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Asymptotic behaviour of a rapidly rotating fluid with random

stationary surface stress

Anne-Laure Dalibard1,2

17th March 2008

Abstract

The goal of this paper is to describe in mathematical terms the effect on the ocean circulation of

a random stationary wind stress at the surface of the ocean. In order to avoid singular behaviour,

non-resonance hypotheses are introduced, which ensure that the time frequencies of the wind-stress

are different from that of the Earth rotation. We prove a convergence result for a three-dimensional

Navier-Stokes-Coriolis system in a bounded domain, in the asymptotic of fast rotation and vanishing

vertical viscosity, and we exhibit some random and stationary boundary layer profiles. At last, an

average equation is derived for the limit system in the case of the non-resonant torus.

Key words. Rotating fluids, Oceanic circulation, Stationary setting, Boundary layer.
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1 Introduction

The goal of this paper is to study mathematically a problem arising in ocean dynamics, namely the
behaviour of ocean currents under stimulation by the wind. Following the books by Pedlosky [16, 17]
and Gill [8], the velocity of the fluid in the ocean, denoted by u, is described by the incompressible
Navier-Stokes equations in three dimensions, in rotating coordinates, with Coriolis force

ρ(∂tu+ u · ∇u + 2Ωe ∧ u) −Ah∆hu−Av∂
2
zu = ∇p, t > 0, (x, y, z) ∈ U(t) ⊂ R

3,

divu = 0.

In the above equation, Ah and Av are respectively the horizontal and vertical turbulent viscosities, p is
the pressure inside the fluid, ρ is the homogeneous and constant density, and Ωe is the rotation vector
of the Earth (Ω > 0 and e is a unitary vector, parallel to the pole axis, oriented from South to North).
U(t) is an open set in R

3, depending on the time variable t: indeed, the interface between the ocean and
the atmosphere may be moving, and is described in general by a free surface z = h(t).

In order to focus on the influence of the wind, let us now make a series of crude modeling hypotheses
on the boundary conditions: first, we assume that the lateral boundaries of the ocean are flat, and that
the velocity u satisfies periodic boundary conditions in the horizontal variable. We also neglect the
fluctuations of the free surface, namely, we assume that h(t) ≡ aD, with a,D positive constants. This
approximation, although highly unrealistic, is justified by the fact that the behaviour of the fluid around
the surface is in general very turbulent. Hence, as emphasized in [5], only a modelization is tractable
and meaningful. Let us also mention that the justification of this rigid lid approximation starting from
a free surface is open from a mathematical point of view. At last, we assume that the bottom of the
ocean is flat; the case of a nonflat bottom has already been investigated by several authors, and we refer
to [5, 7, 14] for more details regarding that point.

1Université Paris-Dauphine, Ceremade, F-75016 Paris, France, dalibard@ceremade.dauphine.fr;
2CNRS, UMR7534, F-75016 Paris, France.
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As a consequence, we assume that U(t) = [0, a1L) × [0, a2L) × [0, aD], where L > 0 is the typical
horizontal lengthscale, and u satisfies the following boundary conditions

u is periodic in the horizontal variable with period [0, a1L) × [0, a2L),

u|z=0 = 0 (no slip condition at the bottom of the ocean),

∂zuh|z=aD = A0σ (influence of the wind),

u3|z=aD = 0 (no flux condition at the surface).

Let us now reduce the problem by scaling arguments. First, we neglect the effect of the horizontal
component of the rotation vector e, which is classical in a geophysical framework (see [3]). Furthermore,
we assume that the motion occurs at midlatitudes (far from the equator), and on a “small” geographical
zone, meaning L≪ R0, where R is the earth radius. In this setting, it is legitimate to use the so-called
f -plane approximation (see [6]), and to neglect the fluctuations of the quantity e3 · e with respect to the
latitude. In rescaled variables, the equation becomes

∂tu
ε,ν + uε,ν · ∇uε,ν +

1

ε
e3 ∧ uε,ν − η∆hu

ε,ν − ν∂2
zu

ε,ν + ∇p = 0, (1.1)

where

ε :=
U

2LΩ
, η :=

Ah

ρuL
, ν :=

LAv

ρUD2
,

and U is the typical horizontal relative velocity of the fluid. We are interested in the limit

ν ≪ 1, ε≪ 1, η ∼ 1.

Such a scaling of parameters seems convenient for instance for the mesoscale eddies that have been
observed in western Atlantic (see [16]). One has indeed

U ∼ 5 cm · s−1, L ∼ 100 km, D ∼ 4 km and Ω ∼ 10−4s−1

which leads to ε ∼ 5 × 10−3. Possible values for the turbulent viscosities given in [16] are

Ah ∼ 107 cm2 · s−1 and Az ∼ 10 cm2 · s−1

so that ν = 10−3 . Moreover, the amplitude of the wind stress at the surface of the ocean may be very
large; thus we set

β :=
A0S0D

U
,

where S0 is the amplitude of the wind velocity, and we study the limit β → ∞. Equation (1.1) is now
supplemented with the boundary conditions

uε,ν
|z=0 = 0,

∂zu
ε,ν
h|z=a = βσε,

uε,ν
3|z=a = 0,

(1.2)

and with periodic boundary conditions in the horizontal variable xh. In the rest of the paper, we set
T

2 := [0, a1) × 0, a2). The assumptions on the wind-stress σε will be made clear later on.

1.1 General results on rotating fluids

Let us now explain heuristically what is the expected form of uε,ν at the limit. Assume for instance that
ν = ε and that the family uε,ν admits a two-scale limit in time, say u0, as ε→ 0; we thereby mean that

∀φ ∈ C∞
0 ([0,∞) × [0,∞) × T

2 × [0, a])

lim
ε→0

∫ ∞

0

∫

T2×[0,a]

uε,ν(t, xh, z)φ

(

t,
t

ε
, xh, z

)

dt dxh dz

=

∫ ∞

0

∫ ∞

0

∫

T2×[0,a]

u0(t, τ, xh, z)φ (t, τ, xh, z) dt dτ dxh dz
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Rigorous definitions and properties of two-scale convergence can be found in the paper by G. Allaire [1].
Then, assuming that uε,ν is bounded in a “good” functional space, we may pass to the two-scale limit

in (1.1), which yields






∂τu
0 + e3 ∧ u0 = 0,

divu0 = 0,
u0

3|z=0 = u0
3|z=a = 0.

(1.3)

Hence we introduce the vector space

H :=
{

u ∈ L2(T2 × [0, a])3, divu = 0, u3|z=0 = u3|z=a = 0
}

.

We denote by P the orthogonal projection on H in L2(T2 × [0, a])3, and we set L := P(e3 ∧ ·). Notice
that P differs from the Leray projector in general, because of the no-flux conditions at the bottom and
the surface of the fluid. It is known (see for instance [3]) that there exists a hilbertian basis (Nk)k∈Z3\{0}
of H such that for all k,

P(e3 ∧Nk) = iλkNk with λk = − k′3
|k′| ,

where k′ = (2πk1/a1, 2πk2/a2, πk3/a). The vector Nk is given by

Nk(xh, z) = eik′
h·xh





cos(k′3z)n1(k)
cos(k′3z)n2(k)
sin(k′3z)n3(k)





where


























n1(k) =
1√

a1a2a|k′h|
(ik′2 + k′1λk)

n2(k) =
1√

a1a2a|k′h|
(−ik′1 + k′2λk)

n3(k) = i
|k′h|√

a1a2a|k′|

if kh 6= 0,

and






















n1(k) =
sgn(k3)√
a1a2a

n2(k) =
i√

a1a2a
n3(k) = 0

else.

We infer from equation (1.3) that u0(t, τ) ∈ H almost everywhere, and that there exists a function
u0

L such that

u0 = exp(−τL)u0
L =

∑

k

e−iλkτ
〈

Nk, u
0
L

〉

Nk.

