
HAL Id: hal-00260577
https://hal.science/hal-00260577

Submitted on 4 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Event-B Specification of a Situated Multi-Agent System:
Study of a Platoon of Vehicles

Arnaud Lanoix

To cite this version:
Arnaud Lanoix. Event-B Specification of a Situated Multi-Agent System: Study of a Platoon of
Vehicles. 2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software Engineering
(TASE 2008), Jun 2008, France. 8 p. �hal-00260577�

https://hal.science/hal-00260577
https://hal.archives-ouvertes.fr

Event-B Specification of a Situated Multi-Agent System:

Study of a Platoon of Vehicles∗

Arnaud Lanoix

LORIA, DEDALE Team – Campus scientifique

F-54506 Vandoeuvre-Lès-Nancy, France

arnaud.lanoix@loria.fr

Abstract

Situated Multi-Agents Systems (MAS), and other Agent-

based systems, are often complex. Formal reasoning is

needed to ensuring their correctness and structuring their

development. Event-B is a formal method with tool support

allowing a stepwise development of reactive distributed sys-

tems. MAS being a subclass of such systems, we propose

using Event-B to helpful their specification and their safe

development. In this article, we mainly report our expe-

rience with the Even-B stepwise development of a situated

MAS which study the displacement of vehicles in a convoy.

This article aims also at serving as a guide for the devel-

opment of other MAS, taking agents-specific features into

account.

1. Introduction

Multi-Agent Systems (MAS) are widely used for devel-

oping applications in the field of transportation, medical

technologies or space exploration. The difficulty of design-

ing and studying situated MAS comes from the autonomy

of the agents and their interactions within a common en-

vironment. Agents are software entities that encapsulate

their behaviour and can change, both pro-actively and re-

actively, their environment. These systems are highly dis-

tributed, where agents evolve in parallel, and more gen-

erally work in a dynamic environment. Individually, the

agents may be very complex. Due to the contexts these sys-

tems are used in, i.e. critical contexts, the problem of en-

suring their safety arises. The development of correct/safe

situated MAS is difficult with traditional software develop-

ment methods. Hence, formal methods are needed in order

∗This work has been partially supported by the ANR (National Re-

search Agency) in the context of the ANR-06-SETI-017 TACOS project,

and by the pôle de compétitivité Alsace/Franche-comté in the context of

the CRISTAL project.

to ensure their correctness and structure their development

from specification to implementation.

The B method [1] is a formal method provided with good

tool support, but originally developed to model and reason

about sequential programs. Event-B [2] is an evolution of

the B method that is more suitable for developing large re-

active and distributed systems. Software development in

Event-B begins by abstractly specifying the requirements

of the whole system and then refining them through several

steps to reach a concrete description of the system which

can be translated to code. Consistency of each model and

each relationship between an abstract model and its refine-

ments is obtained by proving it. Recently, tool support has

been provided for Event-B specification and proof in the

Rodin platform.

We are interested in the so-called platooning problem

presented in Sect. 2, where the goal is to have several ve-

hicles travelling in a convoy by defining simple rules for

each of them. Moving in a convoy is thus their emergent

behaviour. In a previous work, we have developed classi-

cal B models for this problem [13]. In this paper,we focus

on an Event-B specification of the platooning problem and

its application on the Rodin platform. The goal of this re-

search is to demonstrate the use of formal development in

the context of MAS oriented software. Section 3 presents

Event-B. Next, we describe the Event-B model of the pla-

tooning problem we have realised in Sect. 4: we focus on

the different steps of refinement necessary for establishing

the whole model of the platoon. We also study the valida-

tion of the model by presenting the difficulties automatic

prover had with some proof obligations and explaining how

they were manually discharged. From this case study, we

thus extract some generic guidelines for specifying situated

MAS with Event-B, presented in Sect. 5. Section 6 presents

some related works and Section 7 concludes this paper by

giving some perspectives.

2. A Platoon of Vehicles

The CRISTAL project involves the development of a new

type of urban vehicle with new functionalities and services.

One of the major cornerstones of Cristal is the platooning

problem.

A platoon is defined as a set of autonomous vehicles

which have to move in a convoy, i.e. following the path

of the leader (possibly driven by a human being) in a row

(or a platoon). The control of a platoon involves the lon-

gitudinal control of the vehicles, i.e. maintaining a certain

ideal distance between each other, and their lateral control,

i.e. each vehicle should follow the track of its predecessor.

Those controls can be studied independently [4]; we will

only focus on the longitudinal control.

Through projects’ collaboration with researchers of the

MAIA team, we consider each vehicle as an agent. A ve-

hicle’s controller perceives informations about its environ-

ment before producing an instantaneous acceleration passed

to the engine. In this context, the platooning problem can be

considered as a situated multi-agent system (MAS) which

evolves following a the Influence/Reaction model. This

classical MAS model, proposed by Ferber & Muller [8, 7],

organises the dynamics of situated MAS by synchronising

the various evolution steps: (i) all the agents perceptions

are done, (ii) all influences are decided, and (iii) the envi-

ronment reacts by combining all the influences.

