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Asymptotic behaviour of a rapidly rotating fluid with random
stationary surface stress

Anne-Laure Dalibard!?

17th March 2008

Abstract

The goal of this paper is to describe in mathematical terms the effect on the ocean circulation of
a random stationary wind stress at the surface of the ocean. In order to avoid singular behaviour,
non-resonance hypotheses are introduced, which ensure that the time frequencies of the wind-stress
are different from that of the Earth rotation. We prove a convergence result for a three-dimensional
Navier-Stokes-Coriolis system in a bounded domain, in the asymptotic of fast rotation and vanishing
vertical viscosity, and we exhibit some random and stationary boundary layer profiles. At last, an
average equation is derived for the limit system in the case of the non-resonant torus.
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1 Introduction

The goal of this paper is to study mathematically a problem arising in ocean dynamics, namely the
behaviour of ocean currents under stimulation by the wind. Following the books by Pedlosky [E, @]
and Gill [, the velocity of the fluid in the ocean, denoted by wu, is described by the incompressible
Navier-Stokes equations in three dimensions, in rotating coordinates, with Coriolis force

p(Ou+u-Vu+2Qe Au) — ApApu — A,0°u = Vp, t>0, (z,9,2) € U(t) C R3,
divu = 0.

In the above equation, A, and A, are respectively the horizontal and vertical turbulent viscosities, p is
the pressure inside the fluid, p is the homogeneous and constant density, and (e is the rotation vector
of the Earth (2 > 0 and e is a unitary vector, parallel to the pole axis, oriented from South to North).
U(t) is an open set in R3, depending on the time variable ¢: indeed, the interface between the ocean and
the atmosphere may be moving, and is described in general by a free surface z = h(t).

In order to focus on the influence of the wind, let us now make a series of crude modeling hypotheses
on the boundary conditions: first, we assume that the lateral boundaries of the ocean are flat, and that
the velocity u satisfies periodic boundary conditions in the horizontal variable. We also neglect the
fluctuations of the free surface, namely, we assume that h(t) = aD, with a, D positive constants. This
approximation, although highly unrealistic, is justified by the fact that the behaviour of the fluid around
the surface is in general very turbulent. Hence, as emphasized in [E], only a modelization is tractable
and meaningful. Let us also mention that the justification of this rigid lid approximation starting from
a free surface is open from a mathematical point of view. At last, we assume that the bottom of the
ocean is flat; the case of a nonflat bottom has already been investigated by several authors, and we refer
to (B, [ [L4] for more details regarding that point.
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As a consequence, we assume that U(t) = [0,a1L) % [0,a2L) x [0,aD], where L > 0 is the typical
horizontal lengthscale, and u satisfies the following boundary conditions

u is periodic in the horizontal variable with period [0,a;L) x [0, asL),
ujz—0 = 0 (no slip condition at the bottom of the ocean),

O:Up|z—qp = Aoo  (influence of the wind),

u3|z—qp = 0 (no flux condition at the surface).

Let us now reduce the problem by scaling arguments. First, we neglect the effect of the horizontal
component of the rotation vector e, which is classical in a geophysical framework (see [E]) Furthermore,
we assume that the motion occurs at midlatitudes (far from the equator), and on a “small” geographical
zone, meaning L < Ry, where R is the earth radius. In this setting, it is legitimate to use the so-called

f-plane approzimation (see [ﬂ]), and to neglect the fluctuations of the quantity es - e with respect to the
latitude. In rescaled variables, the equation becomes

1
ou®Y +u®? - Vu¥ + geg ANusY —nApu®’ — V@?us"’ + Vp =0, (1.1)

where
U An LA,
=——, = —, Vi= ———
“Topa T pUD?’

and U is the typical horizontal relative velocity of the fluid. We are interested in the limit
r<l, exl, n~1.

Such a scaling of parameters seems convenient for instance for the mesoscale eddies that have been
observed in western Atlantic (see [Ld]). One has indeed

U~5cm-s !, L~100km, D ~4kmand Q~ 1074}
which leads to e ~ 5 x 1073. Possible values for the turbulent viscosities given in [E] are
Ap ~107cm? st and A, ~ 10cm? - s7!

so that v = 1073 . Moreover, the amplitude of the wind stress at the surface of the ocean may be very
large; thus we set

AopSoD

Bi= 2,

where Sy is the amplitude of the wind velocity, and we study the limit 3 — oco. Equation (D) is now
supplemented with the boundary conditions

&V _
Ul = 0,
&,V — £
aZuh|z:a - 60— ’ (12)
&,V —
u3|z:a 0,

and with periodic boundary conditions in the horizontal variable z;. In the rest of the paper, we set
T? :=[0,a1) x 0,az). The assumptions on the wind-stress o will be made clear later on.

1.1 General results on rotating fluids

Let us now explain heuristically what is the expected form of u** at the limit. Assume for instance that
v = ¢ and that the family ©5" admits a two-scale limit in time, say u°, as ¢ — 0; we thereby mean that

Vo € C3( x [0,00) x T? x [0, a))

t
lim/ / Y(t,xp, 2)p <t, -, Tp, z> dt dzy, dz
=0 T2 x[0,a] €

/ / / u®(t, 7,2, 2) (t, T, 2, 2) dt dr dxy, dz
o Jo Jr2x[0,0]



Rigorous definitions and properties of two-scale convergence can be found in the paper by G. Allaire [EI]
Then, assuming that u®* is bounded in a “good” functional space, we may pass to the two-scale limit
in ([L.1), which yields
Oul +es Aul =0,
divu® = 0, (1.3)
“g\z:o = ug|z:a =0.

Hence we introduce the vector space
H = {u € L3(T? x [0,4a])?, divu =0, U3|2—0 = U3|2maq = 0} )

We denote by P the orthogonal projection on H in L?(T? x [0,a])3, and we set L := P(es A -). Notice
that P differs from the Leray projector in general, because of the no-flux conditions at the bottom and
the surface of the fluid. It is known (see for instance [[]) that there exists a hilbertian basis (N) keZ3\ {0}
of H such that for all &,

K
]P)(eg A Nk) = i AN with A\ = |]j|
where k' = (27k1 /a1, 2wka /a2, wks/a). The vector Ny is given by
N cos(ksz)ny (k)
Ni(zp, 2) = e*non | cos(khz)na (k)
sin(kbz)ns (k)
where )
k) = ———(ikh, + kA
nl() \/@|k/’%|(7/2+ 1 k)
k) = ————(—ik] + k4 i
na(k) \/WWH( ik} + kyr) if kp, # 0,
|k
k) = j—dhl
s (k) Z,/a1a2a|k:’|
and L
sgn
nl(k) _ g ( 3)
\/a1aoa
na(k) = i else.
\/a1aoa
We infer from equation ([[.3) that u®(¢,7) € H almost everywhere, and that there exists a function

u9 such that
u’ = exp(—7L)uY = Z ”"“T Nk,u%>Nk.
k
Consequently the main effect of the Coriolis operator L 1s to create waves, propagating at frequencies
of order e~!. The goal is now to identify the function u}, which in general depends on the slow time
variable t. Th1s is achieved thanks to filtering methods, developed independently by S. Schochet in [@
and E. Grenier in E] Precisely, setting
(o4 t (o4
u;” = exp EL us

it is proved in E @] in the case of Dirichlet boundary conditions at z = 0 and z = a that u7"” converges
strongly in L ([0, 00) x T? x [0, a]) towards a function u} . Moreover, the function u? satisfies a nonlinear
equation of the type

dpuy + Q(up,up) — Apuy =8, (1.4)

where the quadratic term Q(u?, u%) corresponds to the filtering of oscillations in the non-linear term
u®? - Vu®", and the source term S to the filtering of oscillations in lower order terms in u*". The



quadratic term Q is defined as follows (see [[J], Proposition 6.1 and [[l4]): for wy,ws € HNH(T? x [0, d]),

2Q(wy,ws) = w— lim {exp <EL> P (exp <EL> wi - Vexp <EL> wg)
e—0 g g e
exp (EL) P (exp (—EL) wy - V exp (—EL) wl)}
€ € €

= Z Z (Ni, w1) (Ni, w2) agi,mNi, (1.5)

meZs3 (k,1)EKXm

where the resonant set Ky, is defined for m € Z3\ {0, } by

kp + 1, =
Ko i= {(k,l) e 75, A’; i ;l :T’“ and 3y € {—1,1}2, niks + nals = mg}

and the coefficient ay m, by
ak,t;m = (N, (N - V)Ni) + (N, (N - V) Ny) -

In order that the equation on u? is defined unambiguously, the value of the source term S has to be
specified. In the present case, we have

S = \/gsB(u%) —vfBSr(0),

where Sp : H — H is a linear continuous non-negative operator (see [f, i, [[4]) recalled in formula ([.9)
below, and St (o) depends on the time oscillations in the wind-stress o. Thus, in the next paragraph, we
precise the assumptions on the wind-stress ¢¢, and we define the source term S7. In the above formula
and throughout the article, the subscripts B and T refer to top and bottom, respectively.

1.2 Definition of the limit equation

Let us first introduce the hypotheses on the time-dependance of the wind velocity o°. Since the Coriolis
operator generates oscillations at frequencies of order e 7!, it seems natural to consider functions ¢ which
depend on the fast time variable t/e. The case where this dependance is periodic, of almost periodic,
has been investigated by N. Masmoudi in [@] in the non-resonant case, that is, when the frequencies of
the wind-stress are different from +1. The results of [@] were then extended by the author and Laure
Saint-Raymond in [E] In fact, it is proved in [E] that when the wind-stress oscillates with the same
frequency as the rotation of the Earth (i.e. 41), the typical size of the boundary layers is much larger
than the one of the classical Ekman layers. Moreover, a resonant forcing overall destabilizes the whole
fluid for large times. Here, we wish to avoid these singular behaviours, and thus to consider a more
general non-resonant setting.

Let (E,F, mg) be a probability space, and let (6;),cr be a measure preserving group transformation
acting on E. We assume that the function o can be written

t
of(t,xp) =0 (t,—,zh;w>, t>0, 2, €T? weE,
€

and that the function o is stationary, i.e.
o(t, 7+ s,xp;w) = o(t, 7, xph; 0sw)

almost everywhere.

The periodic setting can be embedded the stationary (ergodic) setting in the following way (see ):
take F = R/Z ~ [0,1), and let mqg be the Lebesgue measure on E. Define the group transformation
(97')7€R by

;s=s+7 modZ V(r,s)eRxE.



Then it is easily checked that 6, preserves the measure mg for all 7 € R. Thus the periodic setting
is a particular case of the stationary setting; the almost periodic setting can also be embedded in the
stationary setting, but the construction is more involved, and we refer the interested reader to .

The interest of the stationary setting, in addition of its generalization of the almost periodic one, lies
in the introduction of some randomness in equation (@) Hence, we also expect to recover a random
function in the limit €, v — 0. In fact, we will prove rigorously a strong convergence result of this kind;
additionally, we will characterize the average behaviour of u®" in the limit. Thus, one of the secondary
goals of this paper is to derive some averaging techniques adapted to highly rotating fluids, which may
be of interest in the framework of a mathematical theory of weak turbulence.

Since the function o is not an almost periodic function, we now introduce a notion of approximate
spectral decomposition of o. For a > 0, let

Ga(N) = % /Rexp(—a|7'|)e_"’\70(7') dr, (1.6)

and define the family of functions (04)a>0 by the formula

0a(T) ::/Rexp( al\)ePT G4 (N) dA. (1.7)

It is proved in the Appendix A (see Lemma |l ) that the family (04)a>0 converges towards o, as o — 0,
in L ([0,00) x [0,00), L=(E, L*(T?))). We assume that there exists s > 4 such that the following
non-resonance hypotheses hold:

(H1) Forall a >0, T > 0, 6o € L>([0,T] x E, L'(Ry, H*(T?))), and

VT > 0, Su% ||a’a||Loo([01T]XE7L1(]R1H5(']1‘2))) < 4-00.
a>

(H2) There exist neighbourhoods Vi of +1, independent of o > 0, such that

VI'>0, lim sup [[Ga(N)|ze(o,1)xE,He(T2)) = 0.
a=0 eV, UV

We refer to Remark below for some details about the meaning of hypotheses (H1)-(H2) for
almost periodic functions. Let un now explain how random oscillations are filtered:

Proposition 1. Let ¢ € L™®(R,, L*(E)) be stationary, and let X € R. Then the family
I :
dp weE— 5/ o(t,w)e”dr, >0
0

converges, almost surely and in L*(E), towards a function denoted by Ex[¢] € L*(E) as § — oo. More-
over, Ex[P] satisfies the equality _
Exlg)(07w) = Exl@](w)e™"

almost surely in w, for oll T € R.
Additionally, if o satisfies (H1)-(H2), then

5,\ [O’] =0 (1.8)
for X\ in a neighbourhood of +1.

Proposition [l| is proved in Appendix B, except property (@), which will be proved in the course of
the proof page
With the above definition of £y, the source term St is defined by

St(o)(t) = M > Zlk#o Ik’ ()\kk:' —i(kp)Y) - Eong [6(t -, k)] N,

kez3 =+



where
1

ai1az Jr2

G(t, 1, kpyw) = o(t,xn; w)e_ik;f“ dzy,.