Consequently the main effect of the Coriolis operator L is to create waves, propagating at frequencies
of order ε−1. The goal is now to identify the function u0

L, which in general depends on the slow time
variable t. This is achieved thanks to filtering methods, developed independently by S. Schochet in [19]
and E. Grenier in [9]. Precisely, setting

uε,ν
L = exp

(

t

ε
L

)

uε,ν

it is proved in [3, 14] in the case of Dirichlet boundary conditions at z = 0 and z = a that uε,ν
L converges

strongly in L2
loc([0,∞)×T

2×[0, a]) towards a function u0
L. Moreover, the function u0

L satisfies a nonlinear
equation of the type

∂tu
0
L + Q̄(u0

L, u
0
L) − ∆hu

0
L = S̄, (1.4)

where the quadratic term Q̄(u0
L, u

0
L) corresponds to the filtering of oscillations in the non-linear term

uε,ν · ∇uε,ν , and the source term S̄ to the filtering of oscillations in lower order terms in uε,ν . The
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quadratic term Q̄ is defined as follows (see [3], Proposition 6.1 and [14]): for w1, w2 ∈ H∩H1(T2× [0, a]),

2Q̄(w1, w2) := w − lim
ε→0

[

exp

(

t

ε
L

)

P

(

exp

(

− t

ε
L

)

w1 · ∇ exp

(

− t

ε
L

)

w2

)

exp

(

t

ε
L

)

P

(

exp

(

− t

ε
L

)

w2 · ∇ exp

(

− t

ε
L

)

w1

)]

=
∑

m∈Z3

∑

(k,l)∈Km

〈Nk, w1〉 〈Nk, w2〉αk,l,mNl, (1.5)

where the resonant set Km is defined for m ∈ Z
3 \ {0, } by

Km :=

{

(k, l) ∈ Z
6,

kh + lh = mh,
λk + λl = λm

and ∃η ∈ {−1, 1}2, η1k3 + η2l3 = m3

}

and the coefficient αk,l,m by

αk,l,m = 〈Nm, (Nk · ∇)Nl〉 + 〈Nm, (Nl · ∇)Nk〉 .

In order that the equation on u0
L is defined unambiguously, the value of the source term S̄ has to be

specified. In the present case, we have

S̄ = −
√

ν

ε
SB(u0

L) − νβST (σ),

where SB : H → H is a linear continuous non-negative operator (see [3, 4, 14]) recalled in formula (4.9)
below, and ST (σ) depends on the time oscillations in the wind-stress σ. Thus, in the next paragraph, we
precise the assumptions on the wind-stress σε, and we define the source term ST . In the above formula
and throughout the article, the subscripts B and T refer to top and bottom, respectively.

1.2 Definition of the limit equation

Let us first introduce the hypotheses on the time-dependance of the wind velocity σε. Since the Coriolis
operator generates oscillations at frequencies of order ε−1, it seems natural to consider functions σε which
depend on the fast time variable t/ε. The case where this dependance is periodic, of almost periodic,
has been investigated by N. Masmoudi in [14] in the non-resonant case, that is, when the frequencies of
the wind-stress are different from ±1. The results of [14] were then extended by the author and Laure
Saint-Raymond in [4]. In fact, it is proved in [4] that when the wind-stress oscillates with the same
frequency as the rotation of the Earth (i.e. ±1), the typical size of the boundary layers is much larger
than the one of the classical Ekman layers. Moreover, a resonant forcing overall destabilizes the whole
fluid for large times. Here, we wish to avoid these singular behaviours, and thus to consider a more
general non-resonant setting.

Let (E,F ,m0) be a probability space, and let (θτ )τ∈R be a measure preserving group transformation
acting on E. We assume that the function σε can be written

σε(t, xh) = σ

(

t,
t

ε
, xh;ω

)

, t > 0, xh ∈ T
2, ω ∈ E,

and that the function σ is stationary, i.e.

σ(t, τ + s, xh;ω) = σ(t, τ, xh; θsω)

almost everywhere.
The periodic setting can be embedded the stationary (ergodic) setting in the following way (see [15]):

take E = R/Z ≃ [0, 1), and let m0 be the Lebesgue measure on E. Define the group transformation
(θτ )τ∈R by

θτs = s+ τ mod Z ∀(τ, s) ∈ R × E.
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Then it is easily checked that θτ preserves the measure m0 for all τ ∈ R. Thus the periodic setting
is a particular case of the stationary setting; the almost periodic setting can also be embedded in the
stationary setting, but the construction is more involved, and we refer the interested reader to [15].

The interest of the stationary setting, in addition of its generalization of the almost periodic one, lies
in the introduction of some randomness in equation (1.1). Hence, we also expect to recover a random
function in the limit ε, ν → 0. In fact, we will prove rigorously a strong convergence result of this kind;
additionally, we will characterize the average behaviour of uε,ν in the limit. Thus, one of the secondary
goals of this paper is to derive some averaging techniques adapted to highly rotating fluids, which may
be of interest in the framework of a mathematical theory of weak turbulence.

Since the function σ is not an almost periodic function, we now introduce a notion of approximate
spectral decomposition of σ. For α > 0, let

σ̂α(λ) :=
1

2π

∫

R

exp(−α|τ |)e−iλτσ(τ) dτ, (1.6)

and define the family of functions (σα)α>0 by the formula

σα(τ) :=

∫

R

exp(−α|λ|)eiλτ σ̂α(λ) dλ. (1.7)

It is proved in the Appendix A (see Lemma 1) that the family (σα)α>0 converges towards σ, as α → 0,
in L∞

loc([0,∞) × [0,∞), L∞(E,L2(T2))). We assume that there exists s > 4 such that the following
non-resonance hypotheses hold:

(H1) For all α > 0, T > 0, σ̂α ∈ L∞([0, T ] × E,L1(Rλ, H
s(T2))), and

∀T > 0, sup
α>0

||σ̂α||L∞([0,T ]×E,L1(R,Hs(T2))) < +∞.

(H2) There exist neighbourhoods V± of ±1, independent of α > 0, such that

∀T > 0, lim
α→0

sup
λ∈V+∪V−

‖σ̂α(λ)‖L∞([0,T ]×E,Hs(T2)) = 0.

We refer to Remark 1.2 below for some details about the meaning of hypotheses (H1)-(H2) for
almost periodic functions. Let un now explain how random oscillations are filtered:

Proposition 1. Let φ ∈ L∞(Rτ , L
2(E)) be stationary, and let λ ∈ R. Then the family

φλ
θ : ω ∈ E 7→ 1

θ

∫ θ

0

φ(τ, ω)e−iλτdτ, θ > 0

converges, almost surely and in L2(E), towards a function denoted by Eλ[φ] ∈ L2(E) as θ → ∞. More-

over, Eλ[φ] satisfies the equality

Eλ[φ](θτω) = Eλ[φ](ω)eiλτ

almost surely in ω, for all τ ∈ R.

Additionally, if σ satisfies (H1)-(H2), then

Eλ[σ] = 0 (1.8)

for λ in a neighbourhood of ±1.

Proposition 1 is proved in Appendix B, except property (1.8), which will be proved in the course of
the proof page 28.

With the above definition of Eλ, the source term ST is defined by

ST (σ)(t) =
1

2
√
aa1a2

∑

k∈Z3

∑

±
1kh 6=0

(−1)k3

|k′h|
(

λkk
′
h − i(k′h)⊥

)

· E−λk
[σ̂(t, ·, kh)]Nk,

5



where

σ̂(t, τ, kh;ω) =
1√
a1a2

∫

T2

σ(t, xh;ω)e−ik′
h·xh dxh.