Figure 1. A platoon of vehicles

As we focus on the longitudinal control, the considered

space is one-dimensional. Hence the position of the ith ve-

hicle is represented by a single variable xposi, its velocity

by speedi. The behaviour of the vehicle’s controllers can be

summarised as follows, see Fig. 1:

(i) perception step: each vehicle’s controller uses sen-

sors for estimating its velocity p_speedi, the dis-

tance p_disti to its leading vehicle and the velocity

p_pre_speedi of its leading vehicle. The sensors are

supposed to be perfect. Of course, the leader does not

need the last two pieces of information as it has no

preceding vehicle:

p_speed′
i = speedi

p_dist ′i = xposi−1 − xposi

p_pre_speed′
i = speedi−1

}
if i > 1

(ii) decision step: each vehicle’s controller can influence

its speed by computing and passing to the engine an

instantaneous acceleration acceli. The acceleration

can be negative, corresponding to the braking of the

vehicle. acceli is defined according to the sensor val-

ues using mathematical laws, but which cannot be

given here for confidentiality reasons.

(iii) reaction step: xposi and speedi are updated, depend-

ing on the current speed speedi of the vehicle and a de-

cided instantaneous acceleration acceli passed to the

engine.

new_speed = speedi +acceli

xpos′i =

(
xposi +Max_Speed

− (Max_Speed−speedi)
2

2.acceli

)

speed′
i = Max_Speed





if




new_speed

>

Max_speed





xpos′i = xposi −
speed2

i
2.acceli

speed′
i = 0

}
if new_speed < 0

xpos′i = xposi + speedi +
acceli

2
speed′

i = new_speed

}
otherwise

These mathematical laws assume that the actuators of

the engine are perfect. Three cases are distinguished,

depending on the considered new speed.

Note. Our goal is to develop a formal framework in or-

der to implement these laws and prove properties of the ob-

tained model. The properties we are looking forward to in

this model are among the following: (i) the model is sound

bound-wise, i.e. none of the specified bounds are violated,

(ii) no collision occurs between the vehicles, (iii) no un-

hooking occurs, i.e. the distance between vehicles cannot

be infinitely long and (iv) no oscillation occurs, i.e. a phe-

nomenon of a wave propagates from ahead of the platoon to

its back, without never stabilising.

We focus on the soundness of the model and the absence

of collision in the remainder of this document, but the reader

must be aware that it is still an ongoing work.

3. Event-B

In order to be able to specify and verify correct situated

MAS and other agent-based systems, we need to reason

about these systems in a formal manner. Reasoning should

be facilitated by adequate tool support. Event-B [2] is a for-

mal language for modelling and reasoning about systems.

It is an evolution of the classical B [1] for developing reac-

tive and distributed systems. Event-B is provided with tool

support currently in the form of a platform for specification

and proof called Rodin1.

1http://rodin-b-sharp.sourceforge.net

Abstract Specifications An Event-B abstract specifica-

tion of a system is encapsulated into a MODEL clause

identified by an unique name. To each variable x in the

VARIABLES clause is associated a domain of values. The

data invariant I (x) in the INVARIANT clause defines the state

space of the variables and their safety properties.

Each event in the EVENTS clause is a substitution

statement. The semantic of these substitution statements

are given by the weakest precondition calculus devel-

oped by Dijkstra [5]. Notice that a specific event called

initialisation appears into each Event-B model. The state

variables are initialised into this event. An event consists of

a guard and a body. When the guard of an event is evalu-

ated to true, the event can be enabled. When the guards of

several events are true, the choice of the triggered event is

non-deterministic.

In addition to Event-B models, a CONTEXT can be de-

fined to specify static data of sets, constants and their ax-

ioms. A model SEES at least one context.

Proof obligations (POs) are generated to ensure the con-

sistency of the model, i.e. the preservation of the invariant

by the events.

Refinement A refinement process is used to progress to-

wards implementation. An abstract model is transformed

into a more concrete and elaborate model. A refined

model specifies the abstract model it refines into a REFINES

clause. New variables can be introduced and the old vari-

ables can be refined to more concrete ones. This is reflected

in the substitutions of the events as well.

New events may also be introduced. These new events

should not prevent forever the events already present from

being triggered. A VARIANT, which is a natural number ex-

pression that the new events must decrease, is introduced for

ensuring it. Furthermore, we can also merge several abstract

events into one single event, as well as refine one abstract

event by several events, as is permitted by an event-level

REFINES clause. An event-level WITH clause expresses the

link between the parameters of an abstract event, removed

in the refined event, and their concretisation.

POs ensure that the refined model is consistent, i.e. its

INVARIANT is preserved and that the VARIANT is decreased

by the new events. Furthermore, they ensure that the refine-

ment is correct, i.e. the refined events do not contradict their

abstract counterpart. The abstract INVARIANT is also shown

to be preserved.

Decomposition The approach of decomposition in Event-

B is the inverse of the usual compositional approach in soft-

ware design and programming. It allows the splitting of an

Event-B model into smaller components for managing the

increasing complexity of the design. Correspondingly, each

proof task should be smaller, thus provable more automati-

cally.