Notice that St (o) is a random function in general, and is well-defined in L{° ([0, 00) x E, L?(T? x [0,a))

thanks to (H1)-(H2) provided o € L>([0,T] x [0,00) x E, H'/2(T?)) for all T > 0.
e We now state an existence result for the limit system, based on the analysis in [ To that end, we
introduce the anisotropic Sobolev spaces H*® by

H* = {ue L*(T? x [0,a3)), Vo € N?, |ay| < 5,]ag| < §', Vi 023u € L?}.
Then the following result holds:

Proposition 2. Let v,e,3 > 0 be arbitrary.
Let ug € HN H®Y, and let o € L2 ([0,00)t, L2([0,00), x E, H3/2(T?)).

Assume that the hypotheses (H1)-(H2) hold.
Then St(o) € L$C.([0,00)s, L (E, H%1)), and consequently, the equation

loc

Orw + Q(w, w) — Apw + \/gSB(w) + vBSr(o) =0, (1.9)

Wit=0 = U0

has a unique solution w € L>(E,C([0,00), HNH%)) such that Vyu belongs to L>°(E, L2 ([0, 00), H%1)).

loc

Remark 1.1. (i) Notice that the function w is random in general because of the source term St.

(ii) In [{], Proposition J is proved for S; = 0 (see Proposition 6.5 p. 145). As stressed by the authors,
the result is non trivial since the system (@) is similar to a three-dimensional Navier-Stokes equation,
with a vanishing vertical viscosity. The proof relies on two arguments: first, a careful analysis of the
structure of the quadratic term @Q shows that the limit equation is in fact close to a two-dimensional one.
Second, the divergence-free property enables one to recover estimates on the vertical derivatives on the
third component of the velocity field, and thus to bypass the difficulties due to the lack of smoothing in
the vertical direction.

In fact, the proof of Propositionﬁ can easily be adapted from the one of Proposition 6.5 in [, and is
therefore left to the reader. The method remains exactly the same, the only difference being the presence
of the source term St in the energy estimates. This does not rise any particular difficulty, thanks to the
assumptions on o.

1.3 Convergence result

Theorem 1. Assume that v = O(¢), and that \/evf = O(1).
Let 0 € LS. ([0,00)¢, L=([0,00), x E, H3?(T?)) such that (H1)-(H2) are satisfied, and 9.0 €
HY(T?,L°°([0,00); % [0,00), x E)).
Let us" € L®(E,C([0,00), L2) N L2 ([0, 00), H')) be a weak solution of ([L.1)), supplemented with the
conditions (@) and the initial data uTt’io =ug € H x H%'. Let w be the solution of (@) Then for all

T >0,
t
u®Y — exp (_EL) w— 0
in L2([0,T] x E, HY%) N L*°([0,T], L*(E x T? x [0, a])).

In the case of the nonresonant torus (see (|L.11]) below), it is likely that the hypothesis v = O(e)
can be relaxed. Indeed, in this case, the equation on w decouples between a nonlinear equation on the
vertical average of w on the one hand, and a linear equation on the vertical modes of w on the other (see
paragraph @ below, together with Section E) Moreover, it can be proved that the purely horizontal
modes of w decay exponentially in time at a rate exp(f\/y_/st), and the rate of decay does not depend
on the particular horizontal mode considered. Thus, in this particular case, the regime v > ¢ may be
investigated, using arguments similar to those developed in [d].



Remark 1.2. Let us now explain the meaning of hypotheses (H1)-(H2) for almost periodic functions.
Let ky, € Z?, and let ¢ € L>([0,00) x T?) such that

d(r ) = e 3 Gyt
pneM

where M is a countable set. The fact that ¢ as only one horizontal Fourier mode is not crucial, but
merely helps focusing on the time spectrum. Then it can be checked easily that for all a > 0,

2
o7+ (=

Bahvn) = 5t 3 ()

neM

In particular, there exists a constant C' > 0 such that for all s > 0,

1ol @uecry < C(1+ [kal )gw’“”)\/n@au(u—xﬁdk
< CO+ |kl > ‘éﬁ(u)}-

pneM

Thus hypothesis (H1) is satisfied provided ‘qg(,u)‘ < 0.
On the other hand, assume that

ni=d(M,{-1,1}) > 0, (1.10)

i.e. that there are no frequencies in a neighbourhood of +1. Then if A € (-1 —n/2,—1+n/2)U (1 —
n/2,1+n/2), we have

A—ul>=3 Ve,

and consequently, setting V* := (+1 — /2, +1 4+ 1/2), we have, for all s > 0

Da(N) C(s)-a.

su <
By [0y = 007

AeV-UVt

Thus hypothesis () entails (H2). Additionally, hypothesis ([L.1() cannot be easily relaxed, as shows
the following construction: consider the sequence u, := 1 — 1/n, and choose a sequence of positive
numbers ¢,, such that

For 7 € R, set

Then for all a > 0, for all £ > 0

Fe G @
In particular, R
lim. @ (p1r) = +00

for all k, and thus condition (H2) is not satisfied.



1.4 Average behaviour at the limit

We have already stressed that the solution w of equation (E) is, in general, a random function. Thus
one may wonder whether the average behaviour of w at the limit can be characterized. In general, the
nonlinearity of equation (@) prevents us from deriving an equation, or a system of equations, on the
expectation of w, which we denote by E[w]. However, when the torus is non resonant, equation (E)
decouples, and in this case we are able to exhibit a system of equations satisfied by E[w].

Let us first recall a few definitions:

Definition 1 (Non-resonant torus). The torus T? := T? x [—a, a) is said to be non-resonant if the
following property holds: for all (k,n) € Z3\ {0} x Z3\ {0},

(I € {11, m A + Ak — 13X, = 0) = kgng = 0. (1.11)

We refer to [ﬂ] for a discussion of hypothesis ([I.11) and its consequences. Let us mention that )
holds for almost all values of (a,a1,as) € (0,00)%. When the torus is non-resonant, the structure of the
quadratic form @ defined by (@) is particularly simple, and the system (@) can be decoupled into
a two-dimensional Navier-Stokes equation on the vertical average of w, and a linear equation on the
z-dependent part (see [E]) The advantage of this decomposition in our case is that the vertical average
of Sr(o) is deterministic, at least when the group transformation (6,),>0 acting on E is ergodic (see

[Ba)-

Definition 2 (Ergodic transformation group). Let (6;)cr be a group of invariant transformations
acting on the probability space (E, A, mg). The group is said to be ergodic if for all A € A,

(0:ACA V7 eR)=mp(A) =0o0r mo(A) =1.
We now state the result on the average behaviour at the limit:

Proposition 3. Assume that the transformation group (0;)rcr is ergodic.
Let ug € H N HOY, and let ¢ € L32([0,00)s, L([0, 00), x E, H3?(T?)) such that the hypotheses of

loc
Theorem [ are satisfied. Let w € L>(E,C([0,00),H N H%Y)N L2 (]0,00), HY)) be the unique solution

of equation ([.9). e
Let @ = (wp,0) € C([0,00), L*(T?)) N L?

2 ([0,00), H1(T?)) be the solution of the 2D-Navier-Stokes
equation

v 1
Oywy, + Wy, - Vywy — Apwy, + \/jiwh + vGE [ST(U)]h = Vb,
€ ﬁaalag

divpwy, =0,
1 [
wh|t:0($h) = —/ UOJL(ZC}“Z) dz.
as 0
Then the following properties hold:
1. Ase,v — 0 as in Theorem E, we have
us’ —w in L*([0,T] x T? x [0,a] x E).
In particular, the weak limit of u®" is a deterministic function.
2. Assume additionally that the torus T3 is non resonant. Then
E[w] = @ + w,

where W solves a linear deterministic equation

O + 2Q (W, W) — Ap + \/gSB(w) =0,

Wit=0 = Up — W¢=0-



1.5 Strategy of proof of Theorem i

The proof relies on the construction of an approximate solution, obtained as the sum of some interior

terms -the largest of which is exp(—7/eL)w(t) -, and some boundary layer terms which restore the

horizontal boundary conditions violated by the interior terms. We refer to the works by N. Masmoudi

[L3, [[4), N. Masmoudi and E. Grenier [[[d], N. Masmoudi and F. Rousset [, and F. Rousset [[L§ for an

extensive study of boundary layers in rotating fluids, or in incompressible fluids with vanishing vertical

viscosity for %] We emphasize that in fine, all terms will be small in L? norm, except exp(—7/eL)w(t).
Following [] (Chapter 7), let us assume that as e,v — 0,

usv =~ umt 4 ’U,BL,

vl e, 1 in (1.12)
P A gp tJrngLer t,o7

where

. t . t
u™(t, o, 2) = U (t, —,xh,z> , Pt ap,2) =P (t, —,x,y,z) ,
€ €
t — t
UBL(f,:Ch,Z):uT (ta_awh;a z) +UB (ta_axhaf)a
€ n € n

t a—z t z
pBL(tazhaz) =PpT (tv 1 Lh; ) +pB (tv 1 Lh; _) .
€ n € n

Above, n is a small parameter that will be chosen later on. The function ur(t, 7, zp, () is assumed to
vanish as ( — oo (same for pr,pp,ug).

We then plug the Ansatz (|1.19) into equation (m), and identify the different powers of €. In general,
there is a coupling between ™ and uB":

: indeed, we have seen that it is natural to expect that
U(th) = eXp(iTL)w(t)a

at first order, and thus «™* does not match the horizontal boundary conditions in general. As a conse-
quence, the value of u'™ at the boundary has to be taken into account when constructing the boundary
layer term uPY. On the other hand, because of the divergence-free constraint, the third component of
uPY does not vanish at the boundary, which means that a small amount of fluid may enter or leave
the interior of the domain. This phenomenon is called Ekman suction, and gives rise to a source term
(called the Ekman pumping term) in the equation satisfied by u"*. This leads to some sort of “loop”
construction, in which the boundary layer and interior terms are constructed one after the other.

Rather than following this construction step by step, we first explain how a generic boundary layer
term is constructed, given arbitrary boundary conditions on the horizontal component of the velocity.
We shall see that in general, the vertical component of the boundary layer term does not vanish at
the boundary. Thus, in the third section, we explain how a generic interior term u'™ is constructed,
depending on the initial data, and on arbitrary Dirichlet boundary conditions for the vertical component
of the velocity. In the fourth section, we detail how the approximate solution is obtained, and the fifth
section is devoted to the proof of convergence thanks to energy estimates. At last, we prove Proposition
E in the sixth section.

2 The boundary layer operator

In this section, we construct a linear boundary layer operator, which maps boundary conditions on the
horizontal component of the velocity onto boundary layer terms. The boundary conditions considered
here are of three types:

e Stationary Neumann boundary conditions at the surface:
a BL _ t .
Zuh|Z:a - 6CT,h tagazhmw )

where cr (¢, 7, 7, y,w) is a stationary function of 7, T?-periodic with respect to xy,.

In this case, we expect up" to be of order ng||cr,n||oo in L.



e Stationary Dirichlet boundary conditions at the bottom:
BL  _ " t
uh|z:0 = CB,h ’ Eazhdw )
where cp (t, T, z) is a stationary function of 7, T?-periodic with respect to zp. In this case, we

expect up" to be of order ||cg pl|s in L.

e Almost periodic Dirichlet boundary conditions at the bottom:

t
BL
uh\z:O = CB,h (ta ga Th |,

where the function cp j is almost periodic, and such that its frequencies are the eigenvalues of the
operator L. Hence we consider functions cp,p, of the type

Iy _ L/
cB,h(ta T, Tp) = Z 6Bﬁh(t, k)e“ch'zhefz/\k'r, A = 7ﬁ

kEZ3 ,k#£0

. (2.1)

Once again, we expect ubl to be of order ||cp pl|oo in L.

The divergence-free condition entails that the third component of uB" is given by the following
formulas:

urz(() = U/C divpur,,(¢')dc’,
upz(() = 77/ divpur,p(¢')d¢’.
¢

Thus urs = OW2|lernllwi=), ups = Olles.n|lwi~). At last, in order to be consistent with ([L.19),
we assume that the pressure inside the boundary layer is given by

1 5 1 a—=z 1 z
PR P = —pr +-pB|—);
€ € n € n

where pr = O(nl[crpnlle); PB = O(l|cB 1 |o0)-

2.1 Stationary Neumann boundary conditions at the top

The construction of boundary layers with stationary boundary conditions is the main novelty of this
section. We focus on the boundary layer at the top of the fluid, that is, around z = a, and we set

a—z
7 .

¢=

Then the pressure term in the third component of ([.1) is of order ||er.n||o, Whereas the lowest order
term in the left-hand side is of order n?||cz.p||p1.. Thus, since 7 is small, we infer

Ocpr =0,

and since pr vanishes at infinity, we have pBY = 0: at first order, the pressure does not vary in the
boundary layer. Thus, we now focus on the horizontal component of ur, which is a solution of

0. (uT_,1> B V_iag (uT,1> + <UT,2) =0, (2_2)
ur,2 n ur,2 ur, 1

aCUT,hK:O = _nﬁCT,h(Tvxayaw)a (2-3)

UT h|¢=+o00 = 0.

10



We now choose 7 so that all the terms in (R.9) are of the same order, that is,
n=ve.