Notice that ST (σ) is a random function in general, and is well-defined in L∞
loc([0,∞)×E,L2(T2 × [0, a))

thanks to (H1)-(H2) provided σ ∈ L∞([0, T ]× [0,∞) × E,H1/2(T2)) for all T > 0.

• We now state an existence result for the limit system, based on the analysis in [3]. To that end, we
introduce the anisotropic Sobolev spaces Hs,s′

by

Hs,s′
:=
{

u ∈ L2(T2 × [0, a3]), ∀α ∈ N
3, |αh| ≤ s, |α3| ≤ s′, ∇αh

h ∂α3

z u ∈ L2
}

.

Then the following result holds:

Proposition 2. Let ν, ε, β > 0 be arbitrary.

Let u0 ∈ H ∩H0,1, and let σ ∈ L∞
loc

([0,∞)t, L
∞([0,∞)τ × E,H3/2(T2)).

Assume that the hypotheses (H1)-(H2) hold.

Then ST (σ) ∈ L∞
loc

([0,∞)t, L
∞(E,H0,1)), and consequently, the equation

∂tw + Q̄(w,w) − ∆hw +

√

ν

ε
SB(w) + νβST (σ) = 0,

w|t=0 = u0

(1.9)

has a unique solution w ∈ L∞(E, C([0,∞),H∩H0,1)) such that ∇hu belongs to L∞(E,L2
loc

([0,∞), H0,1)).

Remark 1.1. (i) Notice that the function w is random in general because of the source term ST .
(ii) In [3], Proposition 2 is proved for ST = 0 (see Proposition 6.5 p. 145). As stressed by the authors,
the result is non trivial since the system (1.9) is similar to a three-dimensional Navier-Stokes equation,
with a vanishing vertical viscosity. The proof relies on two arguments: first, a careful analysis of the
structure of the quadratic term Q̄ shows that the limit equation is in fact close to a two-dimensional one.
Second, the divergence-free property enables one to recover estimates on the vertical derivatives on the
third component of the velocity field, and thus to bypass the difficulties due to the lack of smoothing in
the vertical direction.

In fact, the proof of Proposition 2 can easily be adapted from the one of Proposition 6.5 in [3], and is
therefore left to the reader. The method remains exactly the same, the only difference being the presence
of the source term ST in the energy estimates. This does not rise any particular difficulty, thanks to the
assumptions on σ.

1.3 Convergence result

Theorem 1. Assume that ν = O(ε), and that
√
ενβ = O(1).

Let σ ∈ L∞
loc

([0,∞)t, L
∞([0,∞)τ × E,H3/2(T2)) such that (H1)-(H2) are satisfied, and ∂τσ ∈

H1(T2, L∞([0,∞)t × [0,∞)τ × E)).
Let uε,ν ∈ L∞(E, C([0,∞), L2)∩L2

loc
([0,∞), H1)) be a weak solution of (1.1), supplemented with the

conditions (1.2) and the initial data uε,ν
|t=0 = u0 ∈ H×H0,1. Let w be the solution of (1.9). Then for all

T > 0,

uε,ν − exp

(

− t

ε
L

)

w → 0

in L2([0, T ]× E,H1,0) ∩ L∞([0, T ], L2(E × T
2 × [0, a])).

In the case of the nonresonant torus (see (1.11) below), it is likely that the hypothesis ν = O(ε)
can be relaxed. Indeed, in this case, the equation on w decouples between a nonlinear equation on the
vertical average of w on the one hand, and a linear equation on the vertical modes of w on the other (see
paragraph 1.4 below, together with Section 6). Moreover, it can be proved that the purely horizontal
modes of w decay exponentially in time at a rate exp(−

√

ν/εt), and the rate of decay does not depend
on the particular horizontal mode considered. Thus, in this particular case, the regime ν ≫ ε may be
investigated, using arguments similar to those developed in [4].
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Remark 1.2. Let us now explain the meaning of hypotheses (H1)-(H2) for almost periodic functions.
Let kh ∈ Z

2, and let φ ∈ L∞([0,∞) × T
2) such that

φ(τ, xh) = eik′
h·xh

∑

µ∈M

φ̂(µ)eiµτ ,

where M is a countable set. The fact that φ as only one horizontal Fourier mode is not crucial, but
merely helps focusing on the time spectrum. Then it can be checked easily that for all α > 0,

φ̂α(λ, xh) =
1

2π
eik′

h·xh

∑

µ∈M

φ̂(µ)
2α

α2 + (µ− λ)2
.

In particular, there exists a constant C > 0 such that for all s > 0,

‖φ̂α‖L1(Rλ,Hs(T2)) ≤ C(1 + |kh|s)
∑

µ∈M

∣

∣

∣φ̂(µ)
∣

∣

∣

∫

R

2α

α2 + (µ− λ)2
dλ

≤ C(1 + |kh|s)
∑

µ∈M

∣

∣

∣φ̂(µ)
∣

∣

∣ .

Thus hypothesis (H1) is satisfied provided
∣

∣

∣φ̂(µ)
∣

∣

∣ <∞.

On the other hand, assume that

η := d(M, {−1, 1}) > 0, (1.10)

i.e. that there are no frequencies in a neighbourhood of ±1. Then if λ ∈ (−1 − η/2,−1 + η/2) ∪ (1 −
η/2, 1 + η/2), we have

|λ− µ| ≥ η

2
∀µ ∈M,

and consequently, setting V ± := (±1 − η/2,±1 + η/2), we have, for all s > 0

sup
λ∈V −∪V +

∥

∥

∥φ̂α(λ)
∥

∥

∥

Hs(T2)
≤ C(s)

1

η
α.

Thus hypothesis (1.10) entails (H2). Additionally, hypothesis (1.10) cannot be easily relaxed, as shows
the following construction: consider the sequence µn := 1 − 1/n, and choose a sequence of positive
numbers φn such that

∑

n

φn <∞.

For τ ∈ R, set

φ(τ) :=
∑

n

φne
iµnτ .

Then for all α > 0, for all k > 0

φ̂α(µk) =
∑

n

φn
2α

α2 +
(

1
n − 1

k

)2 ≥ 2φk

α
.

In particular,
lim
α→0

φ̂α(µk) = +∞

for all k, and thus condition (H2) is not satisfied.

7



1.4 Average behaviour at the limit

We have already stressed that the solution w of equation (1.9) is, in general, a random function. Thus
one may wonder whether the average behaviour of w at the limit can be characterized. In general, the
nonlinearity of equation (1.9) prevents us from deriving an equation, or a system of equations, on the
expectation of w, which we denote by E[w]. However, when the torus is non resonant, equation (1.9)
decouples, and in this case we are able to exhibit a system of equations satisfied by E[w].

Let us first recall a few definitions:

Definition 1 (Non-resonant torus). The torus T
3 := T

2 × [−a, a) is said to be non-resonant if the
following property holds: for all (k, n) ∈ Z

3 \ {0} × Z
3 \ {0},

(

∃η ∈ {−1, 1}3, η1λk + η2λn−k − η3λn = 0
)

⇒ k3n3 = 0. (1.11)

We refer to [2] for a discussion of hypothesis (1.11) and its consequences. Let us mention that (1.11)
holds for almost all values of (a, a1, a2) ∈ (0,∞)3. When the torus is non-resonant, the structure of the
quadratic form Q̄ defined by (1.5) is particularly simple, and the system (1.9) can be decoupled into
a two-dimensional Navier-Stokes equation on the vertical average of w, and a linear equation on the
z-dependent part (see [3]). The advantage of this decomposition in our case is that the vertical average
of S̄T (σ) is deterministic, at least when the group transformation (θτ )τ≥0 acting on E is ergodic (see
[20]).

