
HAL Id: hal-00260568
https://hal.science/hal-00260568v2

Preprint submitted on 18 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Experience with a Formal Modelling of a
Multi-Agent System: the Platooning Problem

Samuel Colin, Arnaud Lanoix

To cite this version:
Samuel Colin, Arnaud Lanoix. An Experience with a Formal Modelling of a Multi-Agent System: the
Platooning Problem. 2008. �hal-00260568v2�

https://hal.science/hal-00260568v2
https://hal.archives-ouvertes.fr

An Experience with a Formal Modelling of a
Multi-Agent System: the Platooning Problem?

Samuel Colin and Arnaud Lanoix

LORIA – DEDALE Team
Campus scientifique

F-54506 Vandoeuvre-Lès-Nancy, France
{firstname.lastname}@loria.fr

Abstract. Multi-Agent systems (MASs) are used in more and more critical do-
mains such as transportation or medical technology, although their use is lim-
ited by the lack of validation and adequate software engineering support. Formal
methods have proved their strength in that regard. We propose the use of the B
formal method as a sound software engineering approach for specifying and vali-
dating MASs. We illustrate this approach on the basis of the agent-based platoon-
ing problem, i.e. vehicles moving in a convoy. We hereby aim at demonstrating
the solid support provided by formal methods to such systems and how their use
help the extraction of implicit knowledge from the models for MASs engineers.

1 Introduction

Software agents and Multi-Agent Systems (MAS) are widely used to develop applica-
tions in the field of transportation, medical technologies or space exploration. The most
limiting factor in industry is the difficulty of designing and studying complex situated
MAS. This difficulty comes from the lack of adequate software engineering methods
able to manage the autonomy of the agents evolving in parallel. Their interactions be-
tween each others and with a common environment leads to the problem of preservation
or the occurrence of emergent properties at the global level of the system.

Due to the contexts these systems are used in, i.e. critical contexts, the problem of
ensuring their safety arises. To that end, use of formal methods is needed, which has
begun to receive a substantial amount of interest. The questions linked to this formali-
sation are such as: can a MAS be formalised ? If not, can I characterise a smaller part
of it be formalised ? If on the contrary the system can be formalised, are the desired
properties expressible ? If they are, can they be verified ? In case of success, what new
knowledge can be tracted from the formalisation ? Can the model be adapted to other
similar MAS ?

The first questions have begun to be answered. For instance, Hilaire et al [1] pro-
pose a general framework for modelling MAS based on Object-Z and statecharts. This

? This work has been partially supported by the ANR (National Research Agency) in the context
of the TACOS project, whose reference number is ANR-06-SETI-017 (http://tacos.loria.fr),
and by the pôle de compétitivité Alsace/Franche-comté in the context of the CRISTAL project
(http://ww.projet-cristal.org).

2 Samuel Colin and Arnaud Lanoix

framework focuses on organisational aspects in order to represent agents and their roles.
Similarly, Regayeg et al [2] combine Z notations and linear temporal logic to specify
the internal part of agents and the specification of the communication protocols be-
tween agents. They propose general patterns and the use of Z support tools to model-
check their specifications. It is to be noticed that the proposed patterns do not deal with
dynamics of physical worlds.

Inverno and Saunders [3] have developed a multi-agent approach for simulating the
behaviour of stem cells. Their aim is to highlight which properties are required on com-
ponents in order to maintain general properties. Their formal models, written in Z, are
based on a layered technique in which physical, biological and chemical environment
are considered separately.

Schneider et al [4] apply their framework based on CSP and B as a starting point for
the simulation of a biomedicine MAS. They focus on the clotting behaviour of artificial
platelets. We can also point out a recent work [5] involving the use of Event-B. It focuses
on the coordination between agents and only specifies the interaction protocol. Some
patterns for the B specification of fault-tolerance protocols are proposed in the case of
agent communication.

