
HAL Id: hal-00260494
https://hal.science/hal-00260494v1

Preprint submitted on 4 Mar 2008 (v1), last revised 12 Sep 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some algorithms for total variation based image
restoration

Jean-François Aujol

To cite this version:
Jean-François Aujol. Some algorithms for total variation based image restoration. 2008. �hal-
00260494v1�

https://hal.science/hal-00260494v1
https://hal.archives-ouvertes.fr

SOME ALGORITHMS FOR TOTAL VARIATION BASED IMAGE
RESTORATION

JEAN-FRANÇOIS AUJOL

CMLA, ENS CACHAN, CNRS, UNIVERSUD

EMAIL: JEAN-FRANCOIS.AUJOL@CMLA.ENS-CACHAN.FR

Abstract. This paper deals with numerical schemes for image restoration. These schemes rely on
a duality-based algorithm proposed in 1979 by Bermudez and Moreno, and on general minimization
schemes recently developped by Y. Nesterov. Total variation regularization and smoothed total
variation regularization are investigated. Algorithms are presented for such regularizations in image
restoration. We prove the convergence of all the proposed schemes. We illustrate our study with
numerous numerical examples, and we make comparisons between the different schemes presented in
the paper. Our experiments are in favor of Bermudez-Moreno approach to get a fast approximation
for smoothed total variation regularization, whereas Y. Nesterov scheme seems to perform better for
total variation regularization.

Key words. Algorithms, duality, total variation regularization, image restoration.

AMS subject classifications. 68U10, 49M29, 65K10.

1. Introduction. During the last 15 years, total variation regularization has
known a great success in image processing [39, 5, 18, 4]. It has been used in many
applications such as image restoration, image deblurring, image zooming, image in-
painting, . . . (see [18, 5] and references therein). In all these approaches, a total
variation term

∫

|Du| is to be minimized in some way. The typical problem is the
case of image restoration [39] with the minimization of a functional of the type:

∫

Ω

|Du| + 1

2µ
‖f − u‖2 (1.1)

∫

|Du| stands for the total variation of u [2], and if u is regular it is simply
∫

Ω
|∇u| dx. Ω is the domain of definition of the image, a convex open set in R

2. f
is the degraded image to restore. The minimizer u of (1.1) is the restored image we
want to compute (see for instance [15] for a thorough mathematical analysis of this
problem). µ is a weighting parameter which controls the amount of denoising. In the
case of zero mean Gaussian noise, µ can can be related to the standard deviation of
the noise.

From a numerical point of view, total variation is not straightforward to minimize,
since it is not differentiable in zero. A first approach is to regularize it, and instead to
consider a term as

∫ √

β2 + |∇u|2 dx. We will refer to this choice as smoothed total
variation regularization:

∫

Ω

√

β2 + |∇u|2 dx+
1

2µ
‖f − u‖2 (1.2)

The classical approach is then to use the associated Euler-Lagrange equation to
compute the solution. Fixed step gradient descent [39], or later quasi-Newton methods
[15, 25, 1, 19, 34, 35] have been proposed for instance (see [18, 5] and references
therein). Iterative methods have proved successful [9, 24, 7]. A projected-subgradient
method can be found in [21].

1

2

Ideas from duality have also been proposed: first by Chan and Golub [16], later by
A. Chambolle in [13, 14], and then generalized in [22]. Second order cone programming
ideas and interior point methods have proved interesting approaches [29, 28]. Recently,
it has been shown that graph cuts based algorithms could also be used [14, 23].
Finally, let us notice that it is shown in [41] that Nesterov’s scheme [32] provides fast
algorithms both for minimizing (1.1) and (1.2).

In this paper, we revisit Chambolle’s projection algorithm. We show that a
modification of Chambolle projection algorithm, recently suggested in [14], can be
seen as a particular instance of a more general algorithm proposed almost 30 years
ago by Bermudez and Moreno [8]. It is in fact the classical Uzawa algorithm [20]
applied to problem (1.1). We then apply the approach of Bermudez and Moreno to
smoothed total variation regularization: this gives a new fast algorithm to minimize
functionals such as (1.2). We also prove the convergence of this new scheme. We recall
a general class of efficient minimization algorithms introduced by Y. Nesterov in [32].
It has been proved in [41] that they are indeed very efficient for image restoration. We
then explain how a recent improvement of these algorithms in [33] can be applied for
image restoration. We give some numerical examples of all the schemes introduced
in this paper. Our experiments are in favor of Bermudez-Moreno approach to get
a fast approximation for smoothed total variation regularization, whereas Nesterov
scheme seems to perform better for total variation regularization. Notice that to get a
higly accurate solution for smoothed total variation regularization, Nesterov’s scheme
seems also to be the best choice. However, such an accuracy is not necessary for image
restoration.

The organization of the paper is the following. In Section 2, we recall Bermudez-
Moreno algorithm [8]. We show how it can be applied to total variation regulariza-
tion in Section 3. In Section 4, we explain the relations between this scheme and
Chambolle’s projection algorithm [13], and we give some numerical comparisons. In
Section 5, we detail how Bermudez-Moreno algorithm can be applied to smoothed
total variation based image restoration. In Section 6, we recall a general class of mini-
mization algorithms introduced by Y. Nesterov in [32]. These algorithms have proved
very efficient in [41] for solving image processing problems. We then explain how a re-
cent improvement of these algorithms in [33] can be applied for image restoration. In
Section 7 we make some comparisons between the different schemes presented in this
paper. Appendix A details the proof of convergence of Bermudez-Moreno algorithm.

2. Bermudez-Moreno algorithm. In this section we present the algorithm
proposed by Bermudez and Moreno in [8]. This is a general minimization algorithm.
We will then show in the next sections how it can be applied to classical image pro-
cessing problems. We follow here the presentation of [8, 26]. The general minimization
problem considered is the following:

inf
z∈V

{

1

2
〈Az, z〉 − 〈g, z〉 + ψ(z)

}

(2.1)

with V Hilbert space, ψ a proper convex lower semi continuous (l.s.c.) function defined
on V :

ψ = φoΛ−1
E oB∗ (2.2)

with E Hilbert space, B bounded linear operator, B : E → V ′, ΛE : E → E′

(canonical isomorphism from E onto its dual), B∗ : V → E′, Λ−1
E : E′ → E, φ : E →

3

R. We recall that if H is a convex function, we say that it is proper if H(x) > −∞
for all x, and if there exists x0 such that H(x0) < +∞. We denote by dom H the set
on which H(x) < +∞ [12, 26].

Assumptions on A. In all the paper, we will make the following assumptions on
A: A is assumed to be a symmetric coercive operator, i.e. there exists α > 0 such
that for all z in V :

〈Az, z〉V ′,V ≥ α‖z‖2
V (2.3)

We will also make the three following assumptions on A:

A is weakly continuous on the finite dimensional subspaces of V .
A is a monotone operator: 〈Ay −Az, y − z〉 ≥ 0 ∀y, z ∈ V

There exists z0 in dom ψ such that: 〈Az,z−z0〉+ψ(z)
‖z‖ → +∞ if ‖z‖ → +∞

(2.4)

Notice that in the next sections, all these assumptions will indeed be satisfied. In
particular, since we will only consider operator A of the type A = γI for some γ > 0,
the technical assumption (2.4) will be trivially verified.

Notations. We use the following notations [37]. If H is a maximal monotone
operator, we denote by Hλ its Yosida approximation:

Hλ =
I − Lλ
λ

where Lλ = (I + λH)−1 (2.5)

Bermudez and Moreno derive their results for H = ∂φ−ωI. Here we take ω = 0,
and we consider the scheme (2.7) with:

H = ∂φ (2.6)

Notice that since φ is assumed to be a convex proper lower semi continuous
function, ∂φ is a maximal monotone operator [11, 12, 37, 4].