Definition 2 (Ergodic transformation group). Let (θτ )τ∈R be a group of invariant transformations
acting on the probability space (E,A,m0). The group is said to be ergodic if for all A ∈ A,

(θτA ⊂ A ∀τ ∈ R) ⇒ m0(A) = 0 or m0(A) = 1.

We now state the result on the average behaviour at the limit:

Proposition 3. Assume that the transformation group (θτ )τ∈R is ergodic.

Let u0 ∈ H ∩ H0,1, and let σ ∈ L∞
loc

([0,∞)t, L
∞([0,∞)τ × E,H3/2(T2)) such that the hypotheses of

Theorem 1 are satisfied. Let w ∈ L∞(E, C([0,∞),H ∩H0,1) ∩ L2
loc

([0,∞), H1,0)) be the unique solution

of equation (1.9).
Let w̄ = (w̄h, 0) ∈ C([0,∞), L2(T2)) ∩ L2

loc
([0,∞), H1(T2)) be the solution of the 2D-Navier-Stokes

equation

∂tw̄h + w̄h · ∇hw̄h − ∆hw̄h +

√

ν

ε

1√
2aa1a2

w̄h + νβE [ST (σ)]h = ∇hp̄,

divhw̄h = 0,

w̄h|t=0(xh) =
1

a3

∫ a3

0

u0,h(xh, z) dz.

Then the following properties hold:

1. As ε, ν → 0 as in Theorem 1, we have

uε,ν ⇀ w̄ in L2([0, T ] × T
2 × [0, a] × E).

In particular, the weak limit of uε,ν is a deterministic function.

2. Assume additionally that the torus T
3 is non resonant. Then

E[w] = w̄ + w̃,

where w̃ solves a linear deterministic equation

∂tw̃ + 2Q̄(w̄, w̃) − ∆hw̃ +

√

ν

ε
SB(w̃) = 0,

w̃|t=0 = u0 − w̄|t=0.

8



1.5 Strategy of proof of Theorem 1

The proof relies on the construction of an approximate solution, obtained as the sum of some interior
terms -the largest of which is exp(−T/εL)w(t) -, and some boundary layer terms which restore the
horizontal boundary conditions violated by the interior terms. We refer to the works by N. Masmoudi
[13, 14], N. Masmoudi and E. Grenier [10], N. Masmoudi and F. Rousset [12], and F. Rousset [18] for an
extensive study of boundary layers in rotating fluids, or in incompressible fluids with vanishing vertical
viscosity for [13]. We emphasize that in fine, all terms will be small in L2 norm, except exp(−T/εL)w(t).

Following [3] (Chapter 7), let us assume that as ε, ν → 0,

uε,ν ≈ uint + uBL,

pε,ν ≈ 1

ε
pint +

1

ε
pBL + pint,0,

(1.12)

where

uint(t, xh, z) = U

(

t,
t

ε
, xh, z

)

, pint(t, xh, z) = P

(

t,
t

ε
, x, y, z

)

,

uBL(t, xh, z) = uT

(

t,
t

ε
, xh,

a− z

η

)

+ uB

(

t,
t

ε
, xh,

z

η

)

,

pBL(t, xh, z) = pT

(

t,
t

ε
, xh,

a− z

η

)

+ pB

(

t,
t

ε
, xh,

z

η

)

.

Above, η is a small parameter that will be chosen later on. The function uT (t, τ, xh, ζ) is assumed to
vanish as ζ → ∞ (same for pT , pB, uB).

We then plug the Ansatz (1.12) into equation (1.1), and identify the different powers of ε. In general,
there is a coupling between uint and uBL: indeed, we have seen that it is natural to expect that

U(t, τ) = exp(−τL)w(t),

at first order, and thus uint does not match the horizontal boundary conditions in general. As a conse-
quence, the value of uint at the boundary has to be taken into account when constructing the boundary
layer term uBL. On the other hand, because of the divergence-free constraint, the third component of
uBL does not vanish at the boundary, which means that a small amount of fluid may enter or leave
the interior of the domain. This phenomenon is called Ekman suction, and gives rise to a source term
(called the Ekman pumping term) in the equation satisfied by uint. This leads to some sort of “loop”
construction, in which the boundary layer and interior terms are constructed one after the other.

Rather than following this construction step by step, we first explain how a generic boundary layer
term is constructed, given arbitrary boundary conditions on the horizontal component of the velocity.
We shall see that in general, the vertical component of the boundary layer term does not vanish at
the boundary. Thus, in the third section, we explain how a generic interior term uint is constructed,
depending on the initial data, and on arbitrary Dirichlet boundary conditions for the vertical component
of the velocity. In the fourth section, we detail how the approximate solution is obtained, and the fifth
section is devoted to the proof of convergence thanks to energy estimates. At last, we prove Proposition
3 in the sixth section.

2 The boundary layer operator

In this section, we construct a linear boundary layer operator, which maps boundary conditions on the
horizontal component of the velocity onto boundary layer terms. The boundary conditions considered
here are of three types:

• Stationary Neumann boundary conditions at the surface:

∂zu
BL
h|z=a = βcT,h

(

t,
t

ε
, xh;ω

)

,

where cT,h(t, τ, x, y, ω) is a stationary function of τ , T
2-periodic with respect to xh.

In this case, we expect uBL
h to be of order ηβ||cT,h||∞ in L∞.

9



• Stationary Dirichlet boundary conditions at the bottom:

uBL
h|z=0 = cB,h

(

t,
t

ε
, xh;ω

)

,

where cB,h(t, τ, xh) is a stationary function of τ , T
2-periodic with respect to xh. In this case, we

expect uBL
h to be of order ||cB,h||∞ in L∞.

• Almost periodic Dirichlet boundary conditions at the bottom:

uBL
h|z=0 = cB,h

(

t,
t

ε
, xh

)

,

where the function cB,h is almost periodic, and such that its frequencies are the eigenvalues of the
operator L. Hence we consider functions cB,h of the type

cB,h(t, τ, xh) =
∑

k∈Z3,k 6=0

ĉB,h(t, k)eik′
h·xhe−iλkτ , λk = − k′3

|k′| . (2.1)

Once again, we expect uBL
h to be of order ||cB,h||∞ in L∞.

The divergence-free condition entails that the third component of uBL is given by the following
formulas:

uT,3 (ζ) = −η
∫ ∞

ζ

divhuT,h(ζ′)dζ′,

uB,3 (ζ) = η

∫ ∞

ζ

divhuT,h(ζ′)dζ′.

Thus uT,3 = O(η2||cT,h||W 1,∞), uB,3 = O(η||cB,h||W 1,∞). At last, in order to be consistent with (1.12),
we assume that the pressure inside the boundary layer is given by

p ≈ 1

ε
pBL =

1

ε
pT

(

a− z

η

)

+
1

ε
pB

(

z

η

)

,

where pT = O(η||cT,h||∞), pB = O(||cB,h||∞).

2.1 Stationary Neumann boundary conditions at the top

The construction of boundary layers with stationary boundary conditions is the main novelty of this
section. We focus on the boundary layer at the top of the fluid, that is, around z = a, and we set

ζ :=
a− z

η
.

Then the pressure term in the third component of (1.1) is of order ||cT,h||∞, whereas the lowest order
term in the left-hand side is of order η2||cT,h||W 1,∞ . Thus, since η is small, we infer

∂ζpT = 0,

and since pT vanishes at infinity, we have pBL = 0: at first order, the pressure does not vary in the
boundary layer. Thus, we now focus on the horizontal component of uT , which is a solution of

∂τ

(

uT,1

uT,2

)

− νε

η2
∂2

ζ

(

uT,1

uT,2

)

+

(

−uT,2

uT,1

)

= 0, (2.2)

∂ζuT,h|ζ=0 = −ηβcT,h(τ, x, y, ω), (2.3)

uT,h|ζ=+∞ = 0. (2.4)

10



We now choose η so that all the terms in (2.2) are of the same order, that is,

η =
√
νε.