The variables of the initial model are divided into exter-

nal and internal variables: the local variables are variables

which concern only one component whereas external vari-

ables represent shared variables which can be modified by

all the components; they are replicated in all the decom-

posed models.

The events referring only the local variables of one com-

ponent only appear in the relevant component. The oth-

ers which refer local and external variables appear in the

component which reference the local variables. In addition,

extra external events simulating their corresponding events

using external variables only, must appear in the other com-

ponents.

4. Event-B Specification of a Platoon

Figure 2 gives the various components of the Event-B

specification of the platooning problem. The development

is done following a stepwise refinement based on the I/R

model. The I/R steps are gradually introduced:

1. platoon: it represents an overview of the platooning

problem. The movement of the vehicles, correspond-

ing to the reaction step, is globally viewed.

The safety requirement of no-collision is expressed so

far.

2. platoon_1: the global movement is split into each ve-

hicle.

3. platoon_2: the speed of each vehicle is introduced.

The movement of each vehicle is now defined as the

application to the current speed of an acceleration

passed to the engine (reaction laws).

4. platoon_3: the acceleration of each vehicle is now de-

cided before the vehicles move. That corresponds to

the specification of the decision step.

5. platoon_4: the controllers perceive (perception step),

before they decide for an acceleration by applying the

decision laws.

Furthermore, a context is required for defining the global

constants and axioms of the case study. It is seen by all the

other models.

The following sections detail the refinement steps, their

Event-B specifications and their verification using Rodin.

4.1. Introducing the Reaction Step and Pre-
venting Collisions: platoon

The Event-B model platoon represents the first specifi-

cation of the platooning problem. Only the longitudinal po-

Figure 2. Even-B models of platooning

sitions of each vehicle are viewed. All the vehicles move

in a simultaneous movement. We focus on the major safety

property of the system: no collision must occur between a

vehicle and its predecessor.

Event-B specification The positions are expressed by

a functional variable xpos0 ∈ 1..VEHICLES → NAT which

links together the index of a vehicle and its longitudinal po-

sition. The leader vehicle is indexed by 1. The no-collision

property is expressed by the invariant:

∀ v .(v ∈ 2..VEHICLES

⇒ (xpos0(v−1) − xpos0(v)) > CRITICAL_DISTANCE)

A single event all_moves models the simultaneous move-

ment of all the vehicles. New positions for the vehicles are

“magically” chosen with respect to the safety property and

are affected to the previous positions:

all_moves =̂
ANY magic_xpos WHERE

magic_xpos ∈ 1..VEHICLES → N ∧
∀v. (v ∈ 2..VEHICLES ⇒
(magic_xpos(v−1) − magic_xpos(v)) > CRITICAL_DISTANCE)

THEN

xpos0 := magic_xpos

END

Total Automatic Manual Reviewed Unproved

platoon 6 5 83% 1 0 0

Verification by proof Rodin generates the necessary POs

for validating the preservation of the invariant by the model.

All the POs are discharged automatically by the prover. The

only manual PO involves the initialisation of the position of

each vehicle:

initial_xpos (v−1) − initial_xpos(v) > CRITICAL_DISTANCE

This proof has been done with Rodin as follows:

The hypothesis ∀v.(v ∈ 1..VEHICLES ⇒ initial_xpos(v)

= (VEHICLES−v)∗IDEAL_DISTANCE) is instantiated with

v: initial_xpos (v) = (VEHICLES−v)∗IDEAL_DISTANCE

It is also instantiated with v−1: initial_xpos (v−1) =

(VEHICLES−v+1)∗IDEAL_DISTANCE

We substitute the previous results into the

goal, and simplify the formula that becomes

IDEAL_DISTANCE > CRITICAL_DISTANCE: the prover

shows the goal is verified.

4.2. Splitting the Reaction Step: platoon_1

The simultaneous movement of all the vehicles is de-

composed, i.e. the movement of each vehicle is viewed one

after the other, starting from the leader.

Event-B specification In order to identify the cur-

rent vehicle which has to move, a variable vehicle ∈
1..VEHICLES+1 is introduced. Another new variable

xpos ∈ 1..VEHICLES → NAT is introduced for modelling

the position of each vehicle during the movement. The

safety property has to be strengthened: now, we ensure that

after each single movement, no collision has occured up to

the vehicle which has to move:

∀ v .(v ∈ 2..vehicle−1 ⇒ (xpos(v−1) − xpos(v)) > CRITICAL_DISTANCE)

Note that this safety property implies the previous one when

vehicle=VEHICLES+1.

Because the leader vehicle has a specific behaviour, two

new events are introduced for modelling the single move-

ment of a vehicle:

• move1 models the movement of the leader vehicle. A

new position magic_xpos_vehicle is chosen with the

only constraint that the vehicle moves forward.

• move models the movement of each following

vehicle, one after the other. A new position

magic_xpos_vehicle is chosen such that the vehicle

moves without colliding into its preceding vehicle.

