H ∈ (0, 1 2 ), the Gaussian space generated by B can be identified with an isonormal Gaussian process of the type X = {X(h) : h ∈ H}, where the real and separable Hilbert space H is defined as follows: (i) denote by E the set of all R-valued step functions on R + , (ii) define H as the Hilbert space obtained by closing E with respect to the scalar product

1 [0,x] , 1 [0,y] H = E(B x B y ).
Such a construction implies in particular that B x = X(1 [0,x] ). The reader is referred e.g. to [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] for more details on fBm, including crucial connections with fractional operators. We also define ρ(•) to be the covariance function associated with the stationary process x → B x+1 -B x , that is,

ρ(x) := E[(B t+1 -B t )(B t+x+1 -B t+x )] = 1 2 |x + 1| 2H + |x -1| 2H -2|x| 2H , x ∈ R.
Now fix an even integer q 2 and set

Z T := 1 σ(T ) √ T T 0 H q (B u+1 -B u )du, T > 0,
where H q is the qth Hermite polynomial defined in (2.24), and where

σ(T ) := Var 1 √ T T 0 H q (B u+1 -B u )du = q! T [0,T ] 2 ρ q (u -v)dudv.
Observe that each Z T can be represented as a multiple Wiener-It integral of order q, and also that

σ 2 (T ) -→ T →∞ σ 2 (∞) := q! +∞ -∞ ρ q (x)dx < +∞.
According e.g. to the main results in [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF] or [START_REF] Giraitis | CLT and other limit theorems for functionals of Gaussian processes[END_REF], one always has the following CLT

Z T Law ------→ T →∞ Z ∼ N (0, 1)
(which also holds for odd values of q). The forthcoming Theorem 6.1 shows that the techniques of this paper may be used to deduce an exact asymptotic relation (as T → ∞) for the difference P (Z T z) -Φ(z), where Φ(z) = P (N z) (N ∼ N (0, 1)). We stress that the main results of this section deal with the case of a generic Hermite polynomial of even order q 2, implying that our techniques provide explicit results even outside the framework of quadratic functionals, as the ones analyzed in Sections 4 and 5. In what follows, we use the notation Moreover, for any fixed z ∈ R, we have

σ 2 (∞) := q 2 σ 4 (∞) q-1 s=1 (s -1)! 2 q -1 s -1 4 (2q -2s)! (6.55) × R 3 ρ s (x 1 )ρ s (x 2 )ρ q-s (x 3 )ρ q-s (x 2 + x 3 -x 1 )dx 1 dx 2 dx 3 , and 
γ(∞) = - q!( q 2 )! q q/2 2 2 σ 3 (∞) R 2 ρ q 2 (x)ρ q 2 (y)ρ q 2 (x -y)dxdy. ( 6 
√ T P (Z T z) -Φ(z) -→ T →∞ γ(∞) 3 (z 2 -1) e -z 2 /2 √ 2π (6.58)
Proof. The proof is divided into three steps.

Step 1. Let us first prove the following convergence:

√ T 1 q DZ T 2 H -1 Law ------→ T →∞ N 0, σ 2 (∞) , (6.59) 
where σ 2 (∞) is given by (6.55). Note that, once (6.59) is proven to be true, one deduces immediately that, as T → ∞,

Var 1 q DZ T 2 H -1 ∼ σ 2 (∞) T ,
so that (6.57) follows from Theorem 2.4. Now, to prove that (6.59) holds, start by using the well-known relation between Hermite polynomials and multiple integrals to write

H q (B u+1 -B u ) = I q (1 ⊗q [u,u+1] ).
As a consequence, we have

DZ T = q σ(T ) √ T T 0 I q-1 (1 ⊗q-1 [u,u+1] )1 [u,u+1] du.
Thus, by an appropriate use of the multiplication formula (2.14), one has that

DZ T 2 H = q 2 σ 2 (T )T [0,T ] 2 ρ(u -v)I q-1 (1 ⊗q-1 [u,u+1] )I q-1 (1 ⊗q-1 [v,v+1] )dudv = q 2 σ 2 (T )T [0,T ] 2 q-1 r=0 r! q -1 r 2 I 2q-2-2r (1 ⊗q-1-r [u,u+1] ⊗ 1 ⊗q-1-r [v,v+1] )ρ r+1 (u -v)dudv = q 2 σ 2 (T )T q s=1 (s -1)! q -1 s -1 2 [0,T ] 2 I 2q-2s (1 ⊗q-s [u,u+1] ⊗ 1 ⊗q-s [v,v+1] )ρ s (u -v)dudv, yielding 1 q DZ T 2 H -1 = q σ 2 (T )T q-1 s=1 (s -1)! q -1 s -1 2 [0,T ] 2 I 2q-2s (1 ⊗q-s [u,u+1] ⊗ 1 ⊗q-s [v,v+1] )ρ s (u -v)dudv.
We shall first prove that, for every s ∈ {1, . . . , q -1},