Moreover, since cT,h is a stationary function of time, it seems natural to look for stationary solutions of
(2.2), and thus for fundamental solutions ϕ1, ϕ2 of (2.2) in the following sense: ϕi (i = 1, 2) is a solution
of (2.2) in the sense of distributions and satisfies (2.4), and

∂ζϕ1|ζ=0 = δ0(τ)

(

1
0

)

, ∂ζϕ2|ζ=0 = δ0(t)

(

0
1

)

where δ0 denotes the Dirac mass at τ = 0. If we can construct ϕ1 and ϕ2 satisfying the above conditions,
then a good candidate for uT is

uT,h(t, τ, xh, ζ;ω) = −
√
νεβ

∑

j∈{1,2}

∫ ∞

0

cT,j(t, τ − s, xh;ω)ϕj(s)ds.

Hence we now define ϕ1, ϕ2. Since the fundamental solution of the heat equation is known, let us make
the following change of unknow function (see [14]):

H±
j = ∂ζ

[

e±iτ
(

ϕj,1 ± iϕj,2ϕj,2 ∓ iϕj,1.
)]

, j = 1, 2.

Then, setting e±1 := (1,∓i), e±2 := (±i, 1), we infer that H±
j = Ge±j , where G satisfies







∂τG− ∂2
ζG = 0, τ > 0, ζ > 0,

G|ζ=0(τ) = δ0(τ),
G|ζ=+∞ = 0.

(2.5)

The boundary condition at ζ = 0 should be understood as follows: for all ϕ ∈ Cb(R), for all τ > 0

lim
ζ→0+

[
∫ ∞

0

ϕ(τ − s)G(s, ζ)ds

]

= ϕ(τ).

It can be checked (see Chapter 4, section 1 in [11]) that

G(τ, ζ) :=
ζ√

4πτ3/2
exp

(

− ζ2

4τ

)

for τ > 0, ζ > 0,

is a solution of (2.5), which leads to

∂ζϕj(τ, ζ) :=
1

2

[

e−iτH+
j (τ, ζ) + e+iτH−

j (τ, ζ)
]

=
1

2
G(τ, ζ)

[

e−iτe+j + e+iτe−j
]

.

Unfortunately, when we integrate this formula with respect to ζ in order to obtain an explicit expression
for uT,h, the convolution kernel thus obtained is

ϕj(τ, ζ) = − 1√
4πτ

exp

(

− ζ2

4τ

)

[

e−iτe+j + e+iτe−j
]

,

and is not integrable near τ = +∞. Hence, in the spirit of [14], we consider an approximate corrector in
the boundary layer: for δ > 0, we set

Gδ(τ, ζ) =
ζ√

4πτ3/2
exp

(

− ζ2

4τ
− δτ

)

.
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Then the corresponding corrector is given by

uδ
T,h(·, τ, ·, ζ, ω) = −β

√
εν

∑

j∈{1,2}

∫ ∞

0

ϕj(s, ζ) exp(−δs)cT,j(·, τ − s, ·;ω) ds (2.6)

=
β
√
νε√

4π

∑

±

∫ ∞

0

1√
s

exp

(

−ζ
2

4s

)

(cT,h ± ic⊥T,h)(·, τ − s, ·, ω)e−δs±isds.

The approximate corrector uδ
T satisfies the exact boundary conditions at ζ = 0, and equation (2.2) up

to an error term of order δ
∂τu

δ
T,h − ∂2

ζu
δ
T,h +

(

uδ
T,h

)⊥
+ δuδ

T,h = 0.

The third component of uδ
T is then given by

uδ
T,3(ζ) = −

√
νε

∫ ∞

ζ

divhu
δ
T,h,

which yields

uδ
T,3(·, τ, ·, ζ, ω) =

νεβ√
4π

∑

±

∫ ∞

0

ϕ

(

ζ√
s

)

(divhcT,h ∓ irothcT,h)(·, τ − s, ·, ω)e−δs±isds,

where ϕ is defined by ϕ′(ζ) = exp
(

− ζ2

4

)

, ϕ(+∞) = 0.

In horizontal Fourier variables, we have

uδ
T,3(t, τ, xh, ζ, ω) =

νεβ√
4π

∑

kh∈Z2

∑

±
eik′

h·xh

∫ ∞

0

ϕ

(

ζ√
s

)

ĉ±T,h(t, τ − s, kh, ω)e−δs±isds (2.7)

where
ĉ±T,h(kh) = ik′h · ĉT,h(kh) ± (k′h)⊥ · ĉT,h(kh).

We define the operator Bδ
T by

Bδ
T [cT,h](t, xh, z;ω) = uδ

T

(

t,
t

ε
, xh,

a− z√
εν

;ω

)

,

where uδ
T is defined by (2.6)-(2.7).

We now give an estimate on the boundary layer term computed above when assumptions (H1)-(H2)
are satisfied. The proof is postponed to paragraph 2.4.

Proposition 4. Assume that cT,h ∈ L∞([0,∞) × Rτ × E × T
2) ∩ L∞(E × [0,∞) × T

2, C(Rτ )), and

that cT,h satisfies (H1)-(H2). Then for all T > 0, there exists a constant CT > 0, such that for all

δ, ν, ε, β > 0,

∣

∣

∣

∣uδ
T , ζ∂ζu

δ
T

∣

∣

∣

∣

L∞([0,T ]×Rτ×T2×[0,∞)ζ×E)
≤ CT

√
ενβ, (2.8)

∣

∣

∣

∣uδ
T , ζ∂ζu

δ
T

∣

∣

∣

∣

L∞([0,T ]×Rτ×E,L2([0,∞)ζ ,H1(T2)))
≤ CT

√
ενβ. (2.9)

2.2 Stationary Dirichlet boundary conditions at the bottom

The construction is the same as for Neumann boundary conditions, and is in fact more simple because we
need not integrate with respect to the variable ζ. Thus, with the same notations as above, the boundary
layer term at the top is given by

uδ
B,h(t, τ, xh, ζ, ω) =

1

2

∑

j∈{1,2}

∫ ∞

0

Gδ(s, ζ)
[

e−ise+j + e+ise−j
]

cT,j(t, τ − s, x, y;ω) ds, (2.10)
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and

uδ
B,3(t, τ, xh, ζ, ω)

=
νε√
4π

∑

kh∈Z2

∑

±
eik′

h·xh

∫ ∞

0

1√
s

exp

(

−ζ
2

4s

)

ĉ±T,h(·, τ − s, kh, ω)e−δs±isds. (2.11)

The same estimates as in Proposition 4 hold. The corresponding operator is denoted by Bstat
B .

2.3 Almost-periodic Dirichlet boundary conditions at the bottom

In this case, the computation has already been performed by several authors (see for instance [14, 3]);
hence we will merely briefly recall the method and the expression of u0

B. Unlike in [4], no singular
behaviour occurs for kh 6= 0 because there is no resonant forcing on the non-homogeneous horizontal
modes, meaning that λk 6= ±1 when kh 6= 0. For kh = 0, the frequency λk is equal to the frequency of
rotation of the Earth (i.e. |λk| = 1) and thus we use the so-called “stationary correctors” defined in [4]
in that case.

As in the top boundary layer, we have pB = 0, and thus the function uB,h satisfies the evolution
equation (2.2), together with the boundary conditions

uB,h(t, τ, xh, ζ = 0) = cB,h (t, τ, xh)

=
∑

k∈Z3,k 6=0

ĉB,h(t, k)eik′
h·xhe−iλkτ , (2.12)

u0
B,h(t, τ, xh, ζ = +∞) = 0. (2.13)

The decomposition (2.12) leads us to search for a corrector uB satisfying

uB,h =
∑

k∈Z3

uB,h,k,

where each term uB,h,k satisfies (2.13) and (2.2), and

uB,h,k|ζ=0(t, τ, xh) = ĉB,h(t, k)e−iλkτeik′
h·xh .