Moreover, it must move forward: the new chosen po-

sition is greater than the previous one.

move =̂
ANY magic_xpos_vehicle WHERE

vehicle ∈ 2..VEHICLES ∧
magic_xpos_vehicle ∈ N ∧
magic_xpos_vehicle ≥ xpos(vehicle) ∧
xpos(vehicle−1) − magic_xpos_vehicle > CRITICAL_DISTANCE

THEN

vehicle := vehicle+1 ‖ xpos(vehicle) := magic_xpos_vehicle

END

We must express a variant to ensure that these new events

do not take the control for ever. Because vehicle is increased

after each move, the variant we consider is:

(VEHICLES+1) − vehicle

When vehicle=VEHICLES+1, all the movements are

done. We refine the abstract event all_moves by choosing

the new variable xpos as a correct value (a witness) of the

previous parameter magic_xpos.

all_moves =̂
REFINES all_moves

WHEN

vehicle = VEHICLES + 1

WITH magic_xpos = xpos

THEN

xpos0 := xpos ‖ vehicle := 1

END

Total Automatic Manual Reviewed Unproved

platoon_1 22 19 86% 3 0 0

Verification by proof Among the manual proofs that re-

main to do after discharging the POs, one is most interest-

ing: we have to show that the invariant of no-collision is

preserved when a vehicle moves, i.e. a new position is cho-

sen.

(xpos⊳−{vehicle 7→ magic_xpos_vehicle})(v − 1)

− (xpos⊳−{vehicle 7→ magic_xpos_vehicle})(v)>CRITICAL_DISTANCE

We have the following hypotheses:

v ∈ 2..vehicle

∧ ∀ v . (v∈2..(vehicle−1) ⇒ xpos(v−1) − xpos(v) > CRITICAL_DISTANCE)

∧ xpos(vehicle−1) − magic_xpos_vehicle > CRITICAL_DISTANCE

Into Rodin, we separate the case of the updated vehicle from

the other vehicles by rewriting the operator ⊳− to obtain:

(({ vehicle} ⊳− xpos) U {vehicle 7→ magic_xpos_vehicle})(v−1)

− (({vehicle} ⊳− xpos) U {vehicle 7→ magic_xpos_vehicle})(v)

> CRITICAL_DISTANCE

We add a new sub-goal v ∈ 2..(vehicle−1) ∨ v=vehicle and

run a proof by cases.

1. v ∈ 2..(vehicle−1)

Hypothesis (b) is instantiated with v:

xpos(v−1) − xpos(v) > CRITICAL_DISTANCE

We add some new sub-goals, until we re-obtain the

goal:

• xpos(v−1)=({vehicle} ⊳− xpos)(v−1),

• xpos(v)=({vehicle} ⊳− xpos)(v),

• xpos(v−1)=(({vehicle} ⊳− xpos)

U {vehicle 7→ magic_xpos_vehicle})(v−1),

• xpos(v)=(({vehicle} ⊳− xpos)

U {vehicle 7→ magic_xpos_vehicle})(v),

2. v=vehicle

By simplification rewriting, the goal becomes:

(({ vehicle} ⊳− xpos) U {vehicle 7→ magic_xpos_vehicle})

(vehicle−1) − magic_xpos_vehicle >

CRITICAL_DISTANCE

We add some new sub-goals:

• xpos(vehicle−1)=({vehicle} ⊳− xpos)(vehicle−1),

• xpos(vehicle−1)=(({vehicle} ⊳− xpos)

U {vehicle 7→ magic_xpos_vehicle})(vehicle−1).

All the introduced sub-goals are proved into Rodin,

hence this PO is verified. The other manual POs are also

verified and we are confident that

• platoon_1 is consistent, i.e. its invariant is preserved,

• platoon_1 is a correct refinement of platoon, i.e. the

no-collision property verified by platoon is preserved

by platoon_1, and

• the new events introduced into platoon_1 do not take

the control forever.

Remark Notice that a lot of manual POs follow the same

scheme of proof: (i) rewrite of the operator ⊳− and (ii) proof

by cases on v ∈ 2..(vehicle−1) ∨ v=vehicle.

4.3. Implementing the Reaction Laws:
platoon_2

The movement of each vehicle is now defined as a reac-

tion to an instantaneous acceleration passed to the engine.

The speed of the vehicle must now be considered in order

to apply the acceleration and compute the new position.

Event-B specification To model the instantaneous

speed of each vehicle, a variable speed ∈ 1..VEHICLES

→ 0..MAX_SPEED is introduced. The events move1 and

move are refined by considering an acceleration parameter

magic_accel and computing the new speed nspeed and

position nxpos resulting from the application of this

acceleration. These reaction laws are given in Sect. 2. As

three cases have to be distinguished depending on the new

computing speed, the event move is refined as follows:

1. move_normal: the vehicle travels within the acceptable

speed limits (nspeed ∈ 0..MAX_SPEED);

2. move_max: the vehicle violates the maximum possi-

ble/allowed speed (nspeed > MAX_SPEED);

move_max =̂
REFINES move

ANY magic_accel, nxpos WHERE

vehicle ∈ 2..VEHICLES ∧
magic_accel ∈ MIN_ACCEL..MAX_ACCEL ∧
speed(vehicle) + magic_accel > MAX_SPEED ∧
nxpos = xpos(vehicle) + MAX_SPEED − ((MAX_SPEED − speed(vehicle))

× (MAX_SPEED − speed(vehicle))) / (2 × magic_accel) ∧
xpos(vehicle−1) − nxpos > CRITICAL_DISTANCE

WITH magic_xpos_vehicle = nxpos

THEN

vehicle := vehicle+1 ‖ xpos(vehicle) := nxpos ‖
speed(vehicle) := MAX_SPEED

END

3. move_reduce: the vehicle goes backwards

(nspeed < 0).