Moreover, since cr,, is a stationary function of time, it seems natural to look for stationary solutions of

(B.9), and thus for fundamental solutions @1, @2 of (R.9) in the following sense: ¢; (i = 1,2) is a solution
of (R.2) in the sense of distributions and satisfies (R.4]), and

Depric—o = do(r) ((1)) o Ocpape=o = do(t) ((1))

where &g denotes the Dirac mass at 7 = 0. If we can construct ¢; and o satisfying the above conditions,
then a good candidate for ur is

ur (b, T, 2, G w) = —y/vel Z / er,i(t, m— s, xp;w)e;(s)ds.
je{1,2y 70

Hence we now define 1, 2. Since the fundamental solution of the heat equation is known, let us make
the following change of unknow function (see [[I4]):

I{]i = 84 [eiiT (gﬁjJ + 7:(,0]'12(,0]'12 F ’L'gﬁjyl.)] s _j = 1, 2.
Then, setting eli = (1, F4), e%t := (&1, 1), we infer that HJi = Geji, where G satisfies

9,G—-9:G=0, 7>0,(>0,
Gle=o(7) = do(7), (2.5)
G|C:+oo == 0

The boundary condition at ¢ = 0 should be understood as follows: for all ¢ € Cp(R), for all 7 > 0

i | [ ot = )66 s = (o),

¢—0*
It can be checked (see Chapter 4, section 1 in [[LT]) that

¢

4-2
Wexp(—— f0r7->0, C>0,

G(r, Q) = =

is a solution of (.5), which leads to
a{@j (Ta C) = [e_iTH;r (Ta C) + e+iTH; (Ta C)]

= %G(T, <) [e_”e;' + e+iTej_} )

N =

Unfortunately, when we integrate this formula with respect to ¢ in order to obtain an explicit expression
for ur p, the convolution kernel thus obtained is

1 2 —iT T —
@i (1,¢) = ~ iy exp (_E) [e e;r +e® €; 1,

and is not integrable near 7 = 4-0c0. Hence, in the spirit of [@], we consider an approximate corrector in
the boundary layer: for § > 0, we set

NS ¢
G(;(T,C)—\/ET?)/2 exp —47—67' .

11



Then the corresponding corrector is given by

—B\/ev Z / ¢)exp(—ds)er,; (-, 7 — s,;w) ds (2.6)

Je{1, 2}

ug“,h('vTv ) Caw>

2
75 e ( %) (cxn % ik ) (o7 — 5, w)e~PEiods,

The approximate corrector u5T satisfies the exact boundary conditions at ( = 0, and equation @) up
to an error term of order & N
5 2.6 § )
aq—UTﬁh — 8<uTﬂh + (uTyh) + 5“T,h = 0.

The third component of u5T is then given by

“T 3(¢Q) = —Vv / lehUT ho

which yields

ve e . . —dstis
'U/g“,3(',7',',<,w) = \/52/0 ® (%) (dlvth,h$“‘Otth,h)('aT_Sa'aw)e o5k dS,
+

where ¢ is defined by ¢'(¢) = exp (—%), o(400) = 0.
In horizontal Fourier variables, we have

u5T73(t,T,xh,(, = VEB Z Z ik Ih/ < )CTh(t — 5, kp,w)e 5 s (2.7)

keZ2 +

where

o (kn) = iky, - e (kn) & (kg - e (kn).
We define the operator BJ. by

t a—z
B(s t7 2 = 5 t7_a y T — )
rlern](t zn, 2;w) UT( - Th v w)

where u{. is defined by (.9)-(2.7).

We now give an estimate on the boundary layer term computed above when assumptions (H1)-(H2)
are satisfied. The proof is postponed to paragraph @

Proposition 4. Assume that cr, € L®([0,00) x R, x E x T?) N L>®(E x [0,00) x T?,C(R;)), and
that cpp, satisfies (H1)-(H2). Then for all T > 0, there exists a constant Cp > 0, such that for all
5, l/7 57 ﬂ > 07

5 5 =
| |uT’ CG§UT| |L°°([O,T] xR xT2x[0,00)¢ X E) < Crverp, (2'8)

5 5 =
||, CaCUT|‘L"O([O,T]X]R,.XE,LQ([O,oo)g,Hl(’]I‘z))) < Cryevp. (2.9)

2.2 Stationary Dirichlet boundary conditions at the bottom

The construction is the same as for Neumann boundary conditions, and is in fact more simple because we
need not integrate with respect to the variable ¢. Thus, with the same notations as above, the boundary
layer term at the top is given by

1 & .
ul p (b7, w0, G w) = 5 Z / Gs(s,Q) [e™™ef +e J”se] Jer;(t,m— s @, y;w) ds, (2.10)
0

12



and

U(SB,B(tv Ty Th, Cv UJ)

o <1 2 _
= Vjﬂ- Z Zelkh-zh/ % exp <i—s) é;h(.ﬂ— —s, khvw)efés:tzsds. (211)
0

khEZ2 +

The same estimates as in Proposition E hold. The corresponding operator is denoted by B3*'.

2.3 Almost-periodic Dirichlet boundary conditions at the bottom

In this case, the computation has already been performed by several authors (see for instance [B, );
hence we will merely briefly recall the method and the expression of u%. Unlike in @, no singular
behaviour occurs for kj, # 0 because there is no resonant forcing on the non-homogeneous horizontal
modes, meaning that A\ # £1 when kj, # 0. For k;, = 0, the frequency Ay is equal to the frequency of
rotation of the Earth (i.e. |\x| = 1) and thus we use the so-called “stationary correctors” defined in [d]
in that case.

As in the top boundary layer, we have pp = 0, and thus the function up j satisfies the evolution
equation (E), together with the boundary conditions

uB,h(t7T7:L'haC = 0) = CB,h (t7T7‘Th)
= Y epalt k)etiTrem T (2.12)
kEZ3 k40
u%,h(thv Thy C = +OO) = 0. (213)

The decomposition () leads us to search for a corrector up satisfying

up h = g UB,h k>

keZ3

where each term ug j,  satisfies (2.19) and (.9), and

uB hkic=0(t T, 2n) = ¢ n(t, k)e_i’\kTeik;l‘””h.
The periodicity in time of the boundary condition prompts us to choose up ;1 as a periodic function of
7, with frequency A;. Also, it is classical to seek up p 1 as an exponentially decaying function of (; the
rate of decay is then dictated by the equation. The precise expression of upg j, k is the following (see ):
First case: kp # 0.

In this case, up n,k is an exact solution of (@), and is equal to

up hi(t, 7, 2,y,¢) = Z wf (t; w)e*”‘”*ik%'%*nfé (2.14)
+

where

144
moo= \/lq:/\kﬁv
1 (égyl(t,k) +icpalt, k)) _epalt k) icpa(t k) ( 1 )

£ (4. [
wi (hw) = 2 \Cpa(t k) Ficpa(t k) 2 i

The vertical part of the boundary layer is then given by
1 . g
UB,B,k(tv T, %, Y, C) = VEev Z n_iZk;I : w]:gl: (t, w)eizAkT+1kh.Ihin§<- (215)
+

Second case: kp = 0.
In this case, the construction of the stationary correctors in [ proves that there are indeed boundary

13



layers, but which are of order v/vt, and not v/ev in general. Thus the size of the boundary layer depends
(slowly) on time.

First, notice that if kj, = 0, then —\; = sgn(ks) = £1. As in the first case, we decompose ég (¢, k)
onto the basis (1, £3) :

N[ —

epa(tk) =35> (¢paltk) Ficpa(t k) <i1@) :

+

As a consequence, we have

> epn(t,0,ks)e” ™ = ag(t)e'” C) +a_(t)e " ( 1.)

—1
ks €Z*

+ e (1) +r-me (}).

where
ar(t) = > (Ba(t,0,ks) Fitpa(t,0,ks)),
k3,sgn(ks)==1
’Yﬂ:(t) = Z (éB,l(tﬂ07k3>iiéB,Q(tﬂoka))'

k3,sgn(ks)==1

The terms v+e®™ (1, Fi) give rise to a classical boundary layer term, namely

Zvi(t)ei”_”ic (;Z) ., with n* =1+4.
+

For the terms oy e (1, i), we rather use the following Ansatz (see [{])

W, 2) = (ﬁ) zi:ai(t)eﬂ% <il) . (2.16)

In order that ustat

be such that

is an approximate solution of (the linear part of) equation (E), the function 1 must

—5(X) —9(X) =0,
Yix=0 =1,

which yields
u2

o) [ ()

With this definition, 4**?*(¢) vanishes outside a layer of size v/vt localized near the bottom of the fluid.
Henlcle usta is an approximate solution of the linear part of equation ([[.1]), and ulsza:ta is exponentially
small.

We define the operator By by

V4
\VEV
t z +it—pt = 1
= — _ € Ve
Z UB.h k <t7 2 Th \/5_1/> + Z'Y:I:(t)e <$z>

+ uSR(t o, 2).

t
By canl(t,zn,2) = up (ta =, Th, ) + u ¥ (t, wp, 2)
g

We now give some estimates on the boundary layer terms constructed in this paragraph:

14



Lemma 2.1. Let up be defined by (R.14)-(R.18) and u**** by (R.14). Then the following estimates hold,
for allt >0

N

2 |k

lup.n(t), COcunn()l Lo (0,00),,L2(T2x [0,00)c)) < C Z [e5.4 (8, F) M“@"Q ’
kez?,
kn#0
lup.n(t), gacuB’h(t)HLm([Om)TXTZX[O’OO){) <C Z len(t, k)],
kez®,
k0
2
R 2 [KIP
lup,3(t); COcusa(t)ll L ((0,00),L2(12x[0,00))) < CVEV Z .08, K| M“{:g' 7
kez?,
kn#0
||UB,3(t)a Ca(uBB(t)||L°°([O,oo)><']1‘2><[07oo)) < C\/El/ Z |k| |éB,h(t; k)'a
kez?,
k0
and
™), 200" B)l| 2papo,apy < CODYH 3 1en(t0,ks)],
ks €Z*
Husmt(t), Zazusmt(t)HLoo(']I‘2><[O,a]) <C Z |6B(t70,k3)|.
k3 €Z*

The proof of the above Lemma is left to the reader. Notice that according to the definition of n,f, we

have L
c% <|ngF| <1 VkeZl

2.4 Estimates on the boundary layer terms

This section is devoted to the proof of Proposition E

We focus on the horizontal component of ud.; the vertical one is treated with similar arguments. Recall
that u‘;T’ , 1s given by (@), in order to simplify the notation, we denote by ¢ the horizontal boundary
condition ¢r 5, and we set cti=c+ict.

First, we write

o 1 2 .
Ufls“,h(-,T,.aCa-) = \/\/1;_5_7?2/0 ﬁexp (_% _68) Ci(',T—S,-)eiZS ds
_ Jep | e\ . Csss
) mg/o e (=) - (2.17)
o 1 2 -

The term (2.1§) can easily be evaluated thanks to Lemma El in the Appendix; notice that since the
convergence given in Lemma [I| is not uniform with respect to 7 € [0, 00), we cannot derive an estimate
in L*°([0,00).) at this stage. Hence we keep the variable 7 for the time being; there exists a constant
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C > 0 and a number s > 1 such that for all 7 > 0, R > 0,

> 1 ¢ + 4+ +is
/0 %exp(—g—és) (c —ca)(-,T—s,-,w)e ds

L= ([0,T)x E,L>°(T?))

R 2
1 ¢
< C||CCa||L°°([0,T]xEx[T—R,T],HS(W))/0 ﬁexp <4—S55> ds (2.19)
+ Cle | e (-5 - s)
|| 2 —F=€&Xp|—-~ —0s) as
L= (0 TIxR xT2x ) [ 7 P75
C
< g”c_Ca||L°°([O,T]><E><[‘rfR,‘r],HS('Jl‘?))
exp(—0R)
+ Cllelloo,r)xr, xr2xB) 5 :

Above, we have used the Sobolev embedding H*(T?) C L>(T?) for s > 1. Choosing R = §~2, we deduce
that

> 1 C2 + + +is
‘/0 %exp <4—S5s) (c fca)(~,7'—s,~,w)e ds

L>=([0,T]x E,L>(T?))

1
exp (—3)
< EIIC*0a||Loo([o,T]xEx[PJAZ,T],Hs(W)) +C s
As for the term (R.17), recalling the definition of ¢, we have
oo 1 2 .

/0 7 exp (_E - 55) (T —s,,w)er ds (2.20)

) 1 2 . )
= / — e “PMexp (—C— — 55) éi(, A, -,w)e”‘(T—S)ei“ d\ ds. (2.21)

o Jr VS 4s

We first evaluate

P (L8 oo g
0o Vs 4s .