The periodicity in time of the boundary condition prompts us to choose uB,h,k as a periodic function of
τ , with frequency λk. Also, it is classical to seek uB,h,k as an exponentially decaying function of ζ; the
rate of decay is then dictated by the equation. The precise expression of uB,h,k is the following (see [14]):
First case: kh 6= 0.

In this case, uB,h,k is an exact solution of (2.2), and is equal to

uB,h,k(t, τ, x, y, ζ) =
∑

±
w±

k (t;ω)e−iλkτ+ik′
h·xh−η±

k
ζ (2.14)

where

η±k =
√

1 ∓ λk
1 ± i√

2
,

w±
k (t;ω) =

1

2

(

ĉB,1(t, k) ± iĉB,2(t, k)
ĉB,2(t, k) ∓ iĉB,1(t, k)

)

=
ĉB,1(t, k) ± iĉB,2(t, k)

2

(

1
∓i

)

.

The vertical part of the boundary layer is then given by

uB,3,k(t, τ, x, y, ζ) =
√
εν
∑

±

1

η±k
ik′h · w±

k (t;ω)e−iλkτ+ik′
h·xh−η±

k
ζ . (2.15)

Second case: kh = 0.
In this case, the construction of the stationary correctors in [4] proves that there are indeed boundary
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layers, but which are of order
√
νt, and not

√
εν in general. Thus the size of the boundary layer depends

(slowly) on time.
First, notice that if kh = 0, then −λk = sgn(k3) = ±1. As in the first case, we decompose ĉB,h(t, k)

onto the basis (1,±i) :

ĉB,h(t, k) =
1

2

∑

±
(ĉB,1(t, k) ∓ iĉB,2(t, k))

(

1
±i

)

.

As a consequence, we have

∑

k3∈Z∗

ĉB,h(t, 0, k3)e
−iλkτ = α+(t)eiτ

(

1
i

)

+ α−(t)e−iτ

(

1
−i

)

+ γ+(t)eiτ

(

1
−i

)

+ γ−(t)e−iτ

(

1
i

)

,

where
α±(t) =

∑

k3,sgn(k3)=±1

(ĉB,1(t, 0, k3) ∓ iĉB,2(t, 0, k3)) ,

γ±(t) =
∑

k3,sgn(k3)=±1

(ĉB,1(t, 0, k3) ± iĉB,2(t, 0, k3)) .

The terms γ±e±iτ (1,∓i) give rise to a classical boundary layer term, namely

∑

±
γ±(t)e±iτ−η±ζ

(

1
∓i

)

, with η± = 1 ± i.

For the terms α±e±iτ (1,±i), we rather use the following Ansatz (see [4])

ustat(t, xh, z) = ψ

(

z√
νt

)

∑

±
α±(t)e±i t

ε

(

1
±i

)

. (2.16)

In order that ustat is an approximate solution of (the linear part of) equation (1.1), the function ψ must
be such that

−1

2
ψ′(X) − ψ′′(X) = 0,

ψ|X=0 = 1,

which yields

ψ(X) =
1√
π

∫ ∞

X

exp

(

−u
2

4

)

du.

With this definition, ustat(t) vanishes outside a layer of size
√
νt localized near the bottom of the fluid.

Hence ustat is an approximate solution of the linear part of equation (1.1), and ustat
|z=a is exponentially

small.

We define the operator Bper
B by

Bper
B [cB,h](t, xh, z) = uB

(

t,
t

ε
, xh,

z√
εν

)

+ ustat(t, xh, z)

=
∑

k∈Z
3,

kh 6=0

uB,h,k

(

t,
t

ε
, xh,

z√
εν

)

+
∑

±
γ±(t)e

±i t
ε
−η± z√

εν

(

1
∓i

)

+ ustat(t, xh, z).

We now give some estimates on the boundary layer terms constructed in this paragraph:
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Lemma 2.1. Let uB be defined by (2.14)-(2.15) and ustat by (2.16). Then the following estimates hold,

for all t > 0

‖uB,h(t), ζ∂ζuB,h(t)‖L∞([0,∞)τ ,L2(T2×[0,∞)ζ)) ≤ C









∑

k∈Z
3,

kh 6=0

|ĉB,h(t, k)|2 |k|
|kh|

|k3|2









1
2

,

‖uB,h(t), ζ∂ζuB,h(t)‖L∞([0,∞)τ×T2×[0,∞)ζ) ≤ C
∑

k∈Z
3,

kh 6=0

|ĉB,h(t, k)| ,

‖uB,3(t), ζ∂ζuB,3(t)‖L∞([0,∞),L2(T2×[0,∞))) ≤ C
√
εν









∑

k∈Z
3,

kh 6=0

|ĉB,h(t, k)|2 |k|3
|kh|

|k3|2









1
2

,

‖uB,3(t), ζ∂ζuB,3(t)‖L∞([0,∞)×T2×[0,∞)) ≤ C
√
εν
∑

k∈Z
3,

kh 6=0

|k| |ĉB,h(t, k)| ,

and
∥

∥ustat(t), z∂zu
stat(t)

∥

∥

L2(T2×[0,a])
≤ C(νt)1/4

∑

k3∈Z∗

|ĉB(t, 0, k3)| ,

∥

∥ustat(t), z∂zu
stat(t)

∥

∥

L∞(T2×[0,a])
≤ C

∑

k3∈Z∗

|ĉB(t, 0, k3)| .

The proof of the above Lemma is left to the reader. Notice that according to the definition of η±k , we
have

C
|kh|
|k| ≤

∣

∣η±k
∣

∣ ≤ 1 ∀k ∈ Z
3.

2.4 Estimates on the boundary layer terms

This section is devoted to the proof of Proposition 4.
We focus on the horizontal component of uδ

T ; the vertical one is treated with similar arguments. Recall
that uδ

T,h is given by (2.6); in order to simplify the notation, we denote by c the horizontal boundary

condition cT,h, and we set c± := c± ic⊥.
First, we write

uδ
T,h(·, τ, ·, ζ, ·) =

√
νεβ√
4π

∑

±

∫ ∞

0

1√
s

exp

(

−ζ
2

4s
− δs

)

c±(·, τ − s, ·)e±is ds

=

√
νεβ√
4π

∑

±

∫ ∞

0

1√
s

exp

(

−ζ
2

4s

)

c±α (·, τ − s, ·)e(−δ±i)s ds (2.17)

+

√
νεβ√
4π

∑

±

∫ ∞

0

1√
s

exp

(

−ζ
2

4s

)

(

c± − c±α
)

(·, τ − s, ·)e(−δ±i)s ds. (2.18)

The term (2.18) can easily be evaluated thanks to Lemma 1 in the Appendix; notice that since the
convergence given in Lemma 1 is not uniform with respect to τ ∈ [0,∞), we cannot derive an estimate
in L∞([0,∞)τ ) at this stage. Hence we keep the variable τ for the time being; there exists a constant
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C > 0 and a number s > 1 such that for all τ ≥ 0, R > 0,
∥

∥

∥

∥

∫ ∞

0

1√
s

exp

(

−ζ
2

4s
− δs

)

(

c± − c±α
)

(·, τ − s, ·, ω)e±is ds

∥

∥

∥

∥

L∞([0,T ]×E,L∞(T2))

≤ C||c− cα||L∞([0,T ]×E×[τ−R,τ ],Hs(T2))

∫ R

0

1√
s

exp

(

−ζ
2

4s
− δs

)

ds (2.19)

+ C ‖c‖L∞([0,T ]×Rτ×T2×E)

∫ ∞

R

1√
s

exp

(

−ζ
2

4s
− δs

)

ds

≤ C

δ
||c− cα||L∞([0,T ]×E×[τ−R,τ ],Hs(T2))

+ C ‖c‖L∞([0,T ]×Rτ×T2×E)

exp(−δR)

δ
.