Algorithm. In [8], Bermudez and Moreno propose to use the following algorithm
to minimize (2.1). u0 being arbitrary, consider the iterative scheme:

{

ym = A−1(g −Bum)
um+1 = Hλ

(

Λ−1
E B∗ym + λum

) (2.7)

They prove the following convergence result (proposition 3.1 in [8]):
Theorem 2.1. Assume that A a symmetric coercive operator satisfying (2.3)

and (2.4), and that φ is a convex proper lower semi continuous function. Assume
furthermore that:

0 <
1

λ
<

2α

‖B∗‖2
(2.8)

Then the sequence (ym) defined by (2.7) is such that: limm→+∞ ym = y with y solution
of: g −Ay ∈ B∂φ(Λ−1

E B∗y), i.e. y unique solution of (2.1). Moreover, um ⇀ u in E
weak, with: u ∈ ∂φ(Λ−1

E B∗y).
The proof of Theorem 2.1 is detailed in Appendix A. One of the main interest of

Theorem 2.1 is that it is not restricted to the case when φ is a support function [26].
However, due to the importance of total variation regularization in image processing,
we first consider the case of problem (1.1) in Sections 3 and 4. We will consider the
case of problem (1.2) in Section 5, where φ is no longer a support function.

4

3. Application to total variation regularization. In this section, we show
how Bermudez-Moreno algorithm (2.7) can be used for total variation regulariza-
tion. In Section 3.1, we first consider the continuous setting to derive the link with
Bermudez-Moreno’s work. In Section 3.2, we then consider the discrete case and we
propose an efficient algorithm.

3.1. Continuous setting. Let us consider the celebrated ROF model [39]:

inf
u∈L2(Ω)

J(u) +
1

2µ
‖f − u‖2

L2(Ω) (3.1)

Here J(u) is the total variation of u extended to L2(Ω) (since in dimension 2, we
have BV (Ω) ⊂ L2(Ω) [2]):

J(u) =

{ ∫

Ω
|Du| if u ∈ BV (Ω)

+∞ otherwise
(3.2)

In fact, (3.1) is a particular case of (2.1). Indeed, take V = L2(Ω), E = (L2(Ω))2,
A = 1

µI, g = 1
µf . A is of course coercive with coercivity constant α = 1

µ . J(u) =

ψ(u) = φ(B∗(u)), and

J(u) = sup
v∈K

〈u,div v〉 (3.3)

Hence φ support function of K (closed convex set in (L2(Ω))2):

K =

{

v ∈ (L2(Ω))2 / div v ∈ L2(Ω) , ‖v‖∞ ≤ 1 with |v| =
√

v2
1 + v2

2

}

(3.4)

We have: φ(u) = supv∈K〈u, v〉L2(Ω), B = −div = ∇∗, and B∗ = ∇. Moreover, since
φ is the support function of K, then Hλ(v) is the orthogonal projection of v

λ onto K
[37, 8] , i.e.: Hλ(v) = PK

(

v
λ

)

, where

PK(x) =

(

x1

max{1, |x|} ,
x2

max{1, |x|}

)

(3.5)

Bermudez-Moreno algorithm (2.7) in this case is therefore: u0 arbitrary, and:

{

um = f + µdiv ym

ym+1 = PK
(

ym + 1
λ∇um

) (3.6)

Applying Theorem 2.1, we get the following result:

Proposition 3.1. If λ > µ
2 ‖B∗‖2, then the sequence (um, ym) defined by scheme

(3.6) is such that um → u and ym → y with u solution of (3.1).

Notice that in this case, algorithm (3.6) is in fact Uzawa algorithm [20] applied
to problem (3.1).

5

3.2. Discrete setting. From now on, and until the end of the paper, we will
restrict our attention to the discrete setting. We take here the same notations as
in [13]. The image is a two dimension vector of size N × N . We denote by X the
Euclidean space R

N×N , and Y = X × X. The space X will be endowed with the
scalar product (u, v) =

∑

1≤i,j≤N ui,jvi,j and the norm ‖u‖ =
√

(u, u). To define a
discrete total variation, we introduce a discrete version of the gradient operator. If
u ∈ X, the gradient ∇u is a vector in Y given by: (∇u)i,j = ((∇u)1i,j , (∇u)2i,j). with

(∇u)1i,j =

{

ui+1,j − ui,j if i < N
0 if i = N

and (∇u)2i,j =

{

ui,j+1 − ui,j if j < N
0 if j = N

The discrete total variation of u is then defined by:

J(u) =
∑

1≤i,j≤N
|(∇u)i,j | (3.7)

We also introduce a discrete version of the divergence operator. We define it by
analogy with the continuous setting by div = −∇∗ where ∇∗ is the adjoint of ∇: that
is, for every p ∈ Y and u ∈ X, (−div p, u)X = (p,∇u)Y . It is easy to check that:

(div (p))i,j =

p1
i,j − p1

i−1,j if 1 < i < N
p1
i,j if i=1

−p1
i−1,j if i=N

+

p2
i,j − p2

i,j−1 if 1 < j < N
p2
i,j if j=1

−p2
i,j−1 if j=N

(3.8)
From now on, we will use these discrete operators. Notice that in all the rest of
the paper (except in the appendix), we place ourself in the discrete setting. We will
somtimes use continuous notations; however, the reader has to keep in mind that only
the discrete case is considered.

We will use Meyer G space for oscillating patterns [30]:

G = {v ∈ X / ∃g ∈ Y such that v = div (g)} (3.9)

and if v ∈ G:

‖v‖G = inf {‖g‖∞ / v = div (g),

g = (g1, g2) ∈ Y, |gi,j | =
√

(g1
i,j)

2 + (g2
i,j)

2
}

(3.10)

where ‖g‖∞ = maxi,j |gi,j |. Moreover, we will denote:

Gµ = {v ∈ G / ‖v‖G ≤ µ} (3.11)

With these classical finite differences, we have: ‖∇u‖2 ≤ 8‖u‖2. Hence ‖∇‖2 =
‖B∗‖2 ≤ 8. And in fact it is possible to show [13] that ‖∇‖2 = ‖B∗‖2 = 8.

Let us consider new variables:

vm =
um

µ
, pm = ym , τ =

µ

λ
(3.12)

Then we can rewrite (3.6) into: p0 arbitrary, and

{

vm = f
µ + div pm

pm+1 = PK (pm + τ∇vm)
(3.13)

6

Lenna image Cameraman image

Noisy image (σ = 20) Noisy image (σ = 20)

Fig. 3.1. The classical Lenna and cameraman image, and their noisy version (additive zero
mean gaussian noise with standard deviation σ = 20).

Applying Theorem 2.1, we get the following result:

Proposition 3.2. If τ < 1
4 , then the sequence (vm, pm) defined by scheme (3.13)

is such that vm → v and pm → p with µv solution of (3.1).

Notice that (3.13) can be written in a more compact way:

pm+1 = PK

(

pm + τ∇
(

f

µ
+ div pm

))

(3.14)

3.3. Numerical examples. We show here some numerical experiments with
(3.13). We will make some comparisons with other existing algorithms in Section 7,
and at this point we will just mention that (3.13) is indeed a fast algorithm to solve
total variation regularization problem in image processing (less then 3 seconds for a
256×256 image). On Figure 3.1, we display the classical images Lenna and cameraman
that we use in this paper to illustrate our study. We also show their noisy versions
(degraded by additive zero mean gaussian noise with standard deviation σ = 20).
On Figure 3.2, we show the restoration we get with (3.13). These results have the
classical behaviour of total variation based image restoration.

4. Relation with Chambolle projection algorithm. In this section, we ex-
plain the link of our scheme (3.13) with a famous projection algorithm proposed by

7

Fig. 3.2. Total variation restoration of the noisy images presented on the bottom row of Fig-
ure 3.1 with scheme (3.13). In both cases, the Lagrange multiplier is µ = 30.

A. Chambolle in [13]. We therefore first recall Chambolle’s projection algorithm in
Section 4.1, and then we compare it with our scheme (3.13) in Section 4.2.

4.1. Total variation minimization as a projection.
Introduction. Since J defined by (3.2) is homogeneous of degree one (i.e. J(λu) =

λJ(u) ∀u and λ > 0), it is then standard (see [26]) that J∗(v) = supu(J(u) − 〈u, v〉)
is the indicator function of some closed convex set, which turns out to be the set G1

defined by (3.11):

J∗(v) = χG1
(v) =

{

0 if v ∈ G1

+∞ otherwise
(4.1)

This can be checked out easily (see [13] for details). In [13], A. Chambolle proposes
a nonlinear projection algorithm to minimize the ROF model. The problem is:

inf
u∈X

(

J(u) +
1

2µ
‖f − u‖2

X

)

(4.2)

The following result is shown:
Proposition 4.1. The solution of (4.2) is given by:

u = f − PGµ
(f) (4.3)

where P is the orthogonal projector on Gµ (defined by (3.11)).
Algorithm. [13] gives an algorithm to compute PGµ

(f). It indeed amounts to
finding:

min
{

‖µdiv (p) − f‖2
X : p / |pi,j | ≤ 1 ∀i, j = 1, . . . , N

}

(4.4)

This problem can be solved by a fixed point method: p0 = 0, and

pn+1
i,j =

pni,j + τ(∇(div (pn) − f/µ))i,j

1 + τ |(∇(div (pn) − f/µ))i,j |
(4.5)

In [13] is given a sufficient condition ensuring the convergence of the algorithm:
Theorem 4.2. Assume that the parameter τ in (4.5) verifies τ < 1/8. Then

µdiv (pn) converges to PGµ
(f) as n→ +∞.

In practice, convergence of the above algorithm is generally observed as long as
τ < 1/4. An extension of this algorithm to color images has been proposed in [10].
The case of more general Hilbert space has been considered in [6].

8

4.2. A modified projection algorithm. In [14], A. Chambolle has proposed
a modification of his projection algorithm developed in [13], whose algorithm (4.5)
can be rewritten as:

{

vm = f
µ + div pm

pm+1
i,j =

pm
i,j+τ(∇vm)i,j

1+τ |(∇vm)i,j |
(4.6)

and µvm converges to the solution of (4.2). Instead of using (4.6), he suggests in [14]
to use a simple gradient descent/retroprojection method:

vm = f
µ + div pm

pm+1
i,j =

pm
i,j+τ(∇vm)i,j

max{1,|pn
i,j+τ(∇vm)i,j |}

(4.7)

And this last equation is exactly scheme (3.13). In [14], A. Chambolle has proved
the stability of (4.7). Application of basic results about the projected gradient al-
gorithm [38] shows that in fact (4.7) is convergent provided τ < 1/4. The result of
Proposition 3.2 therefore confirms the condition τ < 1/4. Moreover, as we will see
in the next section, the general algorithm (2.7) proposed by Bermudez and Moreno
[8] can be of interest to other image restoration problems, such as smoothed total
variation regularization based ones (1.2).

Numerical comparisons of all these schemes ((3.13), (4.6)) will be discussed in
Section 7.2.

5. Smoothed total variation regularization. In this section, we consider the
following problem:

inf
u

∫

Ω

√

β2 + |∇u|2 +
1

2µ
‖f − u‖2

2 (5.1)

We refer to this problem as the smoothed total variation based regularization
problem. For small values of β it can be seen as an approximation of (3.1). This
type of regularization is very common in image processing (see [5, 18] and references
therein). Compared to total variation regularization, it has the advantage of being
a smooth regularization. And compared to stronger regularization such as ‖∇u‖2, it
has the advantage of not eroding too much the edges of the image.

In Section 5.1, we explain how Bermudez-Moreno algorithm (2.7) can be used to
solve this problem. The new algorithm we propose has a fixed point iteration step.
We show the convergence of this fixed point iteration in Section 5.3. We will show
some numerical examples with this new scheme in Section 7.1.

5.1. Presentation of the scheme. Let us denote by

φβ(ξ) =

∫

√

β2 + |ξ|2 (5.2)

We have

∂φβ(ξ) =
ξ

√

β2 + |ξ|2
(5.3)

Let us consider the following scheme:

9

{

um = f + µdiv ym

ym+1 =
I−(I+λ∂φβ)−1

λ (∇um + λym)
(5.4)

Applying Theorem 2.1, we get:
Proposition 5.1. If λ > 4µ, then the sequence (um, ym) defined by scheme (5.4)

is such that um → u and ym → y with u solution of (5.1).
The second equation of (5.4) implies:

λym+1 = ∇um + λym − (I + λ∂φβ)
−1 (∇um + λym) (5.5)

As in the total variation case, let us set:

vm =
um

µ
and τ =

µ

λ
and ym = pm (5.6)

(5.4) becomes:

{

vm = f
µ + div pm

(I + λ∂φβ)
(

λ(τ∇vm + pm − vm+1)
)

= λ(τ∇vm + pm)
(5.7)

Let us set:

wm+1 = τ∇vm + pm − pm+1 (5.8)

From the second line of (5.7), we get:

wm+1 + ∂φβ
(

λ(wm+1
)

= τ∇vm + pm (5.9)

But

∂φβ
(

λwm+1
)

=
λwm+1

√

β2 + |λwm+1|2
=

wm+1

√

β2

λ2 + |wm+1|2
(5.10)

We thus get from (5.9)

wm+1 +
wm+1

√

β2τ2

µ2 + |wm+1|2
= τ∇vm + pm (5.11)

Using the notations γ = βτ
µ , and Cm = τ∇vm + pm, the previous equation

becomes:

wm+1

(

1 +
1

√

γ2 + |wm+1|2

)

= Cm (5.12)

(5.12) is easily solved with a fixed point iteration. Indeed we have the following
result:

10

Proposition 5.2. Consider the sequence x0 = wm:

xk+1 = Cm

(

√

γ2 + |xk|2
1 +

√

γ2 + |xk|2

)

(5.13)

Then xk → wm+1 as k → +∞.
Bermudez and Moreno algorithm has already been used for smoothed total vari-

ation based restoration in [3]. The authors of [3] use a different approach then in this
paper. To solve (5.12), they take the square of both sides of (5.12), and they use a
Newton method to compute |wm+1|. They then compute wm+1 with (5.12). But with
such an approach, the authors of [3] report poor numerical results. We also tried this
approach, and we have seen the same poor results as in [3]. We therefore advocate
the use of the fixed point algorithm proposed here to solve (5.12), which we prove
to converge without further assumption (notice that another alternative would be to
solve directly (5.12) with Newton method). The final scheme to solve (5.1) is thus:

vm = f
µ + div pm

wm+1 =

1 + 1
r

β2τ2

µ2 +|wm+1|2

−1

(τ∇vm + pm)

pm+1 = τ∇vm + pm − wm+1

(5.14)

The second equation is solved with a fixed point iteration (5.13). We will see that in
practice, a single iteration is enough, and thus the second line of (5.14) reduces to:

wm+1 =

1 +
1

√

β2τ2

µ2 + |wm|2

−1

(τ∇vm + pm) (5.15)

Applying theorem 2.1, we have the following convergence result:
Proposition 5.3. If τ < 1

4 , then the sequence (vm, wm, pm) defined by scheme
(5.14) is such that vm → v, wm → w, and pm → p with µv solution of (5.1).

5.2. Interpretation of scheme (5.14). One first needs to remember that we
are interested in solving problem (5.1). Using the change of notation v = u/µ, solving
(5.1) is equivalent to solving:

inf
v

∫

√

β2

µ2
+ |∇v|2 +

1

2

∥

∥

∥

∥

f

u
− v

∥

∥

∥

∥

2

(5.16)

The associated Euler-equation is:

0 = v − f

u
− div

∇v
√

β2

µ2 + |∇v|2

 (5.17)

The most classical methods to solve this equation are the fixed step gradient
descent as in [39], and the quasi-Newton method (which can be seen also as semi-
quadratic regularization) as for instance in [15, 25, 1, 19, 17, 35]. The idea of the

11

quasi-Newton method is to linearize the non-linear term in the above equation, and
to consider an iterative scheme of the type:

0 = vm+1 −
f

u
− div

∇vm+1
√

β2

µ2 + |∇vm|2

 (5.18)

Here, we propose a different iterative scheme to solve (5.17).

0 = vm − f

u
− div pm (5.19)

with

pm =
∇zm

√

β2

µ2 + |∇zm|2
(5.20)

In the limit, we would like to have zm → ∇v. To update pm, we use the following
equation:

pm+1 = pm + τ
(

∇vm − zm+1
)

(5.21)

If (pm) converges, then vm → v with (5.19), and zm → ∇v with (5.21) as m →
+∞. The system of equations (5.19)-(5.20)-(5.21) can be rewritten into:

vm = f
µ + div pm

zm+1

τ + 1
r

β2

µ2 +|zm+1|2

 = τ∇vm + pm

pm+1 = pm + τ(∇vm − zm+1)

(5.22)

If we make the change of variable wm = zm/τ , then scheme (5.22) is exactly
(5.14), i.e. Bermudez-Moreno algorithm for solving problem (5.1).

5.3. Convergence of the fixed point iteration. We give here the proof of
proposition 5.2. The proof relies on Weizfeld method [40, 17, 27]. We adopt here the
presentation of [17] for Weizfeld method. Let us first introduce some notations. We
consider the following functional:

F (u) =
1

2
‖u− C‖2 + ‖(γ2 + |u|2)1/4‖2 (5.23)

We have:

∇F (u) = u− C +
u

√

γ2 + |u|2
(5.24)

Let us define:

A(u) = Id+
Id

√

γ2 + |u|2
(5.25)

12

Notice that u→ A(u) is continuous, and that λmin(A(u)) ≥ 1, where λmin(M) stands
for the smallest eigenvalue of M . Let us finally define:

G(v, u) = F (u) + 〈v − u,∇F (u)〉 +
1

2
〈v − u,A(u)(v − u)〉 (5.26)

In fact, this last functional defines a general Weizfeld method for the problem:

inf
u
F (u) (5.27)

Notice that since F is strictly convex and coercice, there exists a unique u solution
of (5.27), and u is the solution of:

∇F (u) = u

(

1 +
1

√

γ2 + |u|2

)

− C = 0 (5.28)

We now define the iteration of Weizfeld method:

um+1 = argmin
v

G(v, um) (5.29)

Since G is strictly convex and coercice, there exists a unique um+1 solution of
(5.29). It satisfies the Euler-Lagrange equation:

∇F (um) + 〈A(um)(um+1 − um)〉 = 0 (5.30)

i.e.:

um+1

(

1 +
1

√

γ2 + |um|2

)

= C (5.31)

which is precisely iteration (5.13).
Proposition 5.4. If u is fixed, then for all v we have: G(v, u) − F (v) ≥ 0.
Proof.
A standard computation leads to:

G(v, u) − F (v) = 〈u− v,
−1

2

u+ v
√

γ2 + |u|2
〉 +

∫

(

√

γ2 + |u|2 −
√

γ2 + |v|2
)

=

∫ −1

2

|u|2 − |v|2
√

γ2 + |u|2
+

∫

(

√

γ2 + |u|2 −
√

γ2 + |v|2
)

Using the notation a =
√

γ2 + |u|2 and b =
√

γ2 + |v|2, we get:

G(v, u) − F (v) =

∫ (−1

2

a− b

a
+ a− b

)

=

∫

(a+ b)2

2a
≥ 0 (5.32)

The following lemma holds:
Lemma 5.5. We have for all m:

F (um+1) ≤ F (um) (5.33)

13

and

lim
m→+∞

‖um+1 − um‖ = 0 (5.34)

Proof. From Proposition 5.4, we have F (um+1) ≤ G(um+1, um). But from (5.29),
we get G(um+1, um) ≤ G(um, um) = F (um). We thus deduce inequality (5.33).

We now concentrate on proving (5.34). From Proposition 5.4, we have:

F (um+1) ≤ G(um+1, um) = F (um) + 〈um+1 − um,∇F (um)〉

+
1

2
〈um+1 − um,A(um)(um+1 − um)〉

= F (um) − 1

2
〈um+1 − um,A(um)(um+1 − um)〉

We thus deduce that (since λmin(A(u)) ≥ 1):

1

2
‖um+1 − um‖2 ≤ 1

2
〈um+1 − um,∇F (um)〉 +

1

2
〈um+1 − um,A(um)(um+1 − um)〉

≤ F (um) − F (um+1)

We finally get that:

0 ≤ ‖um+1 − um‖2 ≤
√

2(F (um) − F (um+1)) (5.35)

We have just seen before that F (um) is a positive monotone decreasing sequence.
Hence F (um) is a convergent sequence, and in particular F (um) − F (um+1) → 0,
which concludes the proof.

We are now in position to prove the convergence of the fixed point iteration as
stated in Proposition 5.2:

Proof. From (5.31), one sees that um is uniformly bounded. Therefore, up to a
subsequence, um converges to some v. Moreover, from Lemma 5.5, we see that um+1

also converges to v. Passing to the limit in (5.31), we see that v = u where u is the
unique minimizer of (5.27). We conclude that the whole sequence um goes to u.

We end this section by stating a result about the convergence rate of the fixed
point algorithm (5.13). We denote by ũ the solution of Problem (5.27). We use the
following notations:

γm =
G(ũ, um) − F (ũ)

1
2 (ũ− um,A(um)(ũ− um))

(5.36)

and

η = 1 − λmin(A(ũ)−1∇2F (ũ)) (5.37)

Proposition 5.6.

1. F (um+1) − F (ũ) ≤ γm(F (um) − F (ũ)).
2. η < 1 and 0 ≤ γm ≤ η, for t sufficiently large. In particular, F (um) has a

linear convergence rate of at most η.
3. um is r-linearly convergent with a convergent rate of at most

√
η.

Proof. We refer the interested reader to the proof of Theorem 6.1 in [17].

14

6. Nesterov algorithms. We first recall Nesterov scheme in Section 6.1. It
has been proved to be very efficient in [41], and we have therefore decided to use it
as a reference algorithm. In Section 6.2, we use an improvement of these schemes
as recently introduced by Y. Nesterov in [33] to propose new efficient schemes. In
Section 6.3, we present another variation also based on results of [33].

6.1. Nesterov scheme. In [32, 31], Y. Nesterov proposes efficient schemes to
minimize functionals such as (3.1) or (5.1). We follow here the presentation of [41].
We consider the following minimization problem:

inf
u∈Q

E(u) (6.1)

where E is a convex Lipshitz differentiable function, and Q a convex closed set. We
denote by ũ a solution of (6.1). For this type of problem, it can be shown that no
algorithm (only using the values and gradients of E) has a better rate of convergence

than O
(

1√
ε

)

uniformly on all problems of the form (6.1). Moreover, in [32] is given

an O
(

1√
ε

)

algorithm for solving problem (6.1):

1. Set k = −1, v−1 = 0, x−1 ∈ Q, L Lipshitz constant of ∇E.
2. Set k = k + 1, and compute ηk = ∇E(xk).
3. Set yk = argminy∈Q

(

〈ηk, y − xk〉 + 1
2L‖y − xk‖2

)

.

4. Set vk = vk−1 + k+1
2 ηk.

5. Set zk = argminy∈Q
(

L
σ d(x) + 〈vk, z〉

)

.

6. Set xk+1 = 2
k+3zk + k+1

k+2yk.
Proposition 6.1. [32] The previous algorithm ensures that :

0 ≤ E(yk) − E(ũ) ≤ 4Ld(ũ)

σ(k + 1)(k + 2)
(6.2)

At step 3, ‖.‖ stands for any norm. At step 5, d is any convex function satisfying
d(x) ≥ σ

2 ‖x− x0‖2 for some x0 in Q.
Primal Nesterov algorithm. For β > 0, we remind the reader that we set φβ(u) =

∫ √

β2 + |∇u|2. Nesterov algorithm can be used to solve the following problem:

inf
u∈Kα

φβ(f + u) (6.3)

where Kα =
{

x ∈ L2 / ‖x‖2 ≤ α
}

.
This problem is equivalent to (5.1) (see [15] for a complete analysis). The advan-

tage of formulation (6.3) is that Nesterov’s scheme can directly be applied. See [41]
page 13 for a detailed implementation of this algorithm. We will refer to it as the
primal Nesterov algorithm. We just give here the sketch of the algorithm:

1. Set k = −1, v−1 = 0, x−1 = 0, L = ‖div ‖2/β = 8/β.

2. Set k = k + 1, and compute ηk = −div

(

∇(xk+f)√
β2+|∇(xk+f)|2

)

.

3. Set yk = PKα
(xk − ηk/L), with Kα =

{

x ∈ L2 / ‖x‖2 ≤ α
}

.

4. Set vk = vk−1 + k+1
2 ηk.

5. Set zk = PKα
(−vk/L).

6. Set xk+1 = 2
k+3zk + k+1

k+2yk.
7. The output of the algorithm is: u = ylim + f .
PKα

is the orthogonal projection over Kα.

15

Dual Nesterov algorithm. Of course, due to the non-differentiability in zero of the
total variation, Nesterov scheme cannot be applied directly to (3.1). The basic idea is
to apply Nesterov’s scheme to the dual version of (3.1), that is to: inff−u∈Gµ

1
2‖u‖2,

where Gµ is given by (3.11), i.e.:

inf
q∈K

E(q) (6.4)

where E(q) = 1
2‖f − µdiv q‖2 and K =

{

x ∈ L2 × L2 / ‖x‖ ≤ 1
}

. If we denote by ũ
the solution of (3.1), and by q̃ the solution of (6.4), we have ũ = f − µdiv q̃.

See [41] page 24 for a detailed implementation of this algorithm. We will refer to
it as the dual Nesterov algorithm. We just give here the sketch of the algorithm:

1. Set k = −1, v−1 = 0, x−1 = 0, L = µ‖div ‖2 = 8µ.
2. Set k = k + 1, and compute ηk = −∇ (f − µdiv (xk)).
3. Set yk = PK(xk − ηk/L), with K =

{

x ∈ L2 × L2 / ‖x‖ ≤ 1
}

.

4. Set vk = vk−1 + k+1
2 ηk.

5. Set zk = PK(−vk/L).
6. Set xk+1 = 2

k+3zk + k+1
k+2yk.

7. The output of the algorithm is: u = f − µdiv (ylim).
Notice that in the dual Nesterov algorithm, the set K is included in L2 ×L2; whereas
in the case of the primal Nesterov algorithm, the set Kα is embeded in L2.

In [41], very good numerical results are reported both for the primal and the
dual Nesterov algorithms. We have therefore decided to use them as reference in the
comparisons presented here-after.

6.2. Accelerated Nesterov algorithm. In [33], Y. Nesterov proposes a way
to speed up the minimization algorithms introduced in [31]. Consider the general
minimization problem

inf
u
E(u) + ψ(u) (6.5)

We set φ(u) = E(u) + ψ(u), and:

ψ(u) = χQ(u) =

{

0 if u ∈ Q
+∞ otherwise.

(6.6)

Problem (6.5) is therefore the same as (6.1). As previoulsy, E is a convex Lipshitz
differentiable function, and Q a convex closed set. We denote by ũ a solution of (6.5).
Moreover, in [33] is given an efficient algorithm for solving problem (6.5):

• Set k = 0, A0 = 0, v0 = 0, x0 ∈ Q, L0 = L Lipshitz constant of ∇E,
ψ0(x) = 1

2‖x− x0‖2. Set γu > 1 and γd ≥ 1.
• Set L = Lk.

REPEAT: Set a = 1+
√

1+4AkL
2L .

Set y = Akxk+avk

Ak+a , and compute TL(y).

If: 〈φ′(TL(y)), y − TL(y)〉 < 1
2L‖φ′(TL(y))‖2

2, then L = γuL.
UNTIL: 〈φ′(TL(y)), y − TL(y)〉 ≥ 1

2L‖φ′(TL(y))‖2
2

DEFINE yk = y, Mk = L, ak+1 = a, Ak+1 = Ak + ak+1,
Lk+1 = Mk/γd, xk+1 = TMk

(yk),
ψk+1(x) = ψk(x) + ak+1 (E(xk+1) + 〈∇E(xk+1), x− xk+1〉 + ψ(x)),
vk+1 = argminx ψk+1(x).

Output: the output of the algorithm is u = xlim.

16

In the above algorithm, we have used the following notations:

TL(y) = argmin
x∈Q

mL(y, x) (6.7)

with

mL(y, x) = E(y) + 〈∇E(y), x− y〉 +
L

2
‖x− y‖2 + ψ(x) (6.8)

Moreover, it is shown in [33] that

φ′(TL(y)) = L(y − TL(y)) + ∇E(TL(y)) −∇E(y) (6.9)

The following convergence result is shown in [33]:
Proposition 6.2. [33] Let LE the Lipshitz constant of ∇E. Assume that 0 <

L0 ≤ LE. Then the previous algorithm ensures that :

0 ≤ φ(xk) − φ(ũ) ≤ 4γuLE‖ũ− x0‖2

k2
(6.10)

where we recall that φ(u) = E(u) + ψ(u).
To apply this new algorithm, the only points to check are how to solve (6.7) and

how to compute vk. This is explained by the two following lemmas.
Lemma 6.3. The solution of (6.7) is given by:

TL(y) = PQ

(

y − 1

L
∇E(y)

)

(6.11)

with PQ orthogonal projection over Q.
Proof. It is easy to see that:

mL(y, x) = C(y) +
L

2

∥

∥

∥

∥

x−
(

y − 1

L
∇E(y)

)∥

∥

∥

∥

2

2

+ ψ(x) (6.12)

where C(y) is a function depending only on y. The result of the lemma follows from
the fact that ψ = χQ.

Lemma 6.4. vk = argminx ψk(x) is given by

vk = PQ

(

x0 −
k
∑

p=1

ap∇E(xp)

)

(6.13)

with PQ orthogonal projection over Q.
Proof. Remembering that ψ0(x) = 1

2‖x− x0‖2, it is easy to see that:

ψk(x) = C(k) +
k
∑

p=1

apψ(x) +
1

2

∥

∥

∥

∥

∥

x− x0 +
k
∑

p=1

ap∇E(xp)

∥

∥

∥

∥

∥

2

2

(6.14)

where C(k) is a function depending only on k. The result of the lemma follows from
the fact that ψ = χQ.

In practice, as proposed in [33], we use γu = γd = 2.

17

Application to problem (6.3). The above algorithm can directly be applied to
(6.3), with E(u) = φβ(u + f) =

∫ √

β2 + |∇(f + u)|2, and ψ(u) = χKα
(u), where

Kα =
{

x ∈ L2 / ‖x‖2 ≤ α
}

. Of course, on has: ∇E(u) = −div

(

∇(f+u)√
β2+|∇(f+u)|2

)

.

One just has to set x0 = 0, L = ‖div ‖2/β = 8/β. The solution is given by
f + xlim. Notice that here, the projection over Q = Kα is straightforward:

PKα
(x) = αx

max{α,‖x‖2} .

We will refer to this algorithm as the accelerated primal Nesterov algorithm.
Application to problem (3.1). The basic idea is to apply the accelerated Nesterov

scheme to the dual version of (3.1), that is to (6.4)), i.e.:

inf
q
E(q) + ψ(q) (6.15)

with E(q) = 1
2‖f−µdiv q‖2

2 and ψ(q) = χK(q) with K = {g ∈ L2×L2,
√

g2
1 + g2

2 ≤ 1}.
We therefore have: ∇E(q) = ∇(f − µdiv q).

One just has to set u0 = 0, L = µ‖div ‖2 = 8µ. The solution is given by
f − µdivxlim. Notice that here, the projection over Q = K is straightforward:
PK(x1, x2) = 1

max{1,‖x‖} (x1, x2)), with x = (x1, x2) and ‖x‖ =
√

x2
1 + x2

2.

We will refer to this algorithm as the accelerated dual Nesterov algorithm.

6.3. Variant for the accelerated Nesterov algorithm. In [33], Y. Nesterov
proposes in fact a more general algorithm than the one we have presented in Sec-
tion 6.2. We still consider the general minimization problem

inf
u
E(u) + ψ(u) (6.16)

But this time ψ is assumed to be a strongly convex function with parameter µψ > 0:
in the case when ψ is C2, it means that the smallest eigenvalue of ∇2ψ is µψ > 0.

We set φ(u) = E(u) + ψ(u). As previoulsy, E is a convex Lipshitz differentiable
function We denote by ũ a solution of (6.16). Moreover, in [33] is given an effi-
cient algorithm for solving problem (6.16): this is exactly the algorithm presented in
Section 6.2, the only difference being that in the step REPEAT, instead of setting

a = 1+
√

1+4AkL
2L , we set:

a =
b+

√
b2 + 4Akb

2
with b =

1 + µψAk
L

(6.17)

The following convergence result is shown in [33]:
Proposition 6.5. [33] Let LE the Lipshitz constant of E, and µψ the convexity

parameter of ψ. Assume that 0 < L0 ≤ LE. Then the previous algorithm ensures that
(6.10) still holds. Moreover, we also have:

0 ≤ φ(xk) − φ(ũ) ≤ γuLE‖ũ− x0‖2

(

1 +

√

µψ
8γuLE

)−2(k−1)

(6.18)

Notice that (6.9) still holds in this case. To apply this new algorithm, the only
points to check are how to solve (6.7) and how to compute vk. We particularize the
problem, and we consider (5.1), i.e. in (6.16) we take:

E(u) = φβ(u+ f) =

∫

√

β2 + |∇(f + u)|2 and ψ(u) =
1

2µ
‖u‖2 (6.19)

18

Notice that we have:

LE = ‖div ‖2/β = 8/β and µψ =
1

µ
(6.20)

The two following lemmas hold.
Lemma 6.6. The solution of (6.7) is given by:

TL(y) =
Ly −∇E(y)

L+ 1
µ

(6.21)

Proof. It is easy to see that:

∇x(mL(y, x)) = ∇E(y) + L(x− y) +
x

µ
(6.22)

Lemma 6.7. vk = argminx ψk(x) is given by:

vk =
1

1 +
P

k
p=1

ap

µ

(

x0 −
k
∑

p=1

ap∇E(xp)

)

(6.23)

Proof. Remembering that ψ0(x) = 1
2‖x− x0‖2, it is easy to see that:

ψk(x) =
1

2
‖x− x0‖2 +

k
∑

p=1

apψ(x) +

k
∑

p=1

ap (E(xp) + 〈∇E(xp), x− xp〉) (6.24)

In the next section, we will refer to this algorithm as the variant of the accelerated
primal Nesterov algorithm. In practice, we take x0 = 0, γu = 2 and γd = 2.

7. Numerical examples. In this section, we present some numerical examples
with the schemes introduced in this paper. In Section 7.1, we consider the case of
smoothed total variation regularization, and in Section 7.2 we are interested in total
variation regularization.

7.1. Smoothed total variation regularization. We illustrate here the effi-
ciency of scheme (5.14) to solve (5.1). This new scheme (5.14) has the advantages
of being simple and stable. Moreover, it seems quite fast (less then 2 seconds for
a 256×256 image). On Figure 7.1, we show the restoration results we get on the
noisy images of Figure 3.1. The curvature parameter β of (5.14) is fixed to 10. As
expected, the textures are better preserved with this model than with total variation
regularization (compare with Figure 3.2), but the edges are not as sharp.

We now want to see the speed of convergence of (5.14), and how it depends on
the number of iterations in (5.13), and on the parameter β. For different values of β,
we compute an ideal image by running 10 000 iterations of (5.14) with 500 iterations
for the fixed point (5.13). We can then compute at each iteration the L2 error of
a computed image with (5.14) and the target ideal image. On Figure 7.2, we show
the behaviour of the algorithm with respect to the number of iterations for the fixed
point iteration, for different values of β. Clearly, it shows that 1 iteration is a very
good choice: this will be our choice until the end of the paper. It is also clear that
the convergence of (5.14) is much faster for large values of β.

19

Fig. 7.1. Smoothed total variation based restoration of the noisy images presented on the bottom
row of Figure 3.1 with scheme (5.14) with β = 10. In both cases, the Lagrange multiplier is µ = 30.

0 50 100 150 200 250 300 350 400
10

−1

10
0

10
1

10
2

iterations

er
ro

r

iterations fixed point=1
iterations fixed point=200

0 20 40 60 80 100 120 140 160 180 200
10

−1

10
0

10
1

10
2

iterations

er
ro

r

iterations fixed point=1
iterations fixed point=200

(a) β = 0.1 (b) β = 10

Fig. 7.2. Comparisons of the number of iterations for the fixed point (5.12) in algorithm (5.14):
1 or 200. The L2 error is given with respect to the number of iterations of (5.14) (vertical logarithmic
scale). Graph (a) is with β = 0.1: after 60 iterations of (5.14), both errors are the same. Graph
(a) is with β = 10: after 10 iterations of (5.14), both errors are the same. We thus advocate to use
only 1 iteration for the fixed point iteration (5.13).

On Figure 7.3, we compare our new algorithm (5.14) with the primal Nesterov
algorithm, the accelerated primal Nesterov algorithm, and the variant of the acceler-
ated primal Nesterov algorithm (notice that since algorithm (5.14) uses a fixed point
iteration, we refer to it as fixed point algorithm in the caption of Figure 7.3). The
convergence speed of these three last algorithms depends on the Lipshitz constant of
the energy to minimize: the smaller this constant, the faster the method. It thus
means here the larger β, the faster the method. Notice that here the images we con-
sider have their range in [0, 255] (while for instance in [41] the images are normalized
in [0, 1]: this has some impact on the values β proposed).

To make comparisons, we compute the L2-norm of the difference between the
original image and the ideal image (obtained by running (5.14) with 10 000 iterations).
We then set this L2-norm as the constraint in the primal Nesterov algorithm and the
accelerated primal Nesterov algorithm . It is to be noticed that such a choice makes a
small bias in favor of our scheme (5.14). However, the obtained results are sufficiently
convincing to forget this bias.

It can be seen that, the larger β, the faster the algorithms. For large values of

20

0 100 200 300 400 500 600 700 800
10

−1

10
0

10
1

10
2

iterations

er
ro

r

fixed point
Nesterov primal
accelerated
accelerated (variant)

100 200 300 400 500 600 700 800

10
−0.53

10
−0.51

10
−0.49

10
−0.47

10
−0.45

10
−0.43

10
−0.41

iterations

er
ro

r

fixed point
accelerated
accelerated (variant)

(a) β = 0.1 (iterations 1-800) (b) β = 0.1 (iterations 138-800)

0 50 100 150 200 250 300 350 400
10

−1

10
0

10
1

10
2

iterations

er
ro

r

fixed point
Nesterov primal
accelerated
accelerated (variant)

50 100 150 200 250 300 350 400

10
−0.539

10
−0.538

10
−0.537

iterations

er
ro

r

fixed point
accelerated
accelerated (variant)

(c) β = 1 (iterations 1-400) (d) β = 1 (iterations 97-400)

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

iterations

er
ro

r

fixed point
Nesterov primal
accelerated
accelerated (variant)

0 10 20 30 40 50 60 70 80
10

−1

10
0

10
1

10
2

iterations

er
ro

r

fixed point
Nesterov primal
accelerated
accelerated (variant)

(e) β = 10 (iterations 1-100) (f) β = 25 (iterations 0-80)

Fig. 7.3. Speed of convergence: the L2 error is given with respect to the number of iterations
(vertical logarithmic scale). Graph (a) and (b) is with β = 0.1; Graph (c) and (d) with β = 1; Graph
(e) with β = 10; Graph (f) with β = 25. The range of the image is between 0 and 255. On graphs
(a), (c), (d), (e) and (f), from top to bottom are the speed of convergence of the fixed point based
algorithm (5.14), the speed of the primal Nesterov algorithm, the speed of the accelerated primal
Nesterov algorithm, the speed of the variant of the accelerated primal Nesterov algorithm. On graphs
(b) and (d), the primal Nesterov algorithm is not shown. Notice that time for 1 iteration of the
primal Nesterov algorithm is the same as for 1 iteration of the fixed point based algorithm (5.14).
The accelerated primal Nesterov algorithm and its variant are between 4 and 5 times slower per
iteration. To get a fast approximation, the fixed point based algorithm (5.14) seems to be the best
choice (the accuracy is good enough for image restoration). To get a higly accurate solution, the
variant of the accelerated Nesterov scheme seems to be the most efficient.

21

β, all the algorithms are fast. However, when β goes down to zero, then scheme
(5.14) seems to bring a significant increase in speed of convergence for getting a good
approximation. It seems indeed that (5.14) can lead to a good approximation of
the minimizer with few iterations. However, when one is interested in getting a very
accurate solution, then the variant of the accelerated primal Nesterov algorithm seems
to be the best choice. This is in accordance with the result of Proposition 6.5. Notice
that both scheme (5.14) and the primal Nesterov algorithm have almost the same
computation time per iteration, while the accelerated primal Nesterov algorithm and
its variant are between 4 and 5 times slower per iteration.

Notice that the quality of the restored image obtained with scheme (5.14) after
a few iterations (10 iterations for β = 25, 20 iterations for β = 10, 80 iterations for
β = 1, 200 iterations for β = 0.1) is visually very good. For a restoration purpose,
there is no need for the accuracy of the variant of the accelerated primal Nesterov
algorithm. It is more important to have a fast approximation than a slow and very
accurate solution.

7.2. Total variation regularization. Here we consider problem (3.1). We
want to compare five different algorithms. The first one is the original projection
algorithm of [13]: we refer to it as Chambolle projection algorithm. We use τ = 0.249
in (4.6). The second one is the modification of this algorithm as proposed in [14],
and which we proved to be Bermudez-Moreno algorithm (3.13) in the case of problem
(3.1): since it is Uzawa method [20] applied to problem (3.1), we refer to it as Uzawa
algorithm. We use τ = 0.249 in (3.13). The third algorithm we use here is the dual
Nesterov algorithm, as proposed in [41]. Motivated by the results of [32] and [41], we
use it as a reference algorithm. The fourth algorithm we use here is the accelerated
dual Nesterov algorithm of [33]. The fifth algorithm we use is our new scheme (5.14).
Since it uses a fixed point algorithm, we refer to it as fixed point method.

For a given image and a given regularization parameter µ, a reference ideal image
is computed by running 10 000 iterations with the dual Nesterov algorithm. Here, the
bias will therefore be in favour of the dual Nesterov algorithm. However, we think
that the results are convincing enough to forget this bias.

A convergence speed result is presented on Figure 7.4: we give the L2-norm of
ũ − un, where un is the computed image at iteration n, and ũ the ideal image to
obtain. As can be seen on Figure 7.4, the dual Nesterov algorithm is faster then
Uzawa algorithm, which is itself faster than Chambolle projection algorithm. The
accelerated dual Nesterov algorithm seems to be the best choice to get a higly accu-
rate solution. However, 1 iteration with the accelerated dual Nesterov algorithm is
around 4 times slower than with the dual Nesterov algorithm: the dual Nesterov al-
gorithm seems thus a good compromise when one is interested in getting a very good
approximation. Nevertheless, 1 iteration with the dual Nesterov algorithm is around
2 times slower than with Uzawa, Chambolle, or scheme (5.14) (while all three have the
same computation time per iteration). For typical image restoration problems (with
Gaussian noise), (3.13) seems 30% faster then (4.6). Algorithm (5.14) seems to be a
good alternative when one is only interested in getting an approximation with a small
number of iterations

In [41], the authors explain that the dual Nesterov algorithm is much faster then
the projected gradient method (3.13) (Uzawa algorithm) for total variation regular-
ization. We confirm that it is indeed much faster when one is interested in computing
an accurate solution. Notice also that in [41], the comparison criterion used is the
value of the total variation of the computed image. This is indeed the quantity which

22

0 100 200 300 400 500 600
10

−1

10
0

10
1

10
2

iterations

er
ro

r

fixed point
Chambolle
Uzawa
Nesterov dual
Accelerated

(a) Iterations 1 to 600

100 150 200 250 300 350 400 450 500 550 600

10
−0.52

10
−0.5

10
−0.48

10
−0.46

10
−0.44

10
−0.42

iterations

er
ro

r

Nesterov dual
Accelerated

(b) Iterations 100 to 600

Fig. 7.4. Speed of convergence: the L2 norm of the error is given at each iteration (vertical
logarithmic scale). (a) gives the speed of convergence for iterations 1 to 600, and (b) for iterations
100 to 600. On graph (a), from top to bottom are the speed of convergence of the fixed point
based algorithm (5.14) with β = 0.1, the speed of convergence of Chambolle projection algorithm
(4.6) with τ = 0.249, the speed of Uzawa scheme (3.13) with τ = 0.249, the speed of the dual
Nesterov algorithm, and the speed of the accelerated dual Nesterov algorithm. On graph (b) are
only shown the dual Nesterov algorithm, and the accelerated dual Nesterov algorithm. 1 iteration
with the accelerated dual Nesterov algorithm is around 4 times slower than with the dual Nesterov
algorithm. But 1 iteration with the dual Nesterov algorithm is itself around 2 times slower than with
Uzawa, Chambolle, or scheme (5.14) (while all three have the same computation time per iteration).
To get a higly accurate solution, the accelerated dual Nesterov algorithm seems to be the best choice.
However, the dual Nesterov algorithm seems to be the best compromise when one is only interested
in getting a good solution.

23

is controlled in Nesterov’s approach for solving 3.1 (see Proposition 6.1). Here, the
criterion is the L2 difference of the computed solution for some iteration with the ideal
solution. Figure 7.4 is surely in favor of the approach developed in [41]. However, the
difference during the first iterations is not that large, and thus the projected gradient
algorithm (3.13) (Uzawa algorithm) can still be considered as a good method when
one is only interested in getting an approximation of the solution.

Dual Nesterov algorithm for solving (5.1). In view of Figure 7.4, one should be
tempted to use the dual Nesterov algorithm for solving (5.1). It is easy to compute
the dual problem. If we denote by ũ the solution of (5.1), then we have ũ = f−µdiv p̃
with p̃ solution of:

inf
p∈K

1

2µ
‖µdiv p− f‖2 − β

∫

√

1 − |p|2 (7.1)

where K =
{

p ∈ L2 × L2 / ‖p‖∞ ≤ 1
}

. However, the gradient of the functional in
(7.1) is not Lipshitz, and we therefore cannot use directly the dual Nesterov algorithm.

Practical remark. All the experiments presented in this paper were run with
Matlab, on a laptop with a processor at 2.0 GHz.

Appendix A. Proof of convergence of Bermudez-Moreno algorithm. In
this section, we follow [8] and [26]. Our goal is to give the reader some intuition on
why the result of Theorem 2.1 holds. We remind the reader that we use the notations:
Hλ = I−Lλ

λ , with Lλ = (I + λH)−1 and H = ∂ψ with ψ proper convex lower semi
continuous function. We will use the next lemma:

Lemma A.1.

1

λ2
‖Lλ(v1) − Lλ(v2)‖2

+ ‖Hλ(v1) −Hλ(v2)‖2 ≤ 1

λ2
‖v1 − v2‖2 (A.1)

Proof. This is an immediate consequence of definitions (2.5).
Problem (2.1) is related to:

∀z , 〈Ay, z − y〉 + ψ(z) − ψ(y) ≥ 〈f, z − y〉 (A.2)

The relation is given by the next lemma (whose proof is straightforward (see [26]
proposition 2.2 page 37)):

Lemma A.2. y is solution of (A.2) if and only if y is solution of (2.1).
We remind the reader that B∂φ(Λ−1

E B∗y) = ∂ψ(y) [26]. Problem (A.2) is related
to the subdifferential inclusion:

f −Ay ∈ B∂φ(Λ−1
E B∗y) (A.3)

The relation is given by the next proposition:
Proposition A.3. y is solution of (A.3) if and only if y is solution of (A.2).
Proof. The fact that y solution of (A.3) implies that y solution of (A.2) is a direct

consequence of the definition of the subdifferential of a convex function [26]. The
controverse is more complicated, and we refer the reader to chapter II.3 of [26] for a
detailed proof.

We will make use of the next lemma (whose proof is given in [8]):
Lemma A.4. H maximal monotone operator. Then the two following conditions

are equivalent:
(i) u ∈ H(v)

24

(ii) u = Hλ(v + λu)
An immediate consequence of the previous lemma is the following result:
Proposition A.5. y is a solution of (A.3) if and only if (y, u) is a solution of:

{

Ay = f −Bu
u = Hλ

(

Λ−1
E B∗y + λu

) (A.4)

We are now in position to prove Theorem 2.1.
Proof. From (A.1), we get:

1

λ2

∥

∥Lλ(Λ
−1
E B∗y + λu) − Lλ(Λ

−1
E B∗ym + λum)

∥

∥

2

E
+ ‖u− um+1‖2

E

≤ 1

λ2
‖Λ−1

E B∗(y − ym) + λ(u− um)‖2
E

= ‖u− um‖2
E +

2

λ
〈Λ−1

E B∗(y − ym), u− um〉E +
1

λ2
‖Λ−1

E B∗(y − ym)‖2
E (A.5)

But if we substract the first line of (2.7) to the first line of (A.4), we have:
A(y − ym) = B(um − u). Taking the inner product with (y − ym), we deduce:

〈A(y − ym), y − ym〉 = 〈B(um − u), y − ym〉 = 〈um − u,Λ−1
E B∗(y − ym)〉 (A.6)

Hence:

〈u− um,Λ−1
E B∗(y − ym)〉 = 〈−A(y − ym), y − ym〉

≤ −α‖y − ym‖2
E

≤ −α
‖B∗‖2

‖Λ−1
E B∗(y − ym)‖2

E (A.7)