We split the integral into two parts, one going from s = 0 to s = 1, and the other from s = 1 to s = 0.
It is obvious that for all { > 0,6 > 0, A € R,

! 1 §2 —(8+i(A£1))
i(A£1))s d
/0 \/g xp ( 4S> c y

Integrating by parts the second integral, we obtain

| ¢? 1

<1

¢ —(5+i(A£1))s
il > i 5 d
V- exp ( S )€ S

_ 1 ¢
T S+ihx) P (_Z)

_;/ooi 1_£ exp _Q_Q e~ (BHIOAEL)s g (2.23)
2066 +i(A£ 1)) ), 53 2s 4s ' '

We are now ready to derive the L™ estimate; the function

2 )
z»—><1x—>ex4
2

is bounded on R. Hence, gathering (2.22)) and (), we deduce that there exists a constant C' such that
forall ( > 0,6 >0,\€R,

/Ooiexp ¢ o~ (HOAED)s g
0o Vs 4s

16

1
6 +iAE£1)|]°

§C’[1+



Inserting this inequality in (), we obtain

/Ooiexp ,§_2,55 (T —s,,w)eT® ds
O \/g 48 « Y y

He(T2)
1
< C eI e I T — = A - d)\
- /]Re HTESTCE 0] €a (A )| e ey
1
< ¢ o « > ! 5(T2 TS L /Yy — 1\ Aa '7)\5'5 s (T2 d\
< SICJYP||U+, || Loo(B,L1 (R, 5 (T ))Jr/vi TR S0 Iéa( w)ll g (T2) ]
40 [ ealh ) X
R\ V%

< C

Sup||éa||L°°(E,L1(]R,HS(’]I‘2)) + sup ||éa()‘)|H5(’]I‘2)1n(5)‘| .
[ eV
Above, we have used the following facts: there exists a constant ¢; > 0 such that

6+iAFL > AFL > YAeR\ Ve,

and there exists another constant ¢y > 0 such that

1 +1+co 1
/ - < A< Ch(5).
Vi |5+Z(

AFDI 7 Jiime, 02+ (1+N)2

We deduce that for all & > 0, for all § > 0, 7 > 0,

| ‘uéT,h(T)‘ ’Loo([o,T]xWx[o,oo)qu)

_1
< Cyevp 1+w1

1 R
+ Cyevp lg”cca||L°°([O,T]><[T51,T]><E,H5(’]1‘2)) +A sup  ||éa(A)]|In(d)

eVyiuv_

Taking the infimum with respect to « of the right-hand side, with § > 0 fixed, we deduce that

5
i‘;% || |L°°([O,T]><[O,oo)'r><’]1‘2><[0,oo)c><E) < Cvevp.

We now turn to the derivation of the L? estimate, which is similar to the above computations. The
main difference lies in the fact that we need to integrate by parts () yet another time, which yields

/OO 1 exp (_C_Q) o (BHOED)s g

1V 4s

B 1 4-2 1 ) §2 §2
T s+ihx) P <I> 20 +in£1))2 [ N 7] P (I)

v O riatn)s
SGTIOETR ), ¢(\f) o

where
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Consequently, remembering (), we have
[e3) 2
iexp (C_> o~ (HOAED)s g
0 s 4s
1 2 2
1 ¢ 1 ¢
< = S ) e — _s
< [ e () o e (05)
1 2
TR P e P <Z>
1 e ¢
[ e (X2)|ds
Y OETE ), <\f)‘ ’
Plugging this estimate into (2.21]) and using (H1)-(H2), we infer that for all ¢ > 0, for all s > 0,

o0 1 2 )
— exp (— — 5s> ci:(~,7' — 5, w)et ds

1—

2
2
1

7 1s H#(T2)
2
: o[ exp( )]
+Cexp <1+ sup ||Ca( )|Lw([o,TlevHS(Tz)))ln(5)>
AeVy
ol “Y (14 sup e 1
i S0 lleallL= oz« e () 5
+c[ (<)\ o (1+ s eaco ;
> su Co oo 5(T2 s
% - AE‘Z L>([0,T]x B,H*(T?))) §

Here, we have used the inequality

/ d\ </:F1+02 d\ - g
v BHIAEDE ~ Jo, FFAELZ S5

There only remains to prove that each term of the right-hand side has a finite L? norm. First, thanks to
Jensen’s inequality, we have

2

[ () ) o= [ [ Jpoe(5) o
2/1ds/ooe_z22dm<oo.
0 0

L L)
([ H) ([ o)~

IN

Similarly,

Q
V)
N———
[\
u
~
IN

IV

IN
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We also have to evaluate the L? norm of the integral in ); we have
[ e () o]
exp| —=— —4ds | ds| dC
AL e (i
2
el L e ()
< — —exp|———u ) du| dx
=3¢, : Jo 0o Vu du

|

u=04s
1 [e%s) 2
< —3/ —e p(———u) du dx
02 Jo Jo 2u
1 [e%s} [e'e] 1 .’L'2
< — —exp|—— —u) dudrx
- 5/0 /0 Vu p( 2 )
<
— 6%'

Gathering all the terms, we obtain, for all «,d > 0, for all 7 > 0,

5 2
[ ug () HLoo([o,T] x B,L2([0,00) ¢, H* (T2)))
< CRev lle — Ca||L°°([O,T] 2[;—571,7] x E,H*(T2))
2

+ COB%ev <m + sup |64+,a(N)] (% +ln(5)>> .

1) AeV.

N

Taking the infimum of the above inequality with respect to a, we infer the L? estimate on u‘ST’ n- The
estimates on u5T,3 and (9cuf are derived in a similar fashion.

3 The interior operator

This section is devoted to the construction of an approximate solution u™* to the evolution equation
(I.1)) supplemented with the initial condition

u“?t o=ug €H
and with boundary conditions of the type

t
u’3r|‘tz o(t,zn) = Vevep s (t, g,:ch> ,
(3.1)

t
ug“i ot xn) = Vevers <t, g,zh)

where cp and cp are periodic with respect to the horizontal variable zj, and either almost periodic or
random and stationary with respect to the fast time variable.
We decompose ¢ into three terms

where @™ is the preponderant term, and v'™, §u'™* are corrector terms, the roles of which are respectively
to ensure that the boundary conditions (@) are satisfied, and that 4™ is an approximate solution of

(3.

We have already seen in paragraph m that it is natural to seek @™ as

a™(t, 1) = L(T)w(t),
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where £(7) = exp(—7L) is the Coriolis semi-group, and

w(t) =Y b(t,k)Ny € H. (3.2)
kez3

The construction of w, v'™* and Ju'™ is as follows: first, we define a corrector v'™* which satisfies the
boundary conditions (B.1]), but not equation ([L.1)). Then, we derive an equation on @ 4 Ju™*; filtering
the oscillating terms in v yields the equation on w. Then, the term du'™ is defined so as to take into
account the oscillating terms in the equation on @™* + §u'"*.
e Definition of v'"t.

We look for a divergence-free function v™ satisfying (B.1)). Of course, conditions (B.1]) do not deter-

int

mine v'™ unequivocally. A possible choice is

vt (t, T, ) = @ [ers (t, 7, 2n) 2+ 3 (t, T, 2p) (@ — 2)] (3.3)

1nt (

t,T,w) = g\/g_ythgl [eB,s (t, T, xn) — cr3 (6,7, 2h)] - (3.4)

In fact, if cg and cp are both almost periodic functions of the form ), then a more convenient
choice can be made, which is the so-called “non-resonant” choice in . In this case, the equation
on du'™ is more simple, since there is no source term due to v'"*. However, we have chosen here not
to distinguish between stationary and almost periodic boundary conditions, and thus to work with the
expressions (B.3), (B4).

We give here the statement and proof of a Lemma which will be useful in the construction of Ju'™
and w.

Lemma 3.1. Let T > 0 be arbitrary. Assume that the functions cp 3, cr3 are random stationary, and
that d;cp.3,0-cp 3 belong to L*(T?, L>°([0,T] x [0,00) x E)).
Let v € ([0,T] x [0,00),, L2(T? x E)) such that d;v € Li°.([0,T] x [0,00),, L*(T? x E)) and

dive = 0, (3.5)
v3(t, T, xp, 2 = 0) = Vevep 3(t, T, 21), (3.6)
vs(t, T, p, 2 = 1) = Vevers(t, 7, zn), - (3.7)
Then as 0 — oo, the family
1 6
Sp = 5/0 L(—7T)P[0;v+ ez Av] dr

converges almost everywhere and in L>([0,T], L*(T? x [0,a] x E)), and its limit does not depend on the
function v. Precisely,

. LA ks A
1 E k 1) kn)| N, .
0LH010S0 ,/aa1a2 kez3 |k/|25 Ak CB 3(kn) — (=1)™ers( h)} ks (3-8)

where é(ky) = \/m Jp2 c(zn)e e~ Fh T,

Remark 3.1. The same result can easily be proved when the functions v, cg, cr are assumed to be
almost periodic of the form (R.1). (In fact, we recall that the almost periodic case can be embedded in
the random stationary one). When (@) holds, the limit of Sy as § — oo takes the form

L s k
\/m Z e [éBs — (—1)"érs] (k) Ni
kezs

Proof. Let v*,v2 be two solutions of (B.H)-(B.7), and let V = v! — 2. Notice that V e L>([0,T] x
[0,00),; L2(E, H)), and 9,V € L>([[0,T] x [0,00); L*(E x T? x [0, a])). We write

L(—T)P[0;V +es AV]=L(—7)[0;V +LV] = [L(—7)V(7)].

ar
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Consequently,

E(—H)V(T =0)-V(r=0)
7 :

The right-hand side of the above equality vanishes in L>°([0,T] x E, L?(T?)) as  — oo. Hence the limit
is independent of the choice of v.

In order to complete the proof of the lemma, it is thus sufficient to show that the limit exists for the
choice (B-3)-(B4), and to compute the limit in this case. For all k = (kn, k3) € Z*, we have

/ L(=7) [0,V + P (es A V)] dr

. v - ik/ «
(Nj, Do) = \/_/ cos(kyz)np (k) - |k E (Orér (-, kn) — 0ripa(-, kn)) dz
+ vev / ysin(ky2) (O-¢ 3(-, kn)(a — 2) + Orér s (-, kn)z) dz
lkB;é - k3 -
= Vevns(k) x [0-¢53( kn) — (=1)*0,ér3(-, k)]
3

v —— ik}, R

+ glkszo np(k) - G (Orér3(- kn) — 0-CB3(-, kn)) -
Notice that if ks = 0, then
(k) -k, = 0;

consequently, we have

in [ ev Lgzolky| s, ks o A
(N, 0;0™) = —i aasz [0-e5.3(t, 7, knyw) — (=1)* 0 é05(t, 7, kn; w)] -

In a similar way,

(Ni,es Av™) = @/a cos(kyz)nn(k) - i(k/;l): (er3(- kn) — Ep3(- kn)) dz
a Jo LA
— VL) (I erale ) )

eV 1
= 1/—1 k C kp)) .
a0z k3= O|k |(CB 3( h) CT,3(7 h))

Notice that if [ € Z3 is such that I}, # ky,, then
<Nl, aTvi“t> =0, <Nl, es N\ vi“t> =0.
We deduce from the above calculations that

PO, 0™ + e3 A v'™) (3.9)

1 k| .
k3760| h|€MkT [8TéB 3 — (71)’6387-671 3} (t,T, kh;w)Nk
aaias k |k:’| ’ ’
ke Zs 3

,/aa1a2 kzZ; k= O|k’| (¢B,a(t, T, kn;w) — ér3(t, 7, kp;w)) Ni.

We decompose the sum in the right-hand side into two sums, one bearing on kj, such that |ky| > A,
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denoted by S; 4, and the other on |ky| < A, denoted by Sz 4, for some A > 0 arbitrary. We have

181, 4(t, 7)II72

IN

rs0lk)| A o
Cev|| 3 30 Ml o, (1) 000s]) ()N
|kn|>Aksez 3 Lo

1 . A
+ Cev Z M (rs(t, T, kn;w) — épa(t, 7, kn;w)) N, 0
[En|>A L2

Cev Z (|8763,3(t,7, knyw)|* + |0réra(t, T, k:h;w)|2)
[kn|>A

+ Y (1ess(t, ki) + lens(t, 7, knsw)[?) -
[kn|>A

IN

Since cg, e, Orcp, O-cr belong to L?(T?, L>([0, ) x [0, T] x E)), we deduce that the sum S; 4 vanishes
in L°°([0,T] x [0,00), L3(T? x [0,a] x E)) as A — oco. Thus we work with A sufficiently large, but fixed,
so that Sy 4 is arbitrarily small in L? norm, and we focus on S2.4.

For k € Z3 fixed, we have, according to Proposition ﬂ,

1,
5/ AT [876313 — (71)1%87&133} (t, 7, kp;w) dr
0

1 [
= _i)‘ké / eiAET [6373 — (—1)]%67“73] (ﬁ, T, kh;w) dr
0

+ % {e”\’“e [eBs — (—1)*ers] (t,0,knw) — [éps — (—1)*ers] (£,0,kp;w)}
—  —i €y, [6373(15,/{3}1) ( 1)]%07“ 3(1f kh)] ( )

06— o0

in L>°([0, )¢, L?(E)). Using Lebesgue’s Theorem, we deduce that as 6 — oo

1/ Soalt,)dr — Vev Y > ||kﬁl5 e 68,3t kn) — (=) ér3(t, kn)] Ny (3.10)

0
|kn| <A ks€Z

and the convergence holds in L>([0,T], L*(T? x [0,a] x E)). Moreover, for ¢ = cr 3 or cp 3, we have

k/ 2 )
> B e kb < 0% T e Ol

kez3 k3 €Z*

IN

Cllell o ((0,00)x[0,00) % B, L2 (Vi)

Thus the right-hand side of (B.10) converges in L2(T2 x [0,a] x E) as A — co. Eventually, we infer
B3 O

e Definition of w.
Remember that u'™ should be an approximate solution of equation (@), and that dui™, vt are
strongly oscillating terms, small in H* norm. Consequently, since @™ (¢,7) = L(7)w(t), we have

nt

atuint + uint . vuint + 163 A uint _ Ahuint _ Vaguint
€

E (

. <

£()0r (L n s (e )],y +2 (1)),

3

Q

) Opw + @™ - Vart — Apu™ + % [070u™ 4 Lou™] + % (0,0 4 e3 A 0]

M~ O]

) [Orw + Q(T, w, w) — Apw]

™ | =

22



where
Q(r,w, w) = L(=7)P[V(L(T)w ® L(T)w)].
and Y is defined by

1 : .
S(t,7) = B %vmt(tm) +e3 Aot T) | . (3.11)

Thus it is natural to choose w and du'™ such that for all ¢, 7,
1 .
ow + Q(1,w,w) — Apw + L(—7)PX (¢, 7) + g@T [E (—7) Su™(t, 7)} =0. (3.12)

The quantity £(—7)PX(t,7) has already been computed in Lemma B.J (see (B.9)). Since w does not
depend on 7, the first idea is to average the above equation on a time interval [0, ], and to pass to the
limit as # — oo in order to derive an equation for w. We have already proved in Lemma @ that if
¢B,3, cr,3 are sufficiently smooth, then

1 9
lim = [ L(—7)PX(t,7) dr

6—o00 0

|| ks
— > E-ni [EBa(t, kn) — (=1)"ers(t, kn)] Ni
\/* — Z |k/|2 k }
in L3°.(0,00):, L2(T? x [0,a) x E)). Moreover, with the notation (B.2),

Q(r,w,w) = Z ei(_)‘l_’\’"’M’“)Tb(t, I;w)b(t, m; w) <(Nl . V) N™, Nk> N*.
k,l,meZ3

and it is proved in [[] that if w is sufficiently smooth,
I _
5/ Q(T,’LU,’LU) 4Cz(uja’w)
0

in the distributional sense, where Q is defined by Hence, we define w as the unique solution in
L>=(E,C(]0,00),HN Ho’l)) NL>®(E, L2 ([0,00), H ’0)) of the equation

loc

Ow + Q(w, w) — Ahw+\/;S[cBg,cT3] 0,

Wit=0 = Ug € HN Ho’l,

(3.13)

where

LA Es »
\/mkzzz |k/|25 Ak CB 3(t kh) ( 1) CTyg(t,khﬂ Nk.
We refer to Proposition 6.5 p. 145 in [E and to the comments following Proposition E in the Introduction
of this paper for existence and uniqueness results about equation ) Notice that if cgp3,cr3 €
L>([0,T) x [0,00), x E, H(T?)), then S[cp 3, crs] € L=([0,T] x E, H®!).

int

Sles,s, or3)

e Definition of ju

Once w is defined, there only remains to obtain an equation on du'™. As stated before, Ju'"* is chosen
so that equality () holds for all 7 > 0. According to the above computations, this amounts to taking
du'™ such that

% [L(-7)0u™(7)] = eQ(w,w)—eQ(r,w,w) + evSlep s, cr,3] — eL(—T)PE(t, T),
E(—T)(;uint(T) = E/OT [Q(w, w) — Q(s,w, w)] ds
+/T [VerS[eps, ers] — eL(—s)PE(t, s)] ds
0
su™(r) = EE(T)/O [Q(w,w) — Q(s,w,w)] ds (3.14)

+L(7) /OT [VerSlep s, er,3] — eL(—s)PE(t, s)] ds.
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Equivalently, du'™ satifies the equation

O 0u™ + Lou™ = eL(7) [Q(w, w) — eQ(7,w,w)| + VevL(r)S[cp 3, cr,3] — eEPS(E, 7).
We now derive a bound on the coefficients of Ju'™:
Lemma 3.2. Let T >0, N > 0, and let w € L>*(E,C([0,T), H)) such that
(N, w(t)y =0 Vk,|k| > N, Vt €[0,T].

Let cp3,cr3 € L®([0,T] x [0,00) x E, L?(T?)) be such that the assumptions of Lemma @ are satisfied.
Let X be given by ( ), and du™ by ( ). Then for all k € Z3, for all n > 0, there exists a
constant Cy . such that for all T >0, for all e,v > 0 such that v = O(¢),

(N, 6u™(t, 7)) HLW([O,TLLZ(E)) < (e + Vev)(Cy i + n7).

Remark 3.2. The above Lemma is stated with a function w having only a finite number of Fourier
modes, which is not the case for the solution of () in general. However, when constructing the
approximate solution in paragraph Q, we will consider regularizations of the solution w of the envelope
equation (E), so that this issue is in fact unimportant.

Proof. We begin with the derivation of a bound for the term

/OT [Q(w,w) — Q(s,w,w)] ds
= — . m Tei(/\kf/\lf)\m)s s .
> (Nk,Ni- VNg) b(t, m)b(t, 1) (/0 d >Nk

k,l,m
AL+ Am # Ak

Notice that the set (I,m) € Z* x Z3 such that b(t,1)b(t,m) # 0 is finite, and included in By X By.
Moreover, if (I,m) € By x By and A\; + Ay, # Ak, then there exists a constant ay > 0 such that

X+ A — | > ang.

As a consequence, we have

QN k

\<Nk, [ [@twte) we) - Qs u), we) d>] < Ll oty

In a similar way, we now derive a bound on the second term in (3.14). According to Lemma B.1}, we
have, for all k € Z3,

1 /OT (Nk, L(—s)PX(t, s)) ds — \/g<NkaS_’[CB,3,CT,3]>

-
as T — oo, in L*°([0,T], L*(E)). Let 7,1 > 0 such that if 7 > 7, 1, then

%/OT (Ni, L(—s)PX(t, s)) — <Nk, £5[037370T73]>

Now, for 7 < 7, 1, we have

H<Nk,/ [\/gg[cB,g,ch] - £(—3)P2(t,s)} ds>
0
<Nk; \/zS[CB,sch,3]>

€ L>=([0,T],L*(E))

T’q,k
R / NNy S 0 e 0712208 5

< Cn,k-

<n.

Le>=([0,T],L*(E))

Le=([0,T],L*(E))

IN

Tn,k

Gathering all the estimates, we infer the inequality announced in Lemma @ O
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Definition 3. Let cp,cr € L ([0,00), L([0,00), x E,L*(T?))) be almost periodic or stationary

loc

functions, and let uy € H N H%!. We define the interior operator U by

Ulep, er,wo) (t) = L (é) w(t) 4 v <t, é) + sut (t, é) ,

where w is the unique solution of equation () with initial data wy;—o = uo, vt is given by (@)—(E),

and du™™ is given by (B.14).

4 Construction of an approximate solution

In this section, we explain how an approximate solution of () is constructed. To that end, we use the
boundary layer and interior operators defined in the previous sections. We first explain how to choose
the horizontal boundary conditions for the boundary layer term, together with the vertical boundary
condition for the interior term. We then derive an equation for the principal term w, which we call the
“envelope equation”. At last, we define some additional corrector terms which will be needed in the
convergence proof; the latter is postponed to the next section.

4.1 Coupling of the boundary conditions

We set L s
u?t = By (cpn) + Brlern),

u™ =U(uo, cp 3, c1,3)

where the boundary conditions cp, ¢y are yet to be defined.
In order to match the boundary conditions ([L.9), we must take 4B and u"* such that

0= (ug" +up") ., = o(o),
(Bl + ), = o(VEwe),
(B + ) _, = o VEve),
denoting by ¢ the order of magnitude of ¢y, cp, in a sense to be made clear later on.

We now examine each of the boundary conditions independently. Since L£(7)w is the principal term
mt we will neglect the horizontal components of v'** and du'™ at z = 0 and z = a.

inw
e Horizontal condition at z = 0. The Dirichlet boundary condition leads to
eBn(t, T, ohw) = — Z e TR T (¢ ks w) 1 (k) . (4.1)
) et ng(k)

Thus cp, is almost periodic in the fast time variable 7, and we set

K N + wlzgt (tw)
up(t, 7, zp, GGw) = Z Zel nTh e TIART g1 G \/E—Vikg-wki (4.2)

kez?, M
Jen 0

where wf is defined by

1 _ (k) £ ino (k)
i ) = =ghte k) () 5 )

and 1
ustat (t,SC) — 1/} (\/%) ;ai (t;w)eﬂf iol (43)
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where

1
+
thw)=F—— b(t,0, ks;w).
(t;w) :F\/m kSEGZ* ( 3;W)
sgn(kg):il

Notice that since ég p(t, k) = —b(t, k)np(k), we have 44 (t) = 0, with the notation of Section [

e Vertical condition at z = 0. Since w € H, we have ws|,—o = 0. Thus we take cp 3 such that

e —1/2
CB3 = —UB,s\czo(EV) / )
and thus
zk:' cwE
. “Mh "k zk “Th —1IA 'r
CB,B(taTa ThiW) = E E hEhe k
kez3,
kn#0

Hence cp 3 is also almost periodic in the fast time variable 7.
e Horizontal condition at z = a. Since (’Luihnltzza = 0, we merely take
ern(t, T, xhw) = o(t, T, Thw). (4.4)

Hence c7,;, is random and stationary in the fast time variable, and thus yields a boundary layer
term equal to

ugﬂh(ta Ty Zh, C7 UJ)

_ Byve Z/OO %exp <% - 55) (0 +iot)(t, 7 — s, an,w)e ds  (4.5)
0

= \V/Zﬁ Z /°° ) (%) [divy,o T irotyo] (t,7 — s, zp;w)e % F%ds.  (4.6)
I T 0

o Vertical condition at z = a. The calculation is similar to that at z = 0. We infer

cry = —ursjc=olev) V? (4.7)
cra(t, T, anw) = 5”2%2/ [divi,o Firotyo] (t,7 — s, zp; w)e 25 ds.
— Jo

The relations ([L.1)), (.4) allow us to write ¢p in terms of the solution w of the envelope equation
(B.13). Conversely, equation (B.13) depends on ¢p 3, and thus on the coefficients b(t, k) of w. In other
words, there is a coupling between the boundary condition at the bottom for uPY, and the equation
satisfied by w. Since w is the only non-vanishing term in L? norm, we choose (as is usually done in the
rotating fluids literature) to write an explicit equation for w, and to express u®" in terms of w.

4.2 The envelope equation

The goal of this paragraph is to compute the term S|cg 3, cr 3] occurring in equation ([3.13 - when cp 3, cr,3
are given by (f.4) and (J.7) respectively. Since ¢B,3 is almost periodic, easy calculations lead to

o ik! .w:i:
Enlepslihn) = —lugod hEh
=+ k

1 1+£X, 149
= ——1 b(t, k;w)|k; .
3 araza ot k) 'Zm V2
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There remains to compute the coefficients €_», (é1,3(t, k1,)); since the boundary condition cr 3 depends
on the small parameter J, the corresponding Ekman pumping term will depend on § as well. However,
thanks Proposition [l, the non-resonance hypotheses (H1)-(H2) allow us to pass to the limit in the
coefficients £_», (ér,3(t, kp)) as § vanishes, and thus to derive a limit equation for the function w.

e First, by definition of £, we have, for all k;, € Z?2, for all A € R,

Ex[era(t, kn)] (w)
_ \/5_7/6 Ze_)oo 9/ / — s kha ) —ds—iAT+tis ds dr

1 ) .
— \/E_VBZOHOO/ <5/0 (t,T7 kh;ﬁ,sw)eﬂ” dT) e Ostis ds,

&% (kn) = ik}, - 5 (kn) F ki, - (5(kn))*

Thanks to Lebesgue’s dominated convergence Theorem and Proposition , we infer, for all 6 > 0,

Eleratt ] (@) = Y2 > [ el ] 0o s

where

_ \/E_Vﬁz/ 5,\ t k/’h)}( ) —dstis+ils ds

- @52& tkh)}()ﬁ.

Since o € L§2 ([0,00)¢, L>=([0,00), x E, H>?(T?)), we know (see Proposition 6.5 p. 145 in [[J) that
for all § > 0, for all uy € H N H%!, there exists a unique solution w® € L>=(E,C([0,00), H N H%)) N

L>(E, LIQOC([O, o0), H1%)) of the equation
o’ + Q(w’, w’) + \/ESB(w‘S) +vB8%(5) =0
€ (4.8)
w’ (t = 0) = wo;
the operators Sp and S% are defined by
Sp(u) =Y (N, u) ANy,
keZ3 (4 9)
1 —1)ks|k! k ’
St(0) = 2 /aa1a Z Z( |])€/|2| . (Z—:kzg - i)]l)’
Vaa1az i Ak
where 2 \
14 Mg
— h
Ay = 2 4 Z +1).

2\/§a1a2a|kz’ \/1 F /\k

Notice R(Ay) > 0; hence the Ekman pumping due to the Dirichlet condition at z = 0 induces a damping
term in the envelope equation.

e The idea is then to pass to the limit in S3(c) as § — 0 when o satisfies (H1)-(H2), using (L.§).
Let us admit for the time being that the last property of Proposition m holds, i.e.

In>0,VAe[-1—n—-1+nU[l—n147], Ex(c) =0. (4.10)

Property (f.10) entails that the second sum in the right-hand side of ([.g) bears only on the triplets
(kl, kz, kg) such that
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which entails
|ks| < C(n)]knl.

Consequently, since o € L>([0,00)? x E, H'(T?)), we deduce that SJ.(c) converges as § — 0 in
L ([0,00) x E; L3(T? x [0,a))) towards

o (1)
510 = 5 2 TR,
S

)

k0

(Ml — (k1)) - E-x, 6] N* (4.11)

Thus for all T > 0, the source term S2(c) remains bounded in L>((0,T) x E, H*') as § — 0; thus
w? is bounded, uniformly in §, in L>(E,C([0,T], H N H*') N L?([0,T], H®)). Moreover, let w be the
unique solution in L*(E,C([0,00),H N H*')) N L>°(E, L2 ([0, 00), H?)) of

loc

Orw + Q(w,w) — Apw + \/ESB(’LU) +vBSr(0) =0,

w‘t:O = UgQ-

(4.12)

A standard energy estimate leads to the following error bound, for all T' > 0,

lw — ws|| Lo (j0,71x B,L2) + | V(W — ws)|| Lo (B, L2(j0,7]x T2 x [0,a]))
< CVﬂHST(O') - S%(J)HL"O(E,LZ([O,T]XTZX[O,a]))' (413)

Thus, when constructing the approximate solution in the next paragraph, we will use the function
w®, but we will keep in mind that w® converges towards w as & vanishes.

e Let us now turn to the proof of property (f.10) (which is the same as ([.§)). We choose 19 > 0
such that
[—1 =m0, =1 +m] C V-, [1—=m0,1+mn0] C Vi.

For A € R arbitrary, and for 8 > 0, we have

1 /? ,
- / o(r, w)e_l)‘T dr
0 Jo

Le=([0,T],H*(T?))

1 [ _
- / (0 — 0+ Ua)(T,w)eﬂ)‘T dr
0

0
Le=([0,T],H=(T?))
< lo = aallne=(0.0)x[0,7]x B, H*(T?))
1 /? _
4= / /€7a|,u|+z,urfz/\‘ra_a(‘u) d,LL dr
0 0 R oo s (T2
Le=([0,T],H#(T?))
< lo = aallne=(0.6)x[0,7]x B, H*(T?))
i(p—A)0 _ 1
e
e[ e duH
R i(p— )0 Hs(T?)
< lo = aalln=(0.0)x[0,7]x B, H*(T?))

peEV_UVy

n / e—alul
R\(V_UVS)

Let us now evaluate the last integral when A is close to £1, say for instance

+< sup |6a(ﬂ)|Lw([@,T]xE,HS(TZ))) (Vi +V-])

-6 _ 1
W’ ”U‘X(M)HLOO([O,T]XE,HS(TQ)) d,u dr.

A—1< D
2
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Then if 4 € R\ (V_ UV4), we have |u — 1] > 19, and thus
"o

— A > =

= Al = 3

In particular,

: < <=,
i(nw— A0 w—A0 — 0
Hence, for all § > 0, for A such that |A £+ 1| < 19/2, the following inequality holds for all & > 0

eiln=20 _ 1 ’ 2 C
-

1 /° .
5/ o(t,w)e” dr

0 L% ([0,T], L2 (B, H* (T2)))
C

<l = oallne=([0,0)x[0,T)x B, H* (T2)) + 7

+  sup Gl Lo, 1yx B, 1o (r2y) VAT [V-]) -
peV_uvy
In the above inequality, we first take 6 large enough, so that the left-hand side is close to ||7(A)]|, and
C/6 is small. Then we let « go to zero, with 0 fixed; we deduce that

&(-,\) =0 VA such that d(), £1) < ”—20

4.3 The approximate solution

The approximate solution is obtained as the sum of some interior terms and some boundary layer terms;
although we have to construct several correctors in order to obtain a good approximation of the function
u?Y, we emphasize that all terms vanish in L? norm, except the solution w® of the approximated envelope
equation ({.§). In this paragraph, we build the correctors step by step, using the general constructions
of the previous sections. At each step, we will give some bounds on the corresponding term.

e First step. The interior term at the main order.

We have seen that the interior term at main order is given as the solution of some envelope equation,
and that when all parameters ¢,v, 3, vanish, the envelope equation becomes (4.13). However, we
are not able to construct the boundary layer terms at the top for 6 = 0, and thus we must keep an
approximated solution of the envelope equation, namely w®. Moreover, when constructing the corrector
terms uBY, su" v we will need some high regularity estimates in space and time on w’, which are
in general not available for w? or w. Thus we introduce a regularization of w® with respect to the time
variable, and we truncate the large frequencies in w®. Let x € D(R), with

x(t)=0 Vtel0,00), x(t)=0 Vte (—o0,—1],

x(t) >0 VteR, /x=1-
R

For n € N*, set x,, :== n~'x(-/n), and define, for n, N > 0,
wg,N =Py [w6 ¢ Xn| = (Pyw?) %t Xn,

where Py stands for the projection onto the vector space generated by Ny for |k| < N. The convolution
in time is well-defined thanks to the assumptions on the support of x. We have clearly

. 5.5 _
n}\}gmiglo)ﬂw wy, Nz (jo,11x B,22) = 0,

. R TR oy = 0.
plimsup o = wp e (s,22 0.1y, m00)) = O

We recall that Q is bilinear continuous from

L>([0, 7], H*Y) x L2([0,T], H*°) into L%([0,T], H~?).
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(see Proposition 6.6 in [E] for a proof of this non trivial fact). Precisely, for a,b € H* N'H, it can be
proved, using the methods of [E], that there exists a constant C' > 0 such that

1Q(a,0)|g-10 < Cllallya lalliollBIlE 101 (4.14)
+C1Bsall 2Bl 5 b1 o0 + CllOsb] 2 llall 157 lall o

It is easily deduced from the above inequality that wfly N is an approximate solution of ), with
an error term 79 which vanishes in L*([0,T], H~ %) as n, N — oco. Indeed, we have

ron = Q) n w) ) —PyQw’, w’) % Xn + vBPNST[o — 0 % X
- [(IP’ — IP’N)Q(w‘S, w )} * Xn + [Q(IP’Nw‘s,IP’Nw‘S) — Qu?°, w‘s)} * Xn
+[Q(w), ny ), n) = QBNwW , Prw’)  xn| + vBPNST[o — 0 % Xa].

The convergence towards zero of the last three terms follows from the continuity of Q in H~1° and the
regularity of 0. We thus focus on the first one, which we write

Q(wg,N(t)’wfz,N(t)) - Q(PNW&,PNU’(S) *Xn
[ @t 0. B et~y [ Qw0 Byt )t~ )
/Q — Pyw®(u), Pyw’ (u))xn(t — u) du,
and thus, using inequality (f.14) together with the L>([0, 7], H%') bound on w’, we infer
|Qwn n (), wp n (1) = Qw’,w”) % Xn(B)]| 1.0

€ [ () = B @)l 2 [Baw 17 vt = )

IN

+ / ||wnN — Pyuwd( u)HHU,l ||]P’]\;u)5(u)||H1,0 Xn(t —u) du
+ C/ ||wnN — Pyuw’( u)HHMJ ||IP’1\/u)5(u)||HU,1 Xn(t — u) du.

Eventually, we get

HQ wsz t) wi ~() — Q(w6 wé) * Xn(t) HLOO(E L2([0,T), H-1:0))

< C|}?\u<p1 Hw — ThW HLOO(E L2([0,T],H1.0)) + C‘:|u<pl H’LU — ThW HL“’(OT]XE HO.1)

where Tpw : (t,x) — w(t + h,z). The right-hand side of the above inequality vanishes as n — oo,
uniformly in §.

Hence we work with wi,N instead of w from now on; for all k, s > 0, there exists a constant Cp, v (k, s)
such that

10F W), nll Low (5w (0,7, 1= (12 x [0,a])) < Crn N (K, 8).
In the sequel, we denote by C,, n all constants depending on n and N (and possibly T'), but not on 4.

e Second step. The boundary layer terms at the first order.
The boundary condition cg j, is given by (@), where b(t, k) is replaced by

bf},N(tﬂ k) = <Nkﬂ wi,N(t)> .

Thus the boundary layer term at the bottom, u g, is defined by formula @), and the stationary corrector
uStt by (@) Similarly, the boundary layer term at the bottom, ur, is given by formulas (@)—(@)
According to paragraph @ and to the previous step, the boundary layer term

a —

t z t Z
BL(tazhvz) ‘=up <ta gazhv ﬁ) +ur (ta gv'rha ﬁ) + uStat(t;l')
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satisfies the following estimates
BL BL BL
Hu , 20,u”") (z —a)du HLoo([o,T]x11‘2x[0,a]xE) < Cp.n + CVevs, (4.15)
HUBLHLOO([O,T]XE7H1’O) <Cy.nN |:(Ey)1/4 44 L C(Ey)3/4ﬁ’

BL BL 1/4 3/4
[20:u", (2 = a)d:u HL“([O,T]><E,L2('J1‘2><[O,a])) < Gt + Cler)?/4p.

Moreover, uB is an approximate solution of the linear part of equation (m) (we will treat the
quadratic term at the very end, when the whole approximate solution has been constructed), with an
error term equal to

;b
€

[(0r — Ap)us] (t, é Zh, \/%) +o (\/%) zi: B0 (t)e*t

o t a—=z
+ |:(at —Ap+ g) UT:| (tagaxhaﬁ) ;

where 0; is the derivation operator with respect to the macroscopic time variable. Thanks to the first
step, we have

Lok,

(the same bound holds with up replaced by wr), whereas the terms Apup, Apur are bounded in
L>(E, L*([0,T], H~'?)) by

5 1/2
dmo(w) dz dxp, dt]

t
(%UB (t, —sTh,
€

z
)
<Cy,nN {(51/)1/4 i V1/4} T C’(sy)3/46,

Con [(61/)1/4 + yl/ﬂ + Clen)?48.

Moreover,
. 5 5
_ R < (CO= 3/4 <02
€ HUT ( ’ E)HL"O([O,T]XE,LZ) - 5(€V> r= Ve

stat

At last, the error term due to u*'** satisfies

o (\/%) zi:atai(t)eﬂé

S Cn,NV1/4-

L (FE,L?(T?2x[0,a]))

o Third step. The interior corrector terms v'™ and Su'™.

We now define the correctors v'™* and du'™" as in ( )—(E) and (B.14)) respectively, where the bound-
ary conditions cp 3 and cr3 are given by (f4), (1), and w = wi,N in (B.14). Recall that we have
assumed v = O(¢) and /vef3 = O(1), so that the boundary conditions cp 3 and cr 3 are of order one in
L. More precisely, using the fact that w? , has a finite number of Fourier modes on the one hand, and

(H1)-(H2) on the other, we deduce that

HvintHL“([O,T]X[O,oo)XTZX[Oaa]) S C (\/ EV”wi,NHL”([O,T,VOS) + VEB) S Cn,N Ve

moreover, the boundary conditions cg 3, cr3 satisfy the assumptions of Lemma thanks to the hy-
potheses on ¢. Thus, according to Lemma 3.2,

. t
vn >0, Vk € Z*, 3C, 1 > 0, H<Nk,6umt (t, —)> <n+ Cy e

9

Le=([0,T],L*(E))

Thus we set, for K > 0 arbitrary,

5ui;§t = PK(S’uint = Z <Nk,5’u,int> Nk.
|k|<K
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According to the above convergence result, for all K € N, we have

in t
Jouie (+7)

Moreover, there exists a constant C), y such that

: t
(S int t,—
fooe (1)

By replacing du™™ by dull®, we have introduced an error term in (B.19) which is bounded in L ([0, 00) x
E, L*([0,T] x T? x [0, ]) by

—0 ase,v—0.
L ([0,T],L?(E,W1>(T2x(0,a])))

S Cn,N-
Lo ([0,T]x E,W1>(T2x[0,a]))

H(P - ]P)K) [Q( iN? }HLOC(E L2([0,T]xT2x[0,a]))

+ H (P —Px) [Q(s, wy, N’wn,N ]HLDO([O,oo)XE,L2([O,T]><’]1‘2><[0,a]))

\/7H P —Pk) [S[es 3’CT3]HL°° (E,L2([0,T]xT2 x [0,a]))

1P = Pr )X oo ((0,00) x ,2.2([0,7] xT2 X [0,a])) -

If v = O(e), and /vef = O(1), all terms vanish as K — oo uniformly in €, v,d. Thus, we choose K > 0
sufficiently large (but fixed) so that the error term in the equation is o(1), and we work with dul2® from
now on. Notice that K depends on n and N in general.

Let
uint(t) =L (é) wth(t) + ,Uint (t’ é) + (S’U,I;;t (t, é) H (416)

we have defined v™ and du™ so that u™ is an approximate solution of equation ([L.1]), with an error

term which we now evaluate in L?([0,T] x T? x [0,a] x E) + L?([0,T] x E, H=1%). Apart from the one
mentioned above, which is due to the truncation of the large spatial frequencies in du'™, the error term

is equal to
int l mt int t int t 2 ¢ int 13
—Apv ( > + O (du ) (t, —) — Apduy <t, —> — vO;0uy (t, —>
g g g
int lnt lnt t int int t t )
+ [u™ - V] (Su ) (t —) + [(&L + v'™) (t, E) -V} L (E) wy, N (t).

The term —Axv™* (¢,¢/¢) is bounded in L2([0,T] x E, H=%%) by

lleB.3ll Lo ((0.11x[0,00), x B, 1 (12)) + e8]l Lo (10,71 x [0,00) - x .11 (72)) = 0(1)-
All the remaining error terms are bounded in L2([0,T] x T? x [0,a] x E) := L*(Q) by
||at6uiflgt||L°0([07T]tX[O,%]T7L2(EXT2X[01‘I])) + ||at’uint||Lw([07m)T,L2(Q))
||(5u1}§t||p@([o T)ex[0,T] ,L2(E,H?))

t t t
]| oo [|Sut + ™ I~ o1, ¢ [0,2]_ 22,1

+ + 4+

int int int
W™ Lo (20,77, 1)) 16U + v ||L2(E,L°°([O,T]t><[O,%]TXTZX{O,a]))
= o(1).
Above, we have used the fact that wi, ~» and whence v'™, Jullt are smooth with respect to the time

variable ¢; thus the o(1) means that for all n, N, K, the hrmt of the above expression as £ vanishes is
zero, uniformly in 6.

To sum things up, we have

atulnt + ulnt . vumt _ Ahulnt _ Vagumt + vp _ wliem + u}gem7
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where wi*™ = o(1) in L%([0,T] x E x T? x [0, a]) and w§™ = o(1) in L?([0,7] x E, H~*Y). Moreover,
ity =uo+o(1) in L*(T* x [0, a)),
and there exists a constant C,, y such that

([ Loo (0,71 x T2 x[0,0] x ) + 4™ || Lo< ([0, 7% 2, 1 (12 x [0,a))) < Cr, -

e Fourth step. The boundary layer term at the second order.

At this stage, we have proved that u™ (resp. uPl) is an approximate solution of the evolution
equation (@) (resp. of its linear part); moreover, the boundary layer term uB" and the corrector vt
have been built so that the boundary conditions are satisfied at the leading order. Precisely, we have

ug\i:o(t) + Uihn|tz:0(t) = ”;ﬂtz:o(ta t/e) + 5Ui1r(lfh|z:0(tv t/e) + UT,h|¢=—f= (t,t/e),

0 (WBEa(0) + ulfa(1)) = Bo(t.t/2) + —=Dctm e (0/2) + 0032, 1),
ugz_o(t) + ubjl_o(t) = ur 3lc=— (E:1/€),
ugls—a(t) + usfi_y (1) = upgjc=—s (t, t/e).
The terms Ur|c=—2 = and uftat are exponentially small, thus satisfy the assumptions of Lemma

E in the Appendlx they will be taken care of at the very last step. But in general, setting ¢pj :=

}1“‘2 0T Suint K oh|2=07 the quantity e~'¢p 5, does not vanish. Thus, we define another boundary layer term

in order to restore the Dirichlet boundary condition at z = 0. We now have to make precise which parts
are almost periodic or random stationary in ég (¢, 7). We have

U;ﬂtz o = Uit = VeV H(ers) — VerVi A, Heps).

The first term in the right-hand side is clearly random and stationary, whereas the second one is almost
periodic. Concerning the term dul%®, the situation is not so clear. Using (), we write

SuRt(t,T) = > e MTbg(t, T) Ny,

|k|<K

where
6bk(ta7—) = €<Nk7/ (Q(wfz,vafz,N) 7Q(Sawz,Nawz,N)) d5>
0
+ <Nk,/ \/EI/S'[CBﬁg,CTﬁg] —eL(—s)PX(t, s)> .
0

Oby (t, E)
3

According to Lemma B.3,

sup = 0(1)3
te[0,T L2(E)
and 5 .
sup || o 0bx ( ) =0(1).
tejo,1) || Ot €/ lpee(m)

int

Thus we forget the fact that db; depends on the microscopic time variable 7, and we merely treat du'y
as an almost periodic function. Hence we use the construction in paragraph @, and we set

suPt = Bper( Sul e 0+\/E_VV}LA]:1(CB,3))
+ B (VErVaA; Hers)) -

As before, it is easily proved that JuBl is an approximate solution of the evolution equation ([L.1),
with an error term which is o(1) in L2([0,T], H— ).

e Fifth step. The “stopping” corrector.
Let us now examine the remaining boundary conditions.
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> Horizontal component at z = 0: this term is the simplest of all. We have

Opn(t) = (u (1) +up"(t) + 5UEL(t))|<: e T U= _(t,t/e),

and thus, using the same arguments as in Proposition , we prove that there exists a constant C'

such that
a

10B,1(t) || 53 (2) < Cexp (_\/E)

c a
32y < — _ .
100,18 || 3 (12) . GXP( \/5_1/)

Since e ¥ exp (—a/v/ev) = o(1) for all k € N*, §p, satisfies the conditions of Lemma [ in the
Appendix.

> Vertical component at z = 0: we compute

0p.3(t) = (ug™ (t) + ug™(t) + dug™ (1)) |,y = ursc=—g (1, t/€) + dugz_o(t).

It is easily proved that upgsc—,//z5(t,t/) satisfies the hypotheses of Lemma ﬁ, provided o is
sufficiently smooth. Concerning §uf", we have, according to the assumptions on o,

||6U3B|E:0||L°°([O,T],L2(E,H3(11‘2)) < O(\/EV) + C(VE)B/Qﬁ,
Hat(sug\g:OHL“([O,T],LQ(E,H3(’]1'2))) = o(1).

Thus dp,3 satisfies the conditions of Lemma E Notice that the regularity conditions of Lemma E
account for the H* regularity assumption on o (see (H1)-(H2)).

> Horizontal component at z = a:

lI] 1
Srn(t) = 0 (up™(t) +up (¢ )+5U§L(t))‘z:a 5
1 sta
—\/g_yacuB”“CZ\/% (t,t/e) + D-un , (8) + 0-0up s, (t).

For all s > 0, we have

<c 1 a® (e)
nN—F—€xp | ——— | = o(¢g),
Loo([0,T|x E,H*(T2)) ’N\/UT P T

1 a®
a az Statﬁ t H < Cn _ - = .
H 0= p = ?) Lo, x B He 12y — N 52 FP\ T o(e)

(Remember that ¥ = O(g).) Thus all terms of the right-hand side are exponentially small as
vanishes, and satisfy the conditions of Lemma E

> Vertical component at z = a: let

bra(t) = () +ub () + 6uB (1) .,

= up 3|<_ (t t/E + (5’U/3|<_ (t)

Once again, d7 3 is exponentially small in all H® norms, and thus matches the conditions of Lemma

We thus define u5*°P, given by Lemma E, so that

stop  _ stop  _ _
uh\z =0 537}“ 9- uh|z a 5T1h
stop st op __
Uy "= —0B3, Uy, = —013,
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and such that 4P is an approximate solution of the linear part of equation (m), with an error term
which is o(1) in L2

We now define

u®PP = 0 4 Bl 4 gy Bl 4 gstor 4.17)

u™t e, (4.18)

By construction, the remainder u**™ is o(1) in L°°([0, T, L*(E x T? x [0, a]) and u®PP satisfies conditions
(.2). The goal of the next section is to prove that u?P is an approximate solution of ([L1), and to
conclude that u®¥ — PP vanishes thanks to an energy estimate.

5 Energy estimates - proof of convergence

In the previous section, we have constructed a function u®PP, given by (l.17), where u'"* - given by )
- is an approximate solution of equation (@), and uBY, §uBl us°P  defined respectively in the second,
fourth and fifth step of paragraph , are approximate solutions of the linear part of equation (@) and
are all o(1) in LZ.

The organization of this section is as follows: first, we prove that u®PP is indeed an approximate
solution of (E) Then we evaluate the difference between u** and u*PP thanks to an energy estimate.
At last, we prove Theorem EI by conveniently choosing the parameters n, N, d occurring in u?PP.

e Let us first prove that the function u*PP is an approximate solution of equation (E) The core of
the proof lies in the following Lemma:

Lemma 5.1 (Non linear estimate on the remainder term). For all n,N, as ¢,v,3 — 0 with

v =0(¢e) and B/ev = O(1), we have

sup |[u”™ - Vu™" + u"™ - Vu'™ + o™ . Vu 0.

T'emH N
2 2
550 L2([0,T]xT?x[0,a] x E)

Proof. First, we have

|| (urem . V) uint ||L2([07T] xT2x[0,a]x E)

< 1™ e o mper xio,ax ) 14 | o 0,710, 1.0)
< Cnn (1uPP] L2 + 16w L2 + [[u™P|L2) -

The right-hand side vanishes thanks to the estimates of the previous section.
The other terms are slightly more complicated. We write

umt . vurem + urem . vurem — uapp . vurem

wPP . Y yStoP | 43P Ly (uBL + 5uBL) .
The first term in the right-hand side is bounded in L?([0,7] x E x T? x [0, a]) by
[P || oo || P 20,71 % 8, 11) < Cn,NE-
We thus focus on the second term, which we further split into
ulPP .V, (UBL T 5UBL) +ulPP, (UBL T 5UBL) '
We have

k™ - Va (P 4 80P | 0,774 cm 0.0

IN

[|u™PP| Lo (0,77 % ExT2 x[0,a]) ||UBL + 5UBLHL2([0,T] x E,H1.0)

Cn N (V1/4 + (51/)3/46) .

IN
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We split the other term as follows

a 2
43770 (% + 60 [ o =

a/2
[ [ i G+ a0

a/2 )
| el
2Jo

1o (us + 5uPh)

+
S—

T

+
S—

12 Jay2

¢ 2

+ // [usPP O, ur|” .
T2 Ja/2

For z > a/2,t > 0, we have

10, (us + ™) (t)|2 < Con |:(€l/)_1 exp (_ﬁ> + iexp (—ﬂ)}

Vev vt Vit

and thus

’ ¢ app BL\ |2

|u3 0, (uB + du )‘
0 T2 Ja/2
< Cunw |:(€1/)_1 exp (—%) + exp (_\/ca_)] .
v

Similarly,

T a/2 5
al
/ / / |usPP O, ur|
o Jr2Jo

We now evaluate the two remaining terms. The idea is the following: since u3"" vanishes at the boundary,

we have
ui?P(z) = Cz  for z = o(1),
app

and u3™P(2) ~ C(z —a) for z —a=o(1),

and 20,up, (z — a)d,ur are evaluated in ([.1). Moreover, we can split u*P into

utPP(t) = [c (é) w)) (1) + Sul (t, é)] - [vi“t (t, é) +uBL(t)}
+ [6uPh(t) + utoP(t)] .

By definition of v™™* and u®*°P, the vertical component of each of the three terms in brackets vanishes at
z = 0 and z = a; additionally, the first term is bounded in L*°([0,T] x E, W'*) by a constant C,, x,
while the (vertical components of the) second and third ones are respectively of order

Chn.N (\/EV + (EV)3/4) and  Cp n(ev)®* + o(e)
in L>°([0,7] x E, H"Y). Once again, the term o(¢) must be understood as

Vn, N, lim supe™*||us*P|| = 0.
v =0 650

As a consequence, we have

a/2 9
/ / 2P (£)0, (up + 6uPY) (8)]
T2 JO

(e (5) wiw) 0+ ()]

[ (t, f) Bl (0) + SuBh(E) + u?‘”’(t)}
&

2
<

120 (up + 6uBY) ()|

2

+ |20. (up + 5u®Y) (1)]|5. -

L2
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Using Hardy’s inequality together with the divergence-free property, we infer that

/Tz/ u3PP( (UB + 5uBL) (t)‘Q

2
nN a —1nt( )+5umt <t, E)
e

J1/2

IN

oo
2

+ Cn,N 0, |:’Ui311t (t, g) +U3BL(t) + 5,“3}? ( )+ust0p( ):|

t A\ |1
L=)w () +6ultt (¢, =
5 (E) wn,N( )+ U g ( ,E) —_

. t
4 Cox ot (82) + B0 + 8uBH0) + )

L2

1/2

IA
2
z

2

H1,0

The term

L1 I @d:ur (O

is treated in a similar way. Gathering all the terms, we deduce the convergence result stated in Lemma

O
In the rest of this section, we denote by wi®" any term which satisfies
Vn, N, lir% sup [[Wi™ || 22 (jo, 11 x ExT2 x [0,0)) = 05 (5.1)
e~V é>0
and by w5 any term which satisfies
Vn, N, lim sup [|wy™ (| 20 7% g, 1r-1.0) = 0. (5.2)
e—=045>0 ’ '
According to paragraph @ and to Lemma @, u?PP satisfies an equation of the type
OpuPP 4 y?PP . VPP 163 AUPPP — ApuPPP — p92y PP
€
= Vp 4w + W™ 470 o+ 0O (i) (5.3)
2 n,N \/E 12

We recall that the remainder »™¥ satisfies

lim sup 175, 5l L2 (0,71 x 2,11 -1.0) = 0.
l/

n,N—o0 o
Equation (@) is supplemented with the boundary conditions (D) and the initial condition
= wo + dwy + Swd,

app
Ut=p

where dw} and Jw3 are such that

hm sup ||5w0||Loo E,L2(T?x[0,a])) = 0,

_’0068
Vn, N, Eligoiup ||5w0||Loo(E L2(T2x[0,a])) = O-

In order to avoid too heavy notation, we will simply write

upry = wo + o(1).
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e We now evaluate the difference between u®* and u*PP thanks to an energy estimate. The function
u®Y — u®PP is a solution of

. 1
O (u” — uPP) + —e3 A (uSY — u™PP) — Ap(u™ — u?PP) — vd? (u=Y — uPP)
€

)
= Vv +wrem+wremir6 +0 (_)
p 2 n,N \/g 1

(u®" - V)(u® —u?PP) — [(u®” — u?PP) - V] uPP.
Taking the scalar product the above equation by u®” —u®PP and using the Cauchy-Schwarz inequality,
we deduce that for all ¢ > 0, for almost every w € E,

1d
2dt

< [ o T 0,0) =070 9170, 0 ,0) =077
+ o™ (@ ‘*’)HL?(TZ [Oa)+||wrem(tﬂw)||§{—1,o

52
I s+ O 4 Ol (8,0) = w™P(t, ) -

1
—lu? (W) —u Pt w)[Te + 5wt (t w) = PP w) [

A

_|_

In the above inequality, we have dropped the term v||0, (u®" — u®P)||3, in the right-hand side. We now
evaluate the term

Lot =y 9yuer s e ).
T2x[0,a]

First, let us write '
uPPP — [umt + ustop} + [uBL + (SUBL} .
The function 4™ + 4P is bounded in L>([0,7] x E,W°(T? x [0, a]) by a constant C,, y; similarly,
Vi (uBl + 6uBl) is bounded in L>([0,T] x E x T? x [0,a]). As a consequence, we have
/ ‘(’U,E’V _ uapp) v [uint + ustop} . (ua,u _ uapp)‘
T2 x[0,a]

+ / ‘(uzy uzpp) Vi, [UBL + 5uBL} (us — uapp)‘
T2 x[0,a]

< Cun|u™” = Uapp”%Z([T?x[o,a])-

There remains to derive a bound for the term
/ |(u5” — usPP)0. [uPt + 6uPl] - (= — u*PP)];
T2x[0,a]

the calculations are quite similar to those of Lemma @ We first split the integral on [0, a] into two
integrals, one bearing on [0, a/2] and the other on [a/2,a]. The term ur (resp. up+6uB) is exponentially
small on [0,a/2] (resp. on [a/2,a]), and thus we neglect it in the final estimate. Moreover, we have for
instance

a/2
/ |(u5” — ugPP)a. [up + 6uP] - (u — u*™P)|
T2

IN

Hz@z [up + 6uP"] HLOO lus" — u®PP|| ;.

i

< Of0:(uz” - ugpp)HLZ(T?x[o,a]) [ = PPl L2 (p2 ¢ [0,0))

< CHUE,V _ udppHHl,o Hua,u _ UappHLZ('ﬂ‘?x[O,a]) .

Eventually, we infer that

/ |(ug” — usP?)0. [uPh + ouPl] - (u®" — u?PP)|
T2 x[0,a]

. 2 .
< Clu®” = udppHL?(’]l‘zx[O,a]) + Cllu®” — u®P| o [l — udpp||L2(’]1‘2><[0,a]) :
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Gathering all the above estimates and integrating on E, we deduce that

0

2 2
& ||’U,E’U _ uapp||L2(E><’]I‘2><[O,a]) + ||us,1/ _ uappHL?(E,Hl,U)
v app ||2
< COflu®” = P22 pyTexo.a)
2 2 Fy 2 052
+ ”wiemHLZ(ExT?x[o,a]) + ”w?m”L?(E,Hfl,O) + ||Tn,NHL2(E1H—1,0) + .
Using Gronwall’s Lemma, we infer that for all ¢ € [0, T,
2 ‘ 2
(W™ = u*P) ()22 (mxr2x(0,0) T /0 [u™ = P12 (g, g0y (5.4)
2 2
< O™ I aqomxmxrexioa) + 5™ 132 o11x 21110
2
52 o
+ C |:HrnvN||L2([O,T]><E,HlvU) ?:| .
e We are now ready to prove Theorem . Let us write

W () — L <-> w(t) = [utY —uPP) (1) + {uapp(t) .y (

t
[tae] e

> the term u®" — u*PP satisfies the energy estimate (@),

where

> the term uP(t)—L (£) wd 5 (t) is equal to u ™+ 4+-duig’, and thus vanishes in L>([0, T, L*(E, H°))

ase,v — 0, uniforml';/ in § > 0, and for all n, N, K;

% vanishes as n, N — oo uniformly in §, ¢, v according to the first step in paragraph

5
> the term wy y—w
)
s

> the term w® — w vanishes as § — 0, uniformly in ¢, v, according to ()

Let n > 0 be arbitrary. We first take ng, Ny large enough so that for all § > 0, €,v, 5 > 0,

Hrfm,No||%°°([O,T]><E,H*1’U) =,
5 5 5 5
||wn,N —w ||%°°([O,T]><E,L2)’ ||wn,N —w HQLOO(E,LZ([O,T],HLO)) <.
Remembering properties (@)—(@), we deduce that there exists 9,19 > 0 such that for all §, for all
€ < eg,v <1y with v < Ce and gy/ev < C,
rem 2
1w 12 ((0,71x ExT2x[0,0) < >
2
w3 |22 ((0,7)x £, 1r-1.0) < 7,
; 2
wor) £ (L)l 0

<n.

L*([0,T],L2(E,H*:?))

At this stage, we have, for all § > 0, for all ¢, v, 3 such that 0 < e < g9 and v = O(e), \/vef = O(1),
2 t
“
L2(ExT?x[0,a]) 0
C§?

5
Cn+Cllw’ — w||2Loo([o,T],L2(Ex1r2x[o,a])) +Clw’ — w||2LZ([o,T]xE,HL0) + —

t 2

wE(t) — L (-) w(t)

S

usv(s) = L (—) w(s)

3

ds <

€ L2(E,H1.0)
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We now let § — 0 in the right-hand side, and we obtain

2 t
“
L2(ExT2x[0,a]) 0

for e, v small enough. The convergence result is thus proved.

t 2

w(t) — L (-) w(t)

S

usv(s) = L (—) w(s)‘

9

ds < Chn
€

L2(E,H1.0)

6 Mean behaviour at the limit

This section is devoted to the proof of Proposition . Let us recall what the issue is: in general, the
source term St in ) is a random function, and thus so is w. Hence, our goal is to derive an equation,
or a system of equations, on E[w]. We emphasize that such a derivation is not always possible, because
of the nonlinear term Q(w,w). However, we shall prove that the vertical average of wy,, denoted by Wy,
is always a deterministic function. Moreover, if the torus is nonresonant (see ([L.11))), then w — w solves
a linear equation, and thus in this particular case we can derive an equation for E[w — w].

Our first result is the following:

Lemma 6.1. Assume that the group transformation (0,),cr is ergodic. Let ug € H N H?', and let w be
the solution of (.9). Set
1 a
Wy, = —/ wp, .
aJo

Then w is the unique solution in C([0,00), L*(T?))NL? ([0,00), H'(T?)) of the two-dimensional Navier-
Stokes equation

Oywy, + Wy, - Vo, — Apy, + wy, + vPE[ST(0)], =0,

WV
aaias\/2e (6.1)

_ _ 1 ra
Whit=0 = 4 fo wo,h -
In particular, wy, is a deterministic function.

Proof. Let us recall that if
= ok)Ny €™M,

keZ3
then

Py(9) := é/oa on = Z é(kh,())nh(kh,()).

khEZ2

Thus we have to project equation (E) onto the horizontal modes, which correspond to k3 = 0. It is

easily checked that
1
Py, (Sp(w)) = Sp p(w)) = —=———1p,
n (SB(w)) = Sp,n(Wn) Toaaia;
and we recall (see and Proposition 6.2 in [{]) that there exists a function p € L?(T?) such that for
allwe H'N'H

Ph(Q(’LU,U})) = (’J}h . Vh)’lf)h + Vip.

Thus we only have to prove that
Pu(Sr(0)) = E[Sr.n(0)],

almost surely in E. We use the following fact, of which we postpone the proof: if A € R, kj, € Z2, then

| Elg] ifA=0,
E[Exlo]l = { 0 else. (6.2)
Moreover, if A = 0, then
Exlo] =E[o] almost surely. (6.3)
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Note also that Ay = 0 if and only if k3 = 0. Remembering (§.11]), we deduce that

E[Srn(o)] = —aai@ > |ki|2(k;l)l.E[a’(kh)] (Zf}%i)
kp €72
i Lyt ers ik}
= w2, T Gl (i)
= Ph[ST(O'>].

Thus the lemma is proved, pending the derivation of (@) and (@) Concerning (@), the invariance
of the probability measure mg with respect to 0, entails that

1r?
E[Ex[o]] = E[o] Glim [ e dr,
and (6.9) follows easily. Equality (F.J) is a consequence of Birkhoff’s ergodic theorem (see [R0]). O

The first point in Proposition E follows easily from the above Lemma (together with Theorem EI), by
simply noticing that the sequence

t i\t
exp (_EL> w(t) = ZeﬂA’“?b(t, k;w) Ny
k

weakly converges in L?([0, 7] x T? x [0,a] x E) towards

> bt k;w) Ni = w(t).
kez3,
kk:O

Remark 6.1. Notice that
I“OthPh [ST(O')] =-E [I‘OthO'] .

Hence we recover the result of [E] the vorticity ¢ := rotpwy, is a solution of

Ord + wp, - Vg — Apo + m\/j/%‘b = vPE [rotpa] .

From now on, we assume that the torus is nonresonant (see ([.11))). Consequently, with @ = (wy, 0),
we have

Q(w —w,w—w) =0.
Moreover, using (f.9)-(6.9), it is easily checked that
E [ST,3(O')] =0.

Setting u = w — w, we deduce that u solves a linear equation, namely

By + 20, ) — Apu + \ESBM + vBSz(0) — VBEISH(0)] = .

Since w is deterministic, we have - -
E [Q(u,w)] = Q(E[u], w).
Hence we can further decompose v into w + %, where w is deterministic and does not depend on o, and 4

is random with zero average. The precise result is stated in the following lemma, from which Proposition
E follows immediately:

Lemma 6.2. Assume that the hypotheses of Proposition ﬁ hold. Then
wW=W+W+u

where:
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e the function w is deterministic and satisfies (@),
e the function w is deterministic and satisfies
_ v
O + 2Q(w, W) — Ap + \/jSB(u?) =0,
€
W)g=0 = Up — W|t=0;
e the function U is random, with zero average, and satisfies

O + 2Q(w, @) — Apii + \ESB(a) + vBSr(0) — vBE[Sr(0)] = 0,

ﬁ‘t:O - 0

Appendix A: convergence of the family o,

Lemma 1. Let T > 0. Assume that o € L*°([0,T] x E,C(R)) N L>°([0,T] x R, x E). Then for all
T >0,
0o —0—0 in L®((0,T) x (0,7") x E) as a — 0.

Proof. By definition of o,,, we have

1 .
ou(t,T,w) = ). Rexp(fa|)\| —als)) e o (t, s, w) ds dX
X
1 200

= %/Rexp(cﬂﬂ)mo(t,s,w) ds

1 1
= = — ——of(t ds.
/Rexp( a|7+as|)1 +820( , T+ as,w) ds

™
Consequently,
1
o(t,T,w) —ou(t, 7,w) = - /Rexp(fozh + ozs|)1+—s2 [o(t,7,w) —o(t, 7 + as,w)] ds
1
—o(t 1- — —— ds.
troltrw) [ (1= exp(-alr + ash] 5 ds
The convergence result of Lemma [| follows easily. O

Appendix B: proof of Proposition

Let A € R be arbitrary, and let ¢ € L*(E).
Consider the probability space

d
Ex:=Ex[0,2r), P\:=P® 2—”
s

where p is the standard Lebesgue measure on [0, 27]. Let us define the following group of transformations,
acting on (Ey, Py)
TMNw, @) == (brw, o — A\t mod27), T €R.

Then it is easily checked that 7 is measure-preserving for all 7 € R. And if T > 0, we have, for all
¢ € [0, 2],
/ PO w)e AN dr = eﬂ‘P/ O(0,w)e N dr
0 0

T
= 6_”’/ U (T (w, @) dr,
0
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where the function ¥ € L'(E,) is defined by
U (w, ) := B(w)e'.

Hence, according to Birkhoff’s ergodic theorem (see [Rd]), there exists a function ¥* e LY(E)),

invariant by the group of transformations (TTA)T R’ such that

1 (7T . )
= / B(0,w)e” M dr — TN w, p),
T Jo

P, - almost surely in Ey and in L!(E)). Moreover, the function
(w, @) = e TN (w, )
clearly does not depend on . Hence, we set
PMNw) 1= e TMNw, ) Y(w,y) € E,
and we have proved that
%/OT O(0,w)e” T dr — dMNw)

almost surely in w and in L!(E).
Now, since ¥* is invariant by the group (TT)‘)T R and ®* does not depend on ¢, we have, almost
surely in w,

PMNO,w) = TN w,p)
= 7Y w, o — iAT mod2n)
= TN (TA (w, )
= TP () )
— e_i)‘Tq)A(w).

This completes the proof of Proposition m

Appendix C: the stopping Lemma

Lemma 2 (Stopping condition). Let T;0, and let 59,81 € L>=([0,T], H?(T?)) be two families such
that

/(51,3 —d0,3)dry =0

and such that as € — 0,

1
EH(SZ'HL“([O,T],Hl(’]I‘Z)) — 07 H(SiHLx([O,T],HL"(’]I‘?)) — 0 and |\8t5i|\Lx([o,T]7H1(T2)) — 0
Then there exists a family w € L>([0,T], L?(T? x [0,a])) with V -w = 0 such that
Wiz—0 = 00, W3|z=1 = 01,3 and O, wp|.—1 = 01,1

and such that as € — 0,

— 0.

1
Oyw + —Lw — v, ,w — Apw
€ Lo ([0,T],L2)

lwl| Lo (jo,77,22) — O, ‘

For a proof of the above Lemma, see M]
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