Above, we have used the Sobolev embedding Hs(T2) ⊂ L∞(T2) for s > 1. Choosing R = δ−2, we deduce
that

∥

∥

∥

∥

∫ ∞

0

1√
s

exp

(

−ζ
2

4s
− δs

)

(

c± − c±α
)

(·, τ − s, ·, ω)e±is ds

∥

∥

∥

∥

L∞([0,T ]×E,L∞(T2))

≤ C

δ
||c− cα||L∞([0,T ]×E×[τ− 1

δ2 ,τ ],Hs(T2)) + C
exp

(

− 1
δ

)

δ
.

As for the term (2.17), recalling the definition of cα, we have

∫ ∞

0

1√
s

exp

(

−ζ
2

4s
− δs

)

c±α (·, τ − s, ·, ω)e±is ds (2.20)

=

∫ ∞

0

∫

R

1√
s
e−α|λ| exp

(

−ζ
2

4s
− δs

)

ĉ±α (·, λ, ·, ω)eiλ(τ−s)e±is dλ ds. (2.21)

We first evaluate
∫ ∞

0

1√
s

exp

(

−ζ
2

4s

)

e−(δ+i(λ±1))s ds.

We split the integral into two parts, one going from s = 0 to s = 1, and the other from s = 1 to s = ∞.
It is obvious that for all ζ > 0, δ > 0, λ ∈ R,

∣

∣

∣

∣

∫ 1

0

1√
s

exp

(

−ζ
2

4s

)

e−(δ+i(λ±1))s ds

∣

∣

∣

∣

≤
∫ 1

0

1√
s

exp

(

−ζ
2

4s

)

ds ≤ 1

2
. (2.22)

Integrating by parts the second integral, we obtain

∫ ∞

1

1√
s

exp

(

−ζ
2

4s

)

e−(δ+i(λ±1))s ds

=
1

δ + i(λ± 1)
exp

(

−ζ
2

4

)

− 1

2(δ + i(λ± 1))

∫ ∞

1

1

s
3
2

[

1 − ζ2

2s

]

exp

(

−ζ
2

4s

)

e−(δ+i(λ±1))s ds. (2.23)

We are now ready to derive the L∞ estimate; the function

x 7→
(

1 − x2

2

)

e−
x2

4

is bounded on R. Hence, gathering (2.22) and (2.23), we deduce that there exists a constant C such that
for all ζ > 0, δ > 0, λ ∈ R,

∣

∣

∣

∣

∫ ∞

0

1√
s

exp

(

−ζ
2

4s

)

e−(δ+i(λ±1))s ds

∣

∣

∣

∣

≤ C

[

1 +
1

|δ + i(λ± 1)|

]

.
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Inserting this inequality in (2.21), we obtain

∥

∥

∥

∥

∫ ∞

0

1√
s

exp

(

−ζ
2

4s
− δs

)

c±α (·, τ − s, ·, ω)e∓is ds

∥

∥

∥

∥

Hs(T2)

≤ C

∫

R

e−α|λ|
[

1 +
1

|δ + i(λ∓ 1)|

]

∥

∥ĉ±α (·, λ, ·, ω)
∥

∥

Hs(T2)
dλ

≤ C

[

sup
α

||σ̂+,α||L∞(E,L1(R,Hs(T2)) +

∫

V±

1

|δ + i(λ∓ 1)| ‖ĉα(·, λ, ·, ω)‖Hs(T2) dλ

]

+C

∫

R\V±

‖ĉα(·, λ, ·, ω)‖Hs(T2) dλ

≤ C

[

sup
α

||ĉα||L∞(E,L1(R,Hs(T2)) + sup
λ∈V±

‖ĉα(λ)‖Hs(T2) ln(δ)

]

.

Above, we have used the following facts: there exists a constant c1 > 0 such that

|δ + i(λ∓ 1)| ≥ |λ∓ 1| ≥ c1 ∀λ ∈ R \ V±,

and there exists another constant c2 > 0 such that

∫

V±

1

|δ + i(λ∓ 1)| ≤
∫ ±1+c2

±1−c2

1
√

δ2 + (1 + λ)2
dλ ≤ C ln(δ).

We deduce that for all α > 0, for all δ > 0, τ ≥ 0,

∣

∣

∣

∣uδ
T,h(τ)

∣

∣

∣

∣

L∞([0,T ]×T2×[0,∞)ζ×E)

≤ C
√
ενβ

[

1 +
exp

(

− 1
δ

)

δ

]

+ C
√
ενβ

[

1

δ
||c− cα||L∞([0,T ]×[τ−δ−1,τ ]×E,Hs(T2)) + sup

λ∈V+∪V−
‖ĉα(λ)‖ ln(δ)

]

.

Taking the infimum with respect to α of the right-hand side, with δ > 0 fixed, we deduce that

sup
δ>0

∣

∣

∣

∣uδ
T,h

∣

∣

∣

∣

L∞([0,T ]×[0,∞)τ×T2×[0,∞)ζ×E)
≤ C

√
ενβ.

We now turn to the derivation of the L2 estimate, which is similar to the above computations. The
main difference lies in the fact that we need to integrate by parts (2.23) yet another time, which yields

∫ ∞

1

1√
s

exp

(

−ζ
2

4s

)

e−(δ+i(λ±1))s ds

=
1

δ + i(λ± 1)
exp

(

−ζ
2

4

)

− 1

2(δ + i(λ± 1))2

[

1 − ζ2

2

]

exp

(

−ζ
2

4

)

− 1

2(δ + i(λ± 1))2

∫ ∞

1

1

s
5
2

φ

(

ζ√
s

)

e−(δ+i(λ±1))s ds,

where

φ(x) = −
(

x4

8
− 3x2

2
+

3

2

)

exp

(

−x
2

4

)

.
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Consequently, remembering (2.22), we have

∣

∣

∣

∣

∫ ∞

0

1√
s

exp

(

−ζ
2

4s

)

e−(δ+i(λ±1))s ds

∣

∣

∣

∣

≤
∫ 1

0

1√
s

exp

(

−ζ
2

4s

)

ds+
1

|δ + i(λ± 1)| exp

(

−ζ
2

4

)

+
1

2|δ + i(λ± 1)|2
∣

∣

∣

∣

1 − ζ2

2

∣

∣

∣

∣

exp

(

−ζ
2

4

)

+
1

2|δ + i(λ± 1)|2
∫ ∞

1

1

s
5
2

∣

∣

∣

∣

φ

(

ζ√
s

)∣

∣

∣

∣

ds.

Plugging this estimate into (2.21) and using (H1)-(H2), we infer that for all ζ > 0, for all s > 0,

∥

∥

∥

∥

∫ ∞

0

1√
s

exp

(

−ζ
2

4s
− δs

)

c±α (·, τ − s, ·, ω)e±is ds

∥

∥

∥

∥

Hs(T2)

≤ C

[∫ 1

0

1√
s

exp

(

−ζ
2

4s

)

ds

]

+C exp

(

−ζ
2

4

)

(

1 + sup
λ∈V±

‖ĉα(λ)‖L∞([0,T ]×E,Hs(T2))) ln(δ)

)

+C

∣

∣

∣

∣

1 − ζ2

2

∣

∣

∣

∣

exp

(

−ζ
2

4

)

(

1 + sup
λ∈V±

‖ĉα(λ)‖L∞([0,T ]×E,Hs(T2)))

1

δ

)

+C

[∫ ∞

1

1

s
5
2

∣

∣

∣

∣

φ

(

ζ2

s

)∣

∣

∣

∣

ds

]

(

1 + sup
λ∈V±

‖ĉα(λ)‖L∞([0,T ]×E,Hs(T2)))

1

δ

)

.