We ourselves are interested in the so-called platooning problem presented in Sect. 2,
where the goal is to have several vehicles travel in a convoy by defining simple rules
for each of them. Moving in a convoy is thus their emergent behaviour. Thanks to col-
laboration with the MAIA team, we developped B models to answer to this problem.
Section 3 gives an overview of the B method. We present in Sect. 4 the B modelisation
of the agent-based platooning. We more particularly were interested in the problems
or advantages linked with the choice of the B method to formalise this MAS. We also
focus on which informations can be extracted to MAS engineers. Section 5 concludes
this paper and gives some perspectives.

2 An Example of MAS : a Platoon of Vehicles

The CRISTAL project involves the development of a new type of urban vehicle with
new functionalities and services. One of the major cornerstones of Cristal is the pla-
tooning problem.

Fig. 1. A platoon of vehicles

Formal Modelling of the Platooning Problem 3

A platoon is defined as a set of autonomous vehicles which have to move in a con-
voy, i.e. following the path of the leader (possibly driven by a human being) in a row
(or a platoon). The control of a platoon involves the longitudinal control of the vehicles,
i.e. maintaining a certain ideal distance between each other, and their lateral control, i.e.
each vehicle should follow the track of its predecessor. Those controls can be studied
independently [6]; we will only focus on the longitudinal control.

Through projects’ collaboration with researchers of the MAIA team, we consider
each vehicle as an agent. A vehicle’s controller perceives informations about its en-
vironment before producing an instantanous acceleration passed to the engine. In this
context, the platooning problem can be considered as a situated MAS which evolves fol-
lowing the Influence/Reaction model, proposed by Ferber & Muller [7]. In this model,
agents are described separately from the environment. The link is done by computing,
at each step ∆t, which environment state each agent perceives and which influences it
produces. The new state of the environment is defined as the combination of the vari-
ous influences produced by the agents. I/R organises the dynamics of situated MAS by
synchronising the different evolution steps following a cycle, as shown Fig. 1: (i) all
the agents perceptions are done, (ii) all influences are decided, and (iii) the environment
reacts by combining all the influences.

As we focus only on the longitudinal control of the platoon, the considered space
is one-dimensional. Hence the position of the ith vehicle is represented by a single
variable xposi, its velocity by speedi. The behaviour of the vehicle’s controllers can be
summarised as follows, see Fig. 1:

(i) perception step: each vehicle uses sensors for estimating its velocity perceived
_speedi, the distance perceived_distancei to its leading vehicle and the velocity
perceived_ f ront_speedi of its leading vehicle. The sensors are supposed to be
perfect.

perceived_speedi(t +∆t) = speedi(t)

perceived_distancei(t +∆t) = xposi−1(t)− xposi(t), if i > 0

perceived_ f ront_speedi(t +∆t) = speedi−1(t), if i > 0

(1)

(ii) decision step: each vehicle can influence its speed and position by computing and
passing to the engine an instantaneous acceleration accel_decisioni. The acceler-
ation can be negative, corresponding to the braking of the vehicle. accel_decisioni
is defined according to the sensor values using mathematical laws, but which can-
not be given here for confidentiality reasons.

(iii) reaction step: xposi and speedi are updated, depending on the current speed
speedi of the vehicle and a decided instantaneous acceleration accel_decisioni
to the engine.

new_speed = speedi(t)+accel_decisioni(t +∆t).∆t

if new_speed > Max_speed,
{

xposi(t +∆t) = xposi(t)+∆t.Max_Speed
speedi(t +∆t) = Max_Speed

(2a)

4 Samuel Colin and Arnaud Lanoix

if new_speed < 0,

{
xposi(t +∆t) = xposi(t)− speedi(t)2

2.accel_decisioni(t+∆t)
speedi(t +∆t) = 0

(2b)

otherwise,

 xposi(t +∆t) =

(
xposi(t)+ speedi(t).∆t

+ accel_decisioni(t+∆t).∆t2

2

)
speedi(t +∆t) = new_speed

(2c)

These mathematical laws assume that the actuators of the engine are perfect.

The laws come from experts of MAS. Our goal is to develop a formal framework
in order to implement them and prove properties of the obtained model. The properties
we are looking forward to in this model are among the following:

– The model is sound bound-wise, i.e. none of the specified bounds are violated.
– No collision occurs between the vehicles.
– No unhooking occurs, i.e. the distance between vehicles cannot be infinitely long.
– No oscillation occurs, i.e. a phenomenon of a wave propagates from ahead of the

platoon to its back, without never stabilising.

We focus on the soundness of the model and the absence of collision in the remainder
of this document, but the reader must be aware that it is still an ongoing work.

3 The B Method

B is a formal software development method used to model and reason about systems [8].
It is based on set theory and relations. Its key features are:

– First-order set-theoretic foundations, which are a well-understood domain of math-
ematics

– Modularity for helping with the specification of big systems by means of separated
development

– Refinement for a detail-wise incremental development and code generation

The B method has proved its strength in the industry in complex real-life applications
such as the Roissy VAL [9]. The B method is also supported by academic 1 and com-
mercial 2 support tools.

Before going into the chosen case study, we present firstly how a B model is built
and verified so as to help the reader get the intuition behind the B method.

Building a B model The principle behind building a B model is to express what prop-
erties of the system are always true after one evolution step of the model. Verifying that
the model is correct is thus akin to verifying that the properties are preserved no matter
which step of evolution the system takes.

1 B4free: http://www.b4free.com/
2 AtelierB: http://www.atelierb.eu/, B-toolkit: http://www.b-core.com/btoolkit.html

Formal Modelling of the Platooning Problem 5

MODEL example
SEES seen_model
INCLUDES included_model
VARIABLES var1, var2
INVARIANT inv
INITIALISATION init
OPERATIONS
out1, out2←− method1(in1, in2) =̂
PRE pre1
THEN body1
END

END

Fig. 2. A generic B model

In B terms, the properties are specified into
the INVARIANT clause of the model and its evo-
lution is specified into several operations spec-
ified in the OPERATIONS clause. Consider the
generic model given Fig. 2. It consists of vari-
ables var1 and var2 whose properties are specified
in the invariant inv. It also consists of an opera-
tion method1 which states how var1 and var2 can
evolve, possibly in function of some additional
parameters. method1 can also return some values.
The precondition pre1 of method1 helps specify-
ing the types of the parameters or constrains. The
body body1 is specified in terms of the B language
of substitutions, which is very similar to the Dijk-
stra’s weakest precondition calculus [10].

The other clauses are related to modularity: following the SEES clause, seen_model
is a B model whose state is visible but can not be changed. Following the INCLUDES
clause, included_model is another B model whose state is visible and whose evolution
can be controlled by way of calling its operations.

Verifying a B model As stated earlier, verifying a B model means verifying that each
operation maintains the properties of the model. It means that, assuming the model
starts in a state respecting the invariant and the precondition of the chosen operation
holds, then the resulting state also respects the invariant. Hence for operation method1
it means verifying that inv ∧ pre1⇒ [body1]inv.

The [body1]inv notation means “the weakest hypotheses required for body1 to es-
tablish inv”. Obtaining these hypotheses involves their calculation. It suffices to say here
that this calculus is largely based upon Dijkstra’s calculus, already mentioned above. In
the end, knowing that weakest_hypotheses⇒ [body1]inv, verifying the B model for op-
eration method1 means proving the inv ∧ pre1⇒ weakest_hypotheses formula. This
step is usually realized with the help of a theorem prover.

Refining a B model A strength of the B method is its stepwise refinement feature:
it is possible to specify the general mathematical properties of a model at an abstract
level, and refine it later on. The REFINEMENT of a model makes it less indeterministic
and more precise, until the code of the operations can actually be implemented in a
programming language. The last level of refinement before code generation is called an
IMPLEMENTATION.

A refinement is specified through the REFINES clause that states which model or
refinement it is based upon. Building the rest of the refinement is similar to building
an abstract B model. Verifying a refinement also involves proving formulas, although
there is difference w.r.t. verifying abstract models. Instead of proving that the invariant
is maintained, the verification is actually about proving that the refined operations do
not contradict their abstract counterparts. We will not present refinement further as it is
little used in our case study, presented below in next Section.

6 Samuel Colin and Arnaud Lanoix

4 A B Model for the Platooning Problem

We present a B model of the platooning problem and difficulties of the proof of this
model. After presenting its overall architecture, we dwell into more details of the elab-
oration of each B model and how proving them influenced their evolution. We conclude
the section with general remarks pertaining to the verification of the whole platooning
model.

4.1 Organisation of the B Model for the Platooning Problem

Fig. 3. Organisation of the platooning B model

The components of our model and their organisation is depicted Fig. 3, where:

Constants holds the constants used throughout the model and the hypotheses on these
constants.

PhysicalVehicles models the interactions between vehicles and the environment, i.e.
their perceptions and their actions.

VehiclesControllers models the steps a vehicle can be in: a vehicle can perceive, de-
cide for an acceleration or attempt to move.

Scheduler schedules the steps all the vehicles go through: all vehicles do their per-
ceptions, then they all do their decisions and finally their actions. Due to B ex-
pression, Scheduler is a so-called implementation model because loops can only be
expressed in them. Hence Scheduler refines the abstract expression of scheduling,
a model called Scheduler_abs.

Platooning schedules each global step expressed in Scheduler, i.e. it schedules in a
loop all the perceptions, all the decisions and all the actions. For the same reason
as above, Platooning is an implementation which refines Platooning_abs.

Formal Modelling of the Platooning Problem 7

Note that we have only one B model for n vehicles: we have modelled the variables
of each vehicles into corresponding arrays indexed by the unique identifiers of the ve-
hicles. For instance, the variable speedi becomes the the value at the ith index of the
speed array.

A known limitation of the model is that it is based on integer numbers, while the
mathematical model presented Sect. 2 relies on the continuous domain of real numbers.
We actally assume that the units of the models are precise enough to “absorb” the errors
introduced by the use of integers (by using millimetres instead of meters, for instance).
Moreover, using floating-point numbers in the implementation is another instance of
the same problem.

4.2 B Model for the Environment

The environment, modelled by PhysicalVehicles, holds the laws that involve the percep-
tions and the reaction, each one found in its respective method as follows.

The perception method models (1), as illustrated by the following snippet of B code:

new_perceived_distance := old_perceived_distance C− { i 7→ (xpos(i−1) − xpos(i)) }
‖ new_perceived_front_speed := old_perceived_front_speed C− { i 7→ speed(i−1) }

The updated perceptions for vehicle i are obtained by overriding the old perceptions
with the difference between the involved vehicle i and its leading vehicle.

The reaction method models the update of the environment w.r.t. the acceleration
decided by a given vehicle, as expressed by (2). The following snippet depicts the up-
date of the position and speed of a vehicle when it travels at full speed:

IF (considered_speed > MAX_SPEED)
THEN

xpos(i) := new_xpos_when_max_speed(xpos(i)) ‖
speed(i) := MAX_SPEED

Formulas for calculating the new position are enclosed into functions for readability
purposes. Equation (2a) in charge of calculating the new position when the considered
speed is over the maximum speed is defined as follows:

new_xpos_when_max_speed ∈ Z→ Z
∧ new_xpos_when_max_speed = %(xpos).(xpos ∈ N | xpos + MAX_SPEED × TIME_STEP)

Properties are specified in the invariant. For instance, the following predicate ex-
presses that vehicles never go backwards, don’t violate the maximum speed bound and
that there is always a minimal distance between the vehicles, i.e. no-collision:

speed ∈ 0..MAX_VEHICLES→ 0..MAX_SPEED ∧ xpos ∈ 0..MAX_VEHICLES→ N
∧ ∀i .(i ∈ dom(xpos) − {0}⇒ xpos(i−1) − xpos(i) ≥ CRITICAL_DISTANCE)

8 Samuel Colin and Arnaud Lanoix

Proof and its impact on the model Properties expressed in the invariant of PhysicalVe-
hicles have various influences on its methods. For instance, the reaction method did not
initially ensure the safety property of minimal distance between vehicles. We added in
the precondition the requirement that vehicles are far enough from each other so as not
to violate the safety property. The introduction of this safety distance, which we called
ALERT_DISTANCE, highlighted at the proof step that the model missed hypotheses be-
tween the constants representing the key distances. We thus added these hypotheses, for
instance the relationship between ALERT_DISTANCE and CRITICAL_DISTANCE:

ALERT_DISTANCE > MAX_SPEED × MAX_SPEED / (−MIN_ACCEL)
+ MAX_SPEED × TIME_STEP + CRITICAL_DISTANCE

4.3 B Model for the Vehicle Controllers

The vehicles interact with their environment by perceiving it and by applying their
decisions. The methods perceive and react are not shown here as they are just wrappers
calling the relevant methods of PhysicalVehicles.

The vehicles must also decide which acceleration they apply based on their per-
ceptions, as reflected by the influence method. The specific case of the leader is taken
into account. For readability purpose, the computation of the decision in the non-leader
case has been defined into a specific compute_new_accel function which is not shown
here for confidentiality reasons. Moreover, the resulting acceleration is filtered so as
to stay between the set bounds of the system. The following snippet of code is for the
non-leader case:

ANY new_accel
WHERE new_accel = compute_new_accel(perceived_distance(i),

perceived_front_speed(i),
perceived_speed(i))

THEN
accel_decision(i) := min({MAX_ACCEL, max({MIN_ACCEL, new_accel})})

END

Proof and its impact on the model The proofs for VehiclesControllers involve prov-
ing the soundness of the computation, i.e. the filtering of the acceleration mentioned
above, and the fact that the position of two consecutive vehicles are distant of more
than ALERT_DISTANCE. This last part is not proved yet because of difficulties for the
tool to prove arithmetically-heavy formulas.

Experiments also showed us how expressing new properties in the model influenced
its shape. Any global property, such as the absence of collision, affects indeed the vari-
ous parts of the model in a specific way. As stated in Sect. 4.2, the absence of collision
made us add a new requirement in the precondition of the reaction method. This new
requirement will have to be met by the decision made by the vehicles, which might also
require enriching the B model of the vehicles. As the decision depends on the percep-
tions of the agents, which depend on the value of the environment, the modification gets
back to the absence of collision.

Formal Modelling of the Platooning Problem 9

In short, any newly expressed global property of the model will have to imply itself
through one evolution step of the whole model. In a way, the proof of the B model im-
plicitly mimics the self-referential nature of the mathematical model. As a consequence,
it is crucial to think thoroughly each newly expressed property so as it is not too strong
nor too weak.

4.4 B Models for the Global Control Loop

The self-referential nature of the model can be made explicit by the use of B loops, even
though the B models presented so far are enough for describing the whole model. As de-
picted in the general architecture of the model presented Fig. 3, Scheduler is composed
of three loops realising the corresponding steps (perceptions, decisions and actions).
Similarly, the global loop expressed in Platooning makes the perceptions, influences,
reaction sequence explicit.

4.5 General remarks about the verification of the whole model

If we characterize the verification in the context of the whole model when interactive
proving is required, the formulas tend to be divided between simple and complex state-
ments. By “simple statements”, we mean formulas such as the following predicate,
easily done by pen and paper:

i ∈ Z ∧ j ∈ Z ∧ k ∈ Z
∧ i ≤ j
⇒

min({ j ,max({i,k })}) ∈ i .. j

By “complex statements”, we mean arithmetically-heavy formulas or formulas for
which it is difficult to see if the hypotheses are sufficient. The following formula, where
irrelevant have been left out, is an example of arithmetically-heavy formula:

...
∧ 0 ≤ −1−speed(i)−acceleration(i)
∧ −1−MAX_SPEED+speed(i)+acceleration(i)+1≤0
⇒

xpos(i)−speed(i)∗speed(i)/(2∗acceleration(i)) ∈ N

This formula corresponds to case of the reaction where the vehicle wants to go back-
wards. For proving it, we have to infer positivity or negativity of the sub-terms and
provide the intermediate deduction steps to the prover.

Formulas involving the absence of collision are part of those formulas for which it
is difficult to know if the hypotheses are sufficient. The following formula corresponds
to the absence of collision when the vehicle is going at full speed, with the irrelevant
hypotheses left out:

10 Samuel Colin and Arnaud Lanoix

∀i .(i ∈ dom(xpos) ∧ ¬(i = 0)⇒ CRITICAL_DISTANCE≤xpos(i−1)−xpos(i))
∧ ...
∧ 0 ≤ −1−MAX_SPEED+speed(i)+acceleration(i)
⇒

0 ≤ −MAX_SPEED−CRITICAL_DISTANCE+xpos(i−1)−xpos(i)

This formula can not be proved as is: the missing hypothesis is that the vehicle is al-
ready far enough of its leading vehicle so as not to collide it if it stops abruptly. Hence,
as stated in Sect. 4.2 we enriched the precondition of the reaction method with the
following hypothesis:

(i 6= 0⇒ xpos(i−1) − xpos(i) ≥ ALERT_DISTANCE)

Once the relationship between ALERT_DISTANCE and CRITICAL_DISTANCE was stated,
the absence of collision at full speed could be proved.

Component Total Automatic Interactive
Constants 0 0 0
PhysicalVehicles 16 11 5
Platooning_abs 0 0 0
Platooning 6 6 0
Scheduler_abs 0 0 0
Scheduler 59 59 0
VehiclesControllers 22 19 3
TOTAL 103 95 8

Fig. 4. Proof results: Platooning with soundness property

If we consider the whole platooning model with the sole soundness property, the
generated proof obligations consisted of 614 obvious proof obligations and 103 non-
obvious proof obligations. The verification of the non-obvious formulas was automatic
for 95 of them, leaving 8 formulas to be proved interactively, even if for some of them
it is still an overstatement, as there are “simple statements” among them. The precise
distribution of proof obligations is given Fig. 4.

Component Total Automatic Interactive Unproved
Constants 0 0 0 0
PhysicalVehicles 20 11 6 3
Platooning_abs 0 0 0 0
Platooning 7 7 0 0
Scheduler_abs 0 0 0 0
Scheduler 60 60 0 0
VehiclesControllers 23 19 3 1
TOTAL 110 97 9 4

Fig. 5. Proof results: Platooning with no-collision property

Formal Modelling of the Platooning Problem 11

As a concluding remark for this section, we can note that when the properties to be
proved are linked to the model itself (as the absence of collisions), domain knowledge
becomes mandatory, hence a dialogue has to be kept with the experts. For reference, the
current version of the model with the absence of collision requires the verification of
110 proof obligations, 97 of which are proved automatically, 9 interactively and 4 still
to be proved as shown in figure 5.

5 Conclusion

We have proposed a B model for the platooning problem whose soundness has been
verified with the help of B proof tools. Expressing additional properties into the model
helped us to quickly pinpointing weaknesses in the assessment of the hypotheses. Not
surprisingly from a software engineering point of view, knowledge of the experts of the
domain was required for completing the hypotheses of the system. The advantage of
using a formal method here was to avoid resorting to lengthy experimentations in order
to understand where the model had flaws: the proof process helped identifying them
easily.

The evolution itself of the model is also of interest. While its very first version
was a single B model, the successive versions introduced the various layers presented
earlier: the focus on longitudinal control, the splitting into an environmental part and an
agent part, the three main steps of decision, perception and action, the separation of the
constants from the model and the global loops of the model made explicit.

Hence the evolution of this model led us naturally to abstract the architecture from
the problem itself. The obtained patterns matched very closely the well-known Influ-
ence/Reaction model of the Multi-Agent community [7]. We completed this small gap
by proposing generic B patterns [11] suitable for instantiating any MAS expressed with
the I/R model. An overview of these patterns is given Fig. 6. With the use of a for-
mal method, the originality of these patterns is to provide a framework for expressing
soundness of the instantiated MAS and specifying additional emerging properties in a
tool-supported environment. The expectable advantages of this approach were already
stated for the particular model of the platooning problem, as an instantiation of the
patterns.

Further work includes the study of the same platooning problem with related for-
malisms such as CSP‖B [4] and Event-B [12]. It also includes understanding better the
self-referential nature of some emerging properties in the platooning problem: absence
of collision, unhooking, oscillation. The goal there would be to see if there are evolution
and proof patterns linked to the expression of additional properties in the model.

Acknowledgement. We address our many thanks to Olivier Simonin, Alexis Scheuer
and François Charpillet, from the MAIA team of the LORIA, for common efforts and
fruitful discussions in the context of the TACOS and CRISTAL projects.

12 Samuel Colin and Arnaud Lanoix

Fig. 6. B patterns of the I/R model

References

1. Hilaire, V., Gruer, P., Koukam, A., Simonin, O.: Formal specification approach of role dy-
namics in agent organisations: Application to the Satisfaction-Altruism Model. In: Int. Jour.
of Software Engineering and Knowledge Engineering (IJSEKE), in press (2006)

2. Regayeg, A., Kacem, A.H., Jmaiel, M.: Specification and verification of multi-agent appli-
cations using temporal z. In: Intelligent Agent Technology Conf. (IAT’04), IEEE Computer
Society (2004) 260–266

3. Inverno, M., Saunders, R.: Agent-based modelling of Stem Cell organisation in a Niche.
In Brueckner, S.A., Di Marzo, G., Karageorgos, S.A., Nagpal, R., eds.: Engineering Self-
Organising Systems : Methodologies and Applications. LNAI, Springer-Verlag (2005)

4. Schneider, S., Cavalcanti, A., Treharne, H., Woodcock, J.: A layered behavioural model of
platelets. In: 11th IEEE International Conference on Engieerging of Complex Computer
Systems, ICECCS. (2006)

5. Ball, E., Butler, M.: Event-B patterns for specifying fault-tolerance in Multi-Agent interac-
tion. In: Proceedings of Methods, Models and Tools for Fault Tolerance, Oxford, UK (2007)

6. Daviet, P., Parent, M.: Longitudinal and lateral servoing of vehicles in a platoon. In: Pro-
ceeding of the IEEE Intelligent Vehicles Symposium. (1996) 41–46

7. Ferber, J., Muller, J.P.: Influences and reaction : a model of situated multiagent systems. In:
2nd Int. Conf. on Multi-agent Systems. (1996) 72–79

8. Abrial, J.R.: The B Book. Cambridge University Press (1996)
9. Badeau, F., Amelot, A.: Using B as a high level programming language in an industrial

project: Roissy VAL. In: ZB 2005: Formal Specification and Development in Z and B, 4th
International Conference of B and Z Users. Volume 3455 of LNCS., Springer-Verlag (2005)
334–354

10. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
11. Simonin, O., Lanoix, A., Colin, S., Scheuer, A., Charpillet, F.: Generic Expression in B

of the Influence/Reaction Model: Specifying and Verifying Situated Multi-Agent Systems.
INRIA Research Report 6304, INRIA (2007)

12. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete mod-
els: Application to Event-B. Fundamenta Informaticae 77(1-2) (2007) 1–28 Special issue on
ASM’05.