We now deduce from (A.5) that:

1

λ2

∥

∥Lλ(Λ
−1
E B∗y + λu) − Lλ(Λ

−1
E B∗ym + λum)

∥

∥

2

E
+ ‖u− um+1‖2

E

≤ 1

λ

(

1

λ
− 2α

‖B∗‖2

)

‖Λ−1
E B∗(y − ym)‖2 + ‖u− um‖2

E (A.8)

We eventually get that, since 0 < 1
λ < 2α

‖B∗‖2 , as long as ym 6= y: ‖u − um+1‖E <

‖u− um‖E . We deduce that ‖u− um‖2
E is a convergent sequence in R. Thus passing

to the limit in (A.8), we get: limm→+∞ ‖Λ−1
E B∗(y − ym)‖E = 0. Using (A.7), we

eventually get that ym → y.
There remains to prove that um also converges. We first remark that now, passing

to the limit in (A.8), we get: Lλ(Λ
−1
E B∗ym + λum) → Lλ(Λ

−1
E B∗y + λu). But since

Lλ = I−λHλ, we get with the second line of (A.4) that: Lλ(Λ
−1
E B∗y+λu) = Λ−1

E B∗y.
From the second line of (2.7), we get:

um+1 = Hλ(Λ
−1
E B∗ym+λum) = um+

1

λ

(

Λ−1
E B∗ym − Lλ(Λ

−1
E B∗ym + λum)

)

(A.9)

Passing to the limit, we eventually get that: limm→+∞{um+1 − um} = 0. Now we
can conclude that um ⇀ u in E weak, since the application

v ∈ E → Hλ(Λ
−1
E B∗y(v) + λv) (A.10)

with y(v) solution of: Ay = f −Bv, is non expansive (see [36] Corollary 4 p.199).

25

Acknowledgements. The author would like to thank Vicent Caselles for fruitful
discussions about Bermudez-Moreno algorithm. The author also would like to thank
Antonin Chambolle for some very useful comments about a first draft of this pa-
per. Finally, the author would like to thank Pierre Weiss for some very interesting
discussions about Nesterov’s schemes.

REFERENCES

[1] R. Acar and C. Vogel. Analysis of total variation penalty methods for ill-posed problems.
Inverse Problems, 10:1217–1229, 1994.

[2] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variations and free discontinuity
problems. Oxford mathematical monographs. Oxford University Press, 2000.

[3] A. Almansa and. C. Ballester, V. Caselles, and G. Haro. A TV based restoration model with
local constraints. Journal of Scientific Computing, 2008. To appear.

[4] F. Andreu-Vaillo, V. Caselles, and J. M. Mazon. Parabolic quasilinear equations minimizing
linear growth functionals, volume 223 of Progress in Mathematics. Birkhauser, 2002.

[5] G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing, volume 147 of
Applied Mathematical Sciences. Springer-Verlag, 2002.

[6] J.F. Aujol and G. Gilboa. Constrained and SNR-based solutions for TV-Hilbert space image
denoising. Journal of Mathematical Imaging and Vision, 26(1-2):217–237, 2006.

[7] J. Bect, L. Blanc-Féraud, G. Aubert, and A. Chambolle. A l1-unified variational framework
for image restoration. In ECCV 04, volume 3024 of Lecture Notes in Computer Sciences,
pages 1–13, 2004.

[8] A. Bermudez and C. Moreno. Duality methods for solving variational inequalities. Comp. and
Maths. with Appls., 7:43–58, 1981.

[9] J. Bioucas-Dias and M. Figueiredo. Thresholding algorithms for image restoration. IEEE
Transactions on Image processing, 16(12):2980–2991, 2007.

[10] X. Bresson and T. Chan. Fast minimization of the vectorial total variation norm and applica-
tions to color image processing. UCLA CAM report, 07-25, 2007.

[11] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces
de Hilbert. Norht Holland, 1973.

[12] H. Brezis. Analyse fonctionnelle. Théorie et applications. Mathématiques appliquées pour la
maitrise. Masson, 1983.

[13] A. Chambolle. An algorithm for total variation minimization and applications. JMIV, 20:89–97,
2004.

[14] A. Chambolle. Total variation minimization and a class of binary MRF models. In EMMCVPR
05, volume 3757 of Lecture Notes in Computer Sciences, pages 136–152, 2005.

[15] A. Chambolle and P.L. Lions. Image recovery via total variation minimization and related
problems. Numerische Mathematik, 76(3):167–188, 1997.

[16] T. Chan, G. Golub, and P. Mulet. A nonlinear primal-dual method for total variation-based
image restoration. SIAM Journal on Scientific Computing, 20(6):1964–1977, 1999.

[17] T. Chan and P. Mulet. On the convergence of the lagged diffusity fixed point method in total
variation image restoration. SIAM Journal on Numerical Analysis, 36(2):354–367, 1999.

[18] T. Chan and J. Shen. Image processing and analysis - Variational, PDE, wavelet, and stochas-
tic methods. SIAM Publisher, 2005.

[19] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud. Deterministic edge-preserving
regularization in computed imaging. IEEE Transactions on Image Processing, 6(2), 2007.

[20] P.G. Ciarlet. Introduction à l’analyse numérique matricielle et à l’optimisation. Masson, 1982.
[21] P.L. Combettes and J. Pesquet. Image restoration subject to a total variation constraint. IEEE

Transactions on Image Processing, 13(9):1213–1222, 2004.
[22] P.L. Combettes and V. Wajs. Signal recovery by proximal forward-backward splitting. SIAM

Journal on Multiscale Modeling and Simulation, 4(4):1168–1200, 2005.
[23] J. Darbon and M. Sigelle. Image restoration with discrete constrained total variation part I:

Fast and exact optimization. Journal of Mathematical Imaging and Vision, 26(3):277–291,
2006.

[24] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Communications on Pure and Applied Mathematics,
57:1413–1457, 2004.

[25] D. Dobson and C. Vogel. Convergence of an iterative method for total variation denoising.
SIAM Journal on Numerical Analysis, 34:1779–1791, 1997.

26

[26] I. Ekeland and R. Temam. Analyse convexe et problèmes variationnels, volume 224 of
Grundlehren der mathematischen Wissenschaften. Dunod, second edition, 1983.

[27] G. Facciolo, A. Almansa, J-F. Aujol, and V. Caselles. Irregular to regular sampling, denoising
and deconvolution, 2008. Submitted.

[28] H. Fu, M. Ng, M. Nikolova, and J. Barlow. Efficient minimization methods of mixed l1-l1 and
l2-l1 norms for image restoration. SIAM Journal on Scientific computing, 27(6):1881–1902,
2006.

[29] D. Goldfarb and W. Yin. Second-order cone programming methods for total variation based
image restoration. SIAM Journal on Scientific Computing, 27(2):622–645, 2005.

[30] Yves Meyer. Oscillating patterns in image processing and in some nonlinear evolution equations,
March 2001. The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures.

[31] Y. Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer Academic
Publishers, 2004.

[32] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming (A),
103(1):127–152, 2005.

[33] Y. Nesterov. Gradient methods for minimizing composite objective function. Core discussion
paper, 2007.

[34] M.K. Ng, L. Qi, Y.F. Yang, and Y. Huang. On semismooth Newton methods for total variation
minimization. Journal of Mathematical Imaging and Vision, 27:265–276, 2007.

[35] M. Nikolova and R. Chan. The equivalence of half-quadratic minimization and the gradient
linearization iteration. IEEE Transactions on Image Processing, 16(6):1623–1627, 2007.

[36] A. Pazy. On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space.
Isr. J. Math., 26:197–204, 1977.

[37] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations,
volume 44 of Applied Mathematical Sciences. Springer-Verlag, 1983.

[38] B. Polyak. Introduction to optimization. Optimization Software. Translation Series in Mathe-
matics and Engineering, 2004.

[39] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Physica D, 60:259–268, 1992.

[40] E. Weisfeld. Sur le point pour lequel la somme des distances de points donns est minimum.
Thoko Mathematics Journal, 43:355–386, 1937.

[41] P. Weiss, G. Aubert, and L. Blanc-Feraud. Efficient schemes for total variation mini-
mization under constraints in image processing. INRIA Research Report, 6260, 2007.
http://hal.inria.fr/docs/00/16/62/30/PDF/RR-6260.pdf.