Here, we have used the inequality

∫

V∓

dλ

|δ + i(λ± 1)|2 ≤
∫ ∓1+c2

∓1−c2

dλ

δ2 + (λ± 1)2
≤ C

δ
.

There only remains to prove that each term of the right-hand side has a finite L2 norm. First, thanks to
Jensen’s inequality, we have

∫ ∞

0

(∫ 1

0

2√
s

exp

(

−ζ
2

4s

)

ds

)2

dζ ≤
∫ ∞

0

∫ 1

0

2√
s

exp

(

−ζ
2

2s

)

dsdζ

≤ 2

∫ 1

0

ds

∫ ∞

0

e−
x2

2 dx <∞.

Similarly,

∫ ∞

0

(∫ ∞

1

1

s
5
2

∣

∣

∣

∣

φ

(

ζ√
s

)∣

∣

∣

∣

ds

)2

dζ ≤ C

∫ ∞

0

∫ ∞

1

1

s
5
2

∣

∣

∣

∣

φ

(

ζ√
s

)∣

∣

∣

∣

2

dsdζ

≤ C

(∫ ∞

1

1

s2

)(∫ ∞

0

|φ (x)|2 dx
)

<∞.
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We also have to evaluate the L2 norm of the integral in (2.19); we have

∫ ∞

0

[∫ ∞

0

1√
s

exp

(

−ζ
2

4s
− δs

)

ds

]2

dζ

≤
x=

√
δζ,

u=δs

1

δ
3
2

∫ ∞

0

[
∫ ∞

0

1√
u

exp

(

−x
2

4u
− u

)

du

]2

dx

≤ 1

δ
3
2

∫ ∞

0

∫ ∞

0

1

u
exp

(

−x
2

2u
− u

)

du dx

≤ 1

δ
3
2

∫ ∞

0

∫ ∞

0

1√
u

exp

(

−x
2

2
− u

)

du dx

≤ C

δ
3
2

.

Gathering all the terms, we obtain, for all α, δ > 0, for all τ > 0,

∥

∥uδ
T,h(τ)

∥

∥

2

L∞([0,T ]×E,L2([0,∞)ζ,Hs(T2)))

≤ Cβ2εν
||c− cα||L∞([0,T ]×[τ−δ−1,τ ]×E,Hs(T2))

δ
3
2

+ Cβ2εν

(

exp
(

− 1
δ

)

δ
3
2

+ sup
λ∈V−

|σ̂+,α(λ)|
(

1

δ
+ ln(δ)

)

)

.

Taking the infimum of the above inequality with respect to α, we infer the L2 estimate on uδ
T,h. The

estimates on uδ
T,3 and ζ∂ζu

δ
T are derived in a similar fashion.

3 The interior operator

This section is devoted to the construction of an approximate solution uint to the evolution equation
(1.1) supplemented with the initial condition

uint
|t=0 = u0 ∈ H

and with boundary conditions of the type

uint
3|z=0(t, xh) =

√
ενcB,3

(

t,
t

ε
, xh

)

,

uint
3|z=a(t, xh) =

√
ενcT,3

(

t,
t

ε
, xh

) (3.1)

where cB and cT are periodic with respect to the horizontal variable xh, and either almost periodic or
random and stationary with respect to the fast time variable.

We decompose uint into three terms

uint(t) := ūint

(

t,
t

ε

)

+ vint

(

t,
t

ε

)

+ δuint

(

t,
t

ε

)

,

where ūint is the preponderant term, and vint, δuint are corrector terms, the roles of which are respectively
to ensure that the boundary conditions (3.1) are satisfied, and that uint is an approximate solution of
(1.1).

We have already seen in paragraph 1.1 that it is natural to seek ūint as

ūint(t, τ) = L(τ)w(t),
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where L(τ) = exp(−τL) is the Coriolis semi-group, and

w(t) =
∑

k∈Z3

b(t, k)Nk ∈ H. (3.2)

The construction of w, vint and δuint is as follows: first, we define a corrector vint which satisfies the
boundary conditions (3.1), but not equation (1.1). Then, we derive an equation on ūint + δuint; filtering
the oscillating terms in vint yields the equation on w. Then, the term δuint is defined so as to take into
account the oscillating terms in the equation on ūint + δuint.
• Definition of vint.

We look for a divergence-free function vint satisfying (3.1). Of course, conditions (3.1) do not deter-
mine vint unequivocally. A possible choice is

vint
3 (t, τ, x) =

√
εν

a
[cT,3 (t, τ, xh) z + cB,3 (t, τ, xh) (a− z)] (3.3)

vint
h (t, τ, x) =

√
εν

a

√
εν∇h∆−1

h [cB,3 (t, τ, xh) − cT,3 (t, τ, xh)] .. (3.4)

In fact, if cB and cT are both almost periodic functions of the form (2.1), then a more convenient
choice can be made, which is the so-called “non-resonant” choice in [14]. In this case, the equation
on δuint is more simple, since there is no source term due to vint. However, we have chosen here not
to distinguish between stationary and almost periodic boundary conditions, and thus to work with the
expressions (3.3), (3.4).

We give here the statement and proof of a Lemma which will be useful in the construction of δuint

and w.

Lemma 3.1. Let T > 0 be arbitrary. Assume that the functions cB,3, cT,3 are random stationary, and

that ∂τcB,3, ∂τ cB,3 belong to L2(T2, L∞([0, T ]× [0,∞) × E)).
Let v ∈ ([0, T ]× [0,∞)τ , L

2(T2 × E)) such that ∂τv ∈ L∞
loc

([0, T ] × [0,∞)τ , L
2(T2 × E)) and

divv = 0, (3.5)

v3(t, τ, xh, z = 0) =
√
ενcB,3(t, τ, xh), (3.6)

v3(t, τ, xh, z = 1) =
√
ενcT,3(t, τ, xh), . (3.7)

Then as θ → ∞, the family

Sθ :=
1

θ

∫ θ

0

L(−τ)P [∂τv + e3 ∧ v] dτ

converges almost everywhere and in L∞([0, T ], L2(T2 × [0, a]×E)), and its limit does not depend on the

function v. Precisely,

lim
θ→∞

Sθ =

√
εν√

aa1a2

∑

k∈Z3

|k′h|
|k′|2 E−λk

[

ĉB,3(kh) − (−1)k3 ĉT,3(kh)
]

Nk, (3.8)

where ĉ(kh) = 1√
a1a2

∫

T2 c(xh)e−ik′
h·xhdxh.

Remark 3.1. The same result can easily be proved when the functions v, cB, cT are assumed to be
almost periodic of the form (2.1). (In fact, we recall that the almost periodic case can be embedded in
the random stationary one). When (2.1) holds, the limit of Sθ as θ → ∞ takes the form

√
εν√

aa1a2

∑

k∈Z3

|k′h|
|k′|2

[

ĉB,3 − (−1)k3 ĉT,3

]

(t, k)Nk.

Proof. Let v1, v2 be two solutions of (3.5)-(3.7), and let V = v1 − v2. Notice that V ∈ L∞([0, T ] ×
[0,∞)τ ;L2(E,H)), and ∂τV ∈ L∞([[0, T ]× [0,∞)τ ;L2(E × T

2 × [0, a])). We write

L(−τ)P [∂τV + e3 ∧ V ] = L(−τ) [∂τV + LV ] =
∂

∂τ
[L(−τ)V (τ)] .
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Consequently,
1

θ

∫ θ

0

L(−τ) [∂τV + