Turbulence measurements within fluid mud layers in a macrotidal estuary

Aldo Sottolichio, Patrice Bretel Dept. of Geology and Oceanography, University of Bordeaux, France

David Hurther, Herve Michallet Laboratory of Geophysical and Industrial Fluid Flows (LEGI), Grenoble, France

Nicolas Gratiot IRD, French Guyana, France

Fluid mud in estuaries

Le Hir et al, 1996

- High variability of concentration (0,1 to 100 kg/m3)
- Complex fluid-sediment interaction (turbulence damping)
- Big issue : measurements of velocities in the bottom layer

Aims

 to provide relevant instrumentation to study turbulence-sediment interaction in highly turbid waters

- \rightarrow shear profile
- \rightarrow flocculation
- \rightarrow bottom shear stress
- \rightarrow provide values of w'c' \rightarrow erosion fluxes

This work :

- to test an acoustic doppler velocimeter in natural conditions (initially lab oriented)

 \rightarrow comparison of some mean values

ADVP : Acoustic Doppler Velocity Profiler

- developed by LEGI Grenoble
- monostatic version (one emitor-receptor transducer)
- measures u' along the axis of the beam

- tested in laboratory conditions for SSC up to 150 kg/m3 (Gratiot et al., CSR, 2000)

The experiment The Gironde estuary (SW France)

The experiment The Gironde estuary (SW France)

Previous observations of fluid mud (Le Hir et al., 2000)

The experiment Instrumental deployment

ADV Vector Nortek

OBS turbidimeters

ADV Profiler

Measurements by 5mn burts, every 20mn (OBS and ADV Vector) 3mn burts every 10mn (ADVP)

The experiment Instrumental deployment

Mean horizontal velocity (from Vector)

Mean horizontal velocity (from Vector)

Mean SSC time evolution

No fluid mud detected during the entire experiment, but high concentrations, near 40 kg/m3

ADVP response during ebb phase : rejection rate

election of 12 profiles (3 first hours of ebb tide)

configurations

	short profile	long profile
frequency	7800 Hz	3900 Hz
profil length	8,25 cm	18 cm
resolution	3 mm	6 mm
nb of points	16	24
vel res (cm/s)	130	65

good agreement between the 2 configurations

ADVP response during ebb phase : rejection rate

Rejection rate approaches 50% near the bottom \rightarrow acceptable value for high SSC

Profiles 13 and 14 : decrease of rejection rate

ADVP response during ebb phase Velocity and turbulence profiles (vertical component)

ADVP response during ebb phase Velocity and turbulence profiles

ADVP response during ebb phase

Turbulence profiles

Weak rejection rates during high turbulence periods :

Turbulence level is the dominant factor in Doppler signal quality rather than concentration

ADVP vs ADV Nortek

ADVP turbulence response vs SSC

Further analysis and developments

ADVP worked only during part of the ebb phase \rightarrow entire tidal cycle

SSC too weak

- \rightarrow tests under higher concentratons
- \rightarrow SSC along the ADVP profile ?

Poor information of the water column \rightarrow more intrumentation, continuous measurements \rightarrow SSC fully validation

→ Bi-static version (measurement of u' and w')

High-resolution vertical profiles of turbulence intensity and mean velocity have been obtained on a muddy bottom layer, under high SSC conditions

The ADVP response has been qualitatively correlated to events during the ebb tidal phase in the Gironde estuary

The ADV Profiler (originally lab oriented) is suitable for use in the field \rightarrow improvements on reliability, need of fully validation

The accurate profiling allows to *measure* erosion flux (w'c') and bottom shear stress

... Thanks for your attention