The same refinement occurs for event move1. All

these events take the new computed position nxpos

as a correct value of the previous abstract parameter

magic_xpos_vehicle.

Total Automatic Manual Reviewed Unproved

platoon_2 43 27 63% 12 4 0

Verification by proof We mainly have to prove the con-

sistency of the computation of the new position when ap-

plying the acceleration. All these POs are difficult to handle

for the prover, due to arithmetics, in particular with the divi-

sion operator, and the rewriting of (in)equalities that guide

the proof.

• Four POs have to be proved to ensure the soundness

of the computation of the new position, in the normal

case:

xpos(vehicle) + speed(vehicle) + magic_accel/2 ∈ N

We have speed(vehicle) + magic_accel ≥ 0.

The proof is done by adding and proving successively

these “necessary” sub-goals into Rodin:

– magic_accel ≥ −speed(vehicle)

– magic_accel ≥ −speed(vehicle) × 2

– magic_accel/2 ≥ (−speed(vehicle) × 2)/2

– speed(vehicle)+magic_accel/2 ≥ 0

– xpos(vehicle) ≥ 0

– xpos(vehicle)+speed(vehicle)+magic_accel/2 ≥ 0

The other POs can be done easily just by cutting and

pasting the previous proof tree.

• Four POs have to be proved for ensuring that the new

position is consistent when the vehicle attempts to go

backwards. These POs are discharged by decomposing

the goal into some sub-goals before proving them with

Rodin as previously.

• Four POs have to be proved for ensuring the soundness

of the new position when the vehicle violates the max-

imum possible speed. This PO cannot be discharged

with Rodin, but can be done by pen and paper, since

Rodin is unable to prove a rewriting of the goal.

As all the POs are verified, then we can conclude that

the computations are consistent and that platoon_2 refines

platoon_1 and the no-collision property is preserved.

4.4. Introducing the Decision Step: platoon_3

In the previous model, instantaneous accelerations are

passed to the engine to move the vehicles. In this refinement

step, we introduce the vehicle’s controllers that decide of

the accelerations.

Event-B specification A variable accel ∈ 1..VEHICLES

→ MIN_ACCEL..MAX_ACCEL is introduced to save the de-

cided acceleration until the movement happens. Another

new variable d_vehicle ∈ 1..VEHICLES+1 has to be intro-

duced for identifying the current vehicle’s controller which

has to decide for an acceleration.

Two new events decide1 and decide are introduced for

modelling the decision step. A correct acceleration is cho-

sen magically and saved into accel. The event decide1 is

enabled only once, when d_vehicle=1. decide is enabled

until d_vehicle=VEHICLES+1.

decide =̂
ANY magic_accel WHERE

vehicle = 1 ∧
d_vehicle ∈ 2..VEHICLES ∧
magic_accel ∈ MIN_ACCEL..MAX_ACCEL

THEN

d_vehicle := d_vehicle + 1 ‖ accel(d_vehicle) := magic_accel

END

As new events are introduced, a variant must be defined

to prove that these new events do not take control for ever.

The variable d_vehicle is increased by each new events, then

a correct variant can be

(VEHICLES+1) − d_vehicle

The guard of the old events are strengthened by

d_vehicle=VEHICLES+1 to ensure that all the controller’s

decisions are taken before the vehicles move. The events

corresponding to move are refined by taking into account

the decided accel instead of magic_accel.

move_max =̂
REFINES move_max

ANY nxpos WHERE

vehicle ∈ 2..VEHICLES ∧
speed(vehicle) + accel(vehicle) > MAX_SPEED ∧
nxpos = xpos(vehicle) + MAX_SPEED − ((MAX_SPEED − speed(vehicle))

× (MAX_SPEED − speed(vehicle))) / (2 × accel(vehicle) ∧
xpos(vehicle−1) − nxpos > CRITICAL_DISTANCE ∧
d_vehicle = VEHICLES + 1

WITH magic_accel = accel(vehicle)

THEN

vehicle := vehicle+1 ‖ xpos(vehicle) := nxpos ‖ speed(vehicle) := MAX_SPEED

END

Total Automatic Manual Reviewed Unproved

platoon_3 62 56 90% 6 0 0

Corrections guided by the proof Often, unproved POs

indicate failures or mistakes into the model. The next PO

has been generated:

xpos(d_vehicle−1) − (xpos(d_vehicle) + speed(d_vehicle) + magic_accel/2) >

CRITICAL_DISTANCE

We are unable to discharge this PO. It shows that we for-

got into the event decide a precondition linking magic_accel

and CRITICAL_DISTANCE. By adding the correct precon-

dition, the PO becomes automatically proved.

Verification by proof Rodin generates a lot of POs to val-

idate the preservation of the invariant and the refinement.

The majority of them is discharged automatically by the

prover, only six are to be proved interactively. One of them

concerns the preservation of the no-collision property by the

decision:

xpos(v−1) − (xpos(v) + speed(v) + (accel⊳−{d_vehicle 7→ magic_accel})(v) / 2) >

CRITICAL_DISTANCE

This PO is discharged following the same reasoning as in

Subsect. 4.2, by rewriting the operator ⊳− and making a

proof by case on v ∈ 2..(d_vehicle−1) ∨ v=d_vehicle.

4.5. Introducing the Perception Step and
Implementing the Decision Laws:
platoon_4

In this step, we model the perceptions that the vehicle’s

controllers have on their environment, i.e. the controlled

vehicle and the leading one. The decision laws can then be

derived from the perceptions.

Event-B specification The perceptions of a controller

about its environment are:

• its velocity p_speed ∈ 1..VEHICLES → 0..MAX_SPEED,

• the distance p_dist ∈ 2..VEHICLES → Z to its leading

vehicle, and

• the velocity p_pre_speed ∈ 2..VEHICLES → 0..MAX_

SPEED of its leading vehicle.

A variable p_vehicle ∈ 1..VEHICLES+1 has been intro-

duced for identifying the current vehicle’s controller that

has to be perceived. To ensure that all the perceptions are

done before deciding and moving, we strengthen the guard

of the old events by p_vehicle = VEHICLES + 1.

Two new events perceive1 and perceive are introduced

for modelling the perception step. The leader vehicle has

no predecessor, so it is a specific case.

perceive =̂
WHEN

vehicle = 1 ∧
d_vehicle = 1 ∧
p_vehicle ∈ 2..VEHICLES ∧

THEN

p_vehicle := p_vehicle + 1 ‖ p_speed(p_vehicle) := speed(p_vehicle) ‖
p_dist(p_vehicle) := xpos(p_vehicle−1) − xpos(p_vehicle) ‖
p_pre_speed(p_vehicle) := speed(p_vehicle−1)

END

As aforementioned, a variant has to be defined. p_vehicle is

used to know which vehicle has to perceive, then a variant

can be

(VEHICLES+1) − p_vehicle

The decision of the acceleration is computed from the

perceptions. The events decide1 and decide are refined by

seven events implementing the decision laws and depending

on whether

• the vehicle is the leader or not,

• the perceived distance is less than an alert distance

value,

• the decided acceleration is between MIN_ACCEL and

MAX_ACCEL, or not.

decide_min =̂
REFINES decide

ANY naccel WHERE

vehicle = 1 ∧
d_vehicle ∈ 2..VEHICLES ∧
p_vehicle = VEHICLES+1 ∧
p_dist(d_vehicle) ≥ ALERT_DISTANCE ∧
naccel = 2 × (p_dist(d_vehicle) − IDEAL_DISTANCE

+ p_pre_speed(d_vehicle) − p_speed(d_vehicle)) ∧
naccel < MIN_ACCEL

WITH magic_accel = MIN_ACCEL

THEN

d_vehicle := d_vehicle+1 ‖ accel(d_vehicle) := MIN_ACCEL

END

Total Automatic Manual Reviewed Unproved

platoon_4 80 70 87% 6 3 1

Corrections guided by the proof An unproved PO indi-

cates a mistake into the model. First the perceived distance

p_dist was defined as a function from 2..VEHICLES to N.

A PO was generated about the consistency of p_dist.

p_dist ⊳− {p_vehicle 7→ xpos(p_vehicle − 1) − xpos(p_vehicle)} ∈
2 .. VEHICLES → N

Rodin is unable to prove that xpos(p_vehicle−1)

− xpos(p_vehicle) ≥ 0. We have no hypothesis that

can help the proof, then the PO indicates a mistake. When

changing the type of p_dist to Z, the corresponding PO

becomes automatically discharged.

Verification by proof Most of the POs are automat-

ically discharged by the prover, save for only 10 un-

proved POs. 6 of them can be proved manually by

rewriting the ⊳− operator and doing a proof by case

on v∈2..(p_vehicle−1) ∨ v=p_vehicle as explained in Sub-

sect. 4.2.

Three POs involve the correctness of the decision for an

acceleration in the normal case (i.e. the perceived distance

is more than ALERT_DISTANCE). These POs cannot be

proved with Rodin for arithmetical reasons: the prover is

unable to validate the suggested rewriting which is neces-

sary to achieve the proofs, but they are done by hand.

Unprovable PO At the moment of writing, the remain-

ing unproved PO concerns the decision for the acceleration

when the perceived distance between the vehicles is less

than ALERT _DISTANCE:

xpos(d_vehicle−1) − (xpos(d_vehicle)+speed(d_vehicle)+MIN_ACCEL/2) >

CRITICAL_DISTANCE

This PO seems to be unprovable under the current hypothe-

ses. It indicates a mistake or a failure in the current model.

We are discussing with experts of the domain for making

the current model evolve.

4.6. Decomposing the Model between Vehi-
cles and Controllers

The controllers of the vehicles must be separated from

the environment. The model platoon_4 can be decomposed

in two parts: vehicles and controllers as shown Fig. 3.

Figure 3. Decomposition of platoon_4

Event-B specification The variables are split between ex-

ternal and internal variables. The local internal variables

of the controllers model are the perceptions that the con-

trollers have from their associated vehicles and the prede-

cessor. Considering the vehicles model, the only local vari-

able is the position xpos0 of the vehicles after all the move-

ment. All the other variables are external. This includes the

counters vehicle, d_vehicle and p_vehicle, the variables of

the environment xpos and speed which are perceived and

the decided influence accel.

The events of the model platoon_4 are also split among

the decomposed models. The internal events of vehicles in-

volve the movement of the vehicles whereas internal events

of controllers are dedicated to perceptions and decisions.

Extra external events must be added to the decomposed

models in order to “simulate” (using the external variables

only) the corresponding events of the full model. The events

perceive and decide of vehicles abstract the behaviours

of perceive1, perceive and decide1_n∨mal, decide1_max,

decide1_min, decide_n∨mal, decide_critic , decide_max,

decide_min respectively. The same goes for the move events

into controllers .

Remark Notice that this last step cannot be verified by

Rodin because the decomposition mechanism is currently

supported neither by the platform nor by any other tool.

5. Generalisation to Specification of Other

Multi-Agents Systems

The platooning case study presented before is a good

example for the Event-B specifications and verification by

proof of other situated MAS. Its development provides us

some guidelines we summarised in this section.

To specify the perceptions and the influences of the

agents and the environment parts specific to each agent, the

use of functional variables is a convenient manner of mod-

elling them with Event-B. Other variables can be added to

the environment to represent independant parts of agents.

The way of specifying the synchronisation proposed by

the I/R model can be generalised. Three variables r_agent,

d_agent and p_agent (defined on 1..MAX_AGENTS) are

counters which indicate the step in the I/R cycle.

The various events are introduced by refinement, follow-

ing the I/R model. Events are gradually introduced, start-

ing by the last, i.e. the environment reaction, to finish by

the first step, i.e. the agents perceptions (See Fig. 2). The

guards of the old events are strengthened to ensure that the

new events are done before the old ones are enabled and a

variant is dedicated to preventing the new events from tak-

ing the control forever.

Reaction step Three levels of refinement are dedicated to

the specification of the reaction. Safety properties of the

environment are expressed at the beginning. They must be

preserved by the agents: the refinement also ensures that

they are preserved throughout the evolution of the model.

Currently, the splitting of a global reaction into a reaction

expressed agent by agent specified into platoon_1 cannot

be done. The majority of MAS has a global reaction that

only expresses all the influences in a global manner. Other

levels of refinement might be necessary when the splitting

is possible, though.

Influences are taken into account as an event’s parameter

into platoon_2. If the computation of the reaction is com-

plex, more than one refinement can be necessary to help the

prover.

Decision step This step is progressively introduced. In-

fluences are applied to reaction into platoon_2. Events cor-

responding to the decision step are introduced in platoon_3.

The “real” computation of influences taking into account

the perceptions is done into platoon_4.

Perception step It is the last part of a MAS we model.

Perceptions are introduced into platoon_4 and directly

linked with influences. In some more complex cases, it

seems easier to first introduce the perception step into a

first level of refinement before linking perceptions and in-

fluences into a second one.

Remark Some MAS have a local behaviour between the

perception and decision step. This local behaviour mod-

ifies some local variables as historic variables, which are

considered for taking the decision. This kind of agents is

called hysteretic contrary to the tropistic agents which have

no internal behaviour. Local behaviour can be specified by

inserting some refinement levels between the decision level

and the perception level.

About decomposition The decomposition step sketched

in Subsect. 4.6 can also be generalised to obtain two Event-

B components Environment and Agents. The following ta-

ble summarises how the various parts of the initial model

are assigned to the components:

Environment Agents

r_agent, d_agent and p_agent external external

Perceived physical variables external external

Unperceived physical variables internal -

Perceptions variables - internal

Influences variables external external

Perception events external internal

Decision events external internal

Reaction events internal external

6. Related Works

Hilaire et al [9] propose a general framework for mod-

elling MAS based on Object-Z and statecharts. This frame-

work focuses on organisational aspects in order to represent

agents and their roles. Similarly, Regayeg et al [11] com-

bine Z notations and linear temporal logic to specify the

internal part of agents and the specification of the commu-

nication protocols between agents. They propose general

patterns and the use of Z support tools to model-check their

specifications. It is to be noticed that the proposed patterns

do not deal with dynamics of physical world.

Inverno and Saunders [10] have developed a multi-agent

approach for simulating the behaviour of stem cells. Their

aim is to highlight which properties are required on compo-

nents in order to maintain general properties. Their formal

models, written in Z, are based on a layered technique in

which physical, biological and chemical environment are

considered separately.

We can also point out a work [6] involving the use of

classical B to model agents roles and interactions. [3] fo-

cuses too on the interaction protocol between agents us-

ing Event-B. Some patterns for the B specification of fault-

tolerance protocols are proposed in the case of agent com-

munication.

Schneider et al [12] apply their framework based on CSP

and B as a starting point for the simulation of a biomedicine

MAS. They only focus on the clotting behaviour of artificial

platelets.

7. Conclusion

The models presented in Sect. 4 are completely speci-

fied into Rodin, the platform which supports the Event-B

formalism. The generated POs are validated to ensure the

correction of the specification. Results regarding POs are

given Fig. 4. As expected, the number of POs increases

with each refinement step. The majority of them are auto-

matically discharged by the prover and the others are done

interactively : difficulties come mainly from arithmetics.

Figure 4. Proof obligations results

The Event-B specification of the platooning problem

presented here shows some advantages of using a formal

method to model MAS: the formalisation focuses on un-

derstanding the MAS. The proof process helps identifying

mistakes in the model and pinpointing weaknesses in the

assessment of the hypotheses. Not surprisingly from a soft-

ware engineering point of view, knowledge of the experts of

the domain was required for completing the hypotheses of

the system.

From the case study of the platooning, we thus extract

some generic guidelines for the development with Event-B

of other situated MAS taking agents-specific features into

account. We plan to study other situated MAS following

the same guidelines.

Further work includes the study of the same platooning

problem with related formalisms such as CSP‖B [12] to fo-

cus on the interaction protocol between the agents. It also

includes the specification and verification of other proper-

ties, such as unhooking or oscillation. We also plan to make

the model evolve in order to take into account the lateral

control or perturbations like pedestrians or other vehicles in

the environment.

Acknowledgements We address our many thanks for

common efforts and fruitful discussions to Olivier Simonin,

Alexis Scheuer and François Charpillet, from the MAIA

team of the LORIA, and to Samuel Colin and Jeanine

Souquières, from the DEDALE team.

References

[1] J.-R. Abrial. The B Book. Cambridge University Press,

1996.

[2] J.-R. Abrial and S. Hallerstede. Refinement, decomposition,

and instantiation of discrete models: Application to Event-

B. Fundamenta Informaticae, 77(1-2):1–28, 2007. Special

issue on ASM’05.

[3] E. Ball and M. Butler. Event-B patterns for specifying

fault-tolerance in Multi-Agent interaction. In Proceedings

of Methods, Models and Tools for Fault Tolerance, Oxford,

UK, July 2007.

[4] P. Daviet and M. Parent. Longitudinal and lateral servoing of

vehicles in a platoon. In Proceeding of the IEEE Intelligent

Vehicles Symposium, pages 41–46, 1996.

[5] E. W. Dijkstra. A Discipline of Programming. Prentice Hall,

1976.

[6] H. Fadil and J. Koning. A formal approach to model mul-

tiagent interactions using the B formal method. In Fourth

IEEE International Symposium on Advanced Distributed

Systems (ISADS 2005), volume 3563 of LNCS, pages 516–

528. Springer, 2005.

[7] J. Ferber. Multi-Agent Systems: An Introduction to Dis-

tributed Artificial Intelligence. Addison-wesley Profes-

sional, 1999.

[8] J. Ferber and J. P. Muller. Influences and reaction : a model

of situated multiagent systems. In 2nd Int. Conf. on Multi-

agent Systems, pages 72–79, 1996.

[9] V. Hilaire, P. Gruer, A. Koukam, and O. Simonin. Formal

specification approach of role dynamics in agent organisa-

tions: Application to the Satisfaction-Altruism Model. In

Int. Jour. of Software Engineering and Knowledge Engineer-

ing (IJSEKE). in press, 2006.

[10] M. Inverno and R. Saunders. Agent-based modelling of

Stem Cell organisation in a Niche. In S. A. Brueckner,

G. Di Marzo, S. A. Karageorgos, and R. Nagpal, editors,

Engineering Self-Organising Systems : Methodologies and

Applications, LNAI. Springer-Verlag, 2005.

[11] A. Regayeg, A. H. Kacem, and M. Jmaiel. Specification

and verification of multi-agent applications using temporal

z. In Intelligent Agent Technology Conf. (IAT’04), pages

260–266. IEEE Computer Society, 2004.

[12] S. Schneider, A. Cavalcanti, H. Treharne, and J. Woodcock.

A layered behavioural model of platelets. In 11th IEEE

International Conference on Engieerging of Complex Com-

puter Systems, ICECCS, 2006.

[13] O. Simonin, A. Lanoix, S. Colin, A. Scheuer, and F. Charpil-

let. Generic Expression in B of the Influence/Reaction

Model: Specifying and Verifying Situated Multi-Agent Sys-

tems. INRIA Research Report 6304, INRIA, Sept. 2007.