1 √ T [0,T ] 2 I 2q-2s 1 ⊗(q-s) [u,u+1] ⊗ 1 ⊗(q-s) [v,v+1] ρ s (u -v)dudv Law ------→ T →∞ N 0, σ 2 s (∞) (6.60) where σ 2 s (∞) := (2q -2s)! R 3
ρ s (x 1 )ρ s (x 2 )ρ q-s (x 3 )ρ q-s (x 2 + x 3x 1 )dx 1 dx 2 dx 3 .

Fix s ∈ {1, . . . , q -1}. Observe first that

σ 2 s (T ) := Var 1 √ T [0,T ] 2 I 2q-2s 1 ⊗(q-s) [u,u+1] ⊗ 1 ⊗(q-s) [v,v+1] ρ s (u -v)dudv = (2q -2s)! T [0,T ] 4 ρ s (u -v)ρ s (w -z)ρ q-s (u -w)ρ q-s (v -z)dudvdwdz -→ T →∞ σ 2 s (∞)
so that (6.60) holds if, and only if, the following convergence takes place:

Q (s) T := 1 σ s (T ) √ T [0,T ] 2 I 2q-2s 1 ⊗(q-s) [u,u+1] ⊗ 1 ⊗(q-s) [v,v+1] ρ s (u -v)dudv Law ------→ T →∞
N (0, 1). (6.61)

We have ρ q-s (u 2u 4 )ρ t-q+s-1 (u 1u 3 ) du 1 . . . du 4 .

DQ (s) T = 2q -2s σ s (T ) √ T [0,T ] 2 ρ s (u -v)I 2q-2s-1 1 ⊗(q-s-1) [u,u+1] ⊗ 1 ⊗(q-s) [v,v+1] 1 [u,u+1] dudv. Thus DQ (s) T 2 H is given by (2q -2s) 2 σ 2 s (T ) T [0,T ] 4 ρ s (u 1 -u 2 )ρ s (u 3 -u 4 )ρ(u 1 -u 3 ) ×I 2q-2s-1 1 ⊗(q-s-1) [u 1 ,u 1 +1] ⊗ 1 ⊗(q-s) [u 2 ,u 2 +1] I 2q-2s-1 1 ⊗(q-s-1) [u 3 ,u 3 +1] ⊗ 1 ⊗(q-s) [u 4 ,u 4 +1] du 1 . . . du 4 = (2q -2s) 2 σ 2 s (T ) T [0,T ] 4 ρ s (u 1 -u 2 )ρ s (u 3 -u 4 )ρ(u 1 -u 3 ) × q-s t=0 t! 2q -2s -1 t 2 I 4q-4s-2-2t 1 ⊗(q-s-1) [u 1 ,u 1 +1] ⊗ 1 ⊗(q-s-1) [u 3 ,u 3 +1] ⊗ 1 ⊗(q-s-t) [u 2 ,u 2 +1] ⊗ 1 ⊗(q-s-t) [u 4 ,u 4 +1] × ρ t (u 2 -u 4 ) du 1 . . . du 4 + (2q -2s) 2 σ 2 s (T ) T [0,T ] 4 ρ s (u 1 -u 2 )ρ s (u 3 -u 4 )ρ(u 1 -u 3 ) ×   2q-2s-1 t=q-s+1 t! 2q -2s -1 t 2 I 4q-4s-2-2t 1 ⊗(2q-2s-1-t) [u 1 ,u 1 +1] ⊗ 1 ⊗(2q-2s-1-t) [u 3 ,u 3 +1] × ρ q-s (u 2 -u 4 )ρ t-q+s (u 1 -u 3 ) du 1 . . . du 4 . Consequently, 1 2q-2s DQ (s) T 2 
H -1 is given by 2q -2s σ 2 s (T ) T [0,T ] 4 ρ s (u 1 -u 2 )ρ s (u 3 -u 4 )ρ(u 1 -u 3 ) q-s+1 t=1 (t -1)! 2q -2s -1 t -1 2 × I 4q-4s-2t 1 ⊗(q-s-1) [u 1 ,u 1 +1] ⊗ 1 ⊗(q-s-1) [u 3 ,u 3 +1] ⊗ 1 ⊗(q-s+1-t) [u 2 ,u 2 
For a fixed t such that 1 t qs + 1, we have that

E 1 T [0,T ] 4 ρ s (u 1 -u 2 )ρ s (u 3 -u 4 )ρ(u 1 -u 3 )ρ t+1 (u 2 -u 4 )
×I 4q-4s-2t 1

⊗(q-s-1)

[u 1 ,u 1 +1] ⊗ 1 ⊗(q-s-1) ρ s (u 1u 2 )ρ s (u 3u 4 )ρ(u 1u 3 )ρ t (u 2u 4 )ρ s (u 5u 6 )ρ s (u 7u 8 ) × ×ρ(u 5u 7 )ρ t (u 6u 8 )ρ q-s-1 (u 1u 5 )ρ q-s-1 (u 3u 7 ) × ×ρ q-s+1-t (u 2u 6 )ρ q-s+1-t (u 4u 8 )du 1 . . . du 8

[u 3 ,u 3 +1] ⊗ 1 ⊗(q-s+1-t) [u 2 ,u 2 +1] ⊗ 1 ⊗(q-s+1-t) [u 4 ,u 4 +1]

∼

T →∞ 1 T R 7 ρ s (x 1 )ρ s (x 2 )ρ(x 3 )ρ t (x 2 + x 3x 1 )ρ s (x 4 )ρ s (x 5 )ρ(x 6 )ρ t (x 5 + x 6x 4 )ρ q-s-1 (x 7 ) ×ρ q-s-1 (x 6 + x 7x 3 )ρ q-s+1-t (x 4 + x 7x 1 ) × ×ρ q-s+1-t (x 5 + x 6 + x 7x 2x 3 )dx 1 . . . dx 7 tends to zero as T → ∞. Similarly, we can prove, for a fixed t such that qs + 2 t 2q -2s -1, that E 1 T [0,T ] 4 ρ s (u 1u 2 )ρ s (u 3u 4 )ρ t-q+s (u 1u 3 )ρ q-s (u 2u 4 ) ×I 4q-4s-2t 1 tends to zero as T → ∞. Thanks to the main result in [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF], the last relation implies that, for each s, the converge (6.61) holds, and therefore (6.60) is verified. Finally, by combining (6.60) with the results in [START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF] and [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF], we obtain (6.59). Indeed, by using the orthogonality and isometric properties of multiple stochastic integrals, we can write

Var √ T 1 q DZ T 2 H -1 = q 2 σ 4 (T )T q-1 s=1 (s -1)! 2 q -1 s -1 4 (2q -2s)! [0,T ] 2 1 ⊗(q-s) [u,u+1] ⊗ 1 ⊗(q-s) [v,v+1] ρ s (u -v)dudv, [0,T ] 2 1 
⊗(q-s)

[w,w+1] ⊗ 1 ⊗(q-s)

[z,z+1] ρ s (wz)dwdz

H ⊗(2q-2s) = q 2 σ 4 (T )T q-1 s=1 (s -1)! 2 q -1 s -1 4 (2q -2s)! × [0,T ] 4
ρ s (uv)ρ s (wz)ρ q-s (uw)ρ q-s (vz)dudvdwdz.

from which we easily deduce that Var √ T 1 q DZ T 2

H -1 -→ T →∞ σ 2 (∞).
Step 2. Let us prove the following convergence:

Z T , √ T 1 q DZ T 2 H -1 Law ------→ T →∞
(U, V ) (6.62) with (U, V ) a centered Gaussian vector such that E(U 2 ) = 1,

E(V 2 ) = σ 2 (∞) and E(U V ) = -γ(∞) = q!( q 2 )! q q/2 2 2 σ 3 (∞) R 2 ρ q 2 (x)ρ q 2 (y)ρ q 2 (x -y)dxdy,
Observe that we already know that Z T Law → U and also that (6.59) is verified. Note also that we have proved (6.59) by first decomposing √ T q -1 DZ T

2

H -1 into a finite sum of multiple integrals, and then by showing that each multiple integral satisfies an appropriate CLT. As a consequence, according to Part B of Theorem 2.6 (with G n replaced by √ T q -1 DZ T 2 H -1 ) it is sufficient to show the following convergence:

E Z T × √ T 1 q DZ T 2 H -1 -→ T →∞ q!( q 2 )! q q/2 2 2 σ 3 (∞) R 2 ρ q 2 (x)ρ q 2 ( 
y)ρ q 2 (xy)dxdy. (6.63)

By the orthogonality of multiple stochastic integrals, we can write

E Z T × √ T 1 q DZ T 2 H -1 = q σ 3 (T )T q 2 -1 ! q -1 q 2 -1 2 × [0,T ] 3 ρ q 2 (u -v) E I q 1 ⊗q [w,w+1] I q 1 ⊗ q 2 [u,u+1] ⊗ 1 ⊗ q 2 [v,v+1] dudvdw = q q! σ 3 (T )T q 2 -1 ! q -1 q 2 -1 2 [0,T ] 3 ρ q 2 (u -v)ρ q 2 (u -w)ρ q 2 (w -v)dudvdw → T →∞ q q! σ 3 (∞) q 2 -1 ! q -1 q 2 -1 2 R 2 ρ q 2 (x)ρ q 2 (y)ρ q 2 (x -y)dxdy = q!( q 2 )! q q/2 2 2 σ 3 (∞) R 2 ρ q 2 (x)ρ q 2 ( 
y)ρ q 2 (xy)dxdy.

Step 3.

Step 1 and convergence (6.62) imply that, as T → ∞,

ϕ(T ) ∼ σ(∞) √ T ,
where ϕ(T ) = Var 1q -1 DZ T 

27 )

 27 Now denote by f z the solution to the Stein equation(1.5) given in formulae (2.20)-(2.21).

and the conclusion follows from Theorem 3.1. 2 Remark 3 . 5

 235 By inspection of the proof of Proposition 3.3, one sees that Assumption (b) in the statement may be as well replaced by the following weaker condition: (b ′ ) the sequence

Proposition 5 . 2

 52 For every d 1, there exist constants 0 < c(d) < C(d) < +∞ and 0 < η(d) < 1, depending uniquely on d, such that, for every ε > 0,

The conclusion now follows from Proposition 3. 8 . (Case d 2 )

 82 In this case, B d ε has the form B d ε = I 2 (f d ε ), with f d ε (x 1 , ..., x d ; y 1 , ..., y d ) = (4 log 1/ε) -d/2 d j=1 [(x j ∨ y j ∨ ε) -1 -1].

.56) Theorem 6 . 1

 61 There exists a constant C > 0 such that d Kol (Z T , N ) = sup z∈R |P (Z T z) -Φ(z)|

+1] ⊗ 1 ⊗ 4 + 2q -2s σ 2 s 2 × 1 ⊗

 14221 (q-s+1-t) [u 4 ,u 4 +1] ρ t+1 (u 2u 4 ) du 1 . . . du (T ) T [0,T ] 4 ρ s (u 1u 2 )ρ s (u 3u 4 )ρ(u 1u 3 ) I 4q-4s-2t 1 ⊗(2q-2s-t) [u 1 ,u 1 +1] ⊗ (2q-2s-t) [u 3 ,u 3 +1]

du 1 .

 1 

2 H - 1

 21 σ(∞) -1 V ).As a consequence, one can apply Theorem 3.1 in the case ρ = b γ(∞) b σ(∞) (the remaining assumptions are easily verified), yielding thatϕ(T ) -1 P (Z T z) -Φ(z) -→ T →∞ γ(∞) 3 σ(∞) (z 2 -1) e -z 2 /2 √ 2π ,from which the conclusion follows. 2

  1 , . . . , F n ) has a density with respect to the Lebesgue measure on R n (see e.g. Proposition 1.2.3 in[START_REF] Nualart | The Malliavin calculus and related topics[END_REF]). We denote by δ the adjoint of the operator D, also called the divergence operator. A random element u ∈ L 2 (Ω, H) belongs to the domain of δ, noted Domδ, if, and only if, it verifies |E DF, u H

  then condition (3.45) becomes immaterial, and the denominators appearing in formula (3.46) involve uniquely κ

	(n) 4 .
	2. By combining (3.46) with (3.47), we have that, as n → ∞,

Acknowledgement. We are grateful to D. Marinucci for discussions about Edgeworth expansions. Remercier le rapporteur, "especially for" pour nous avoir permis de supprimer l'hypothese que la loi de Z a une densite dans le theoreme 2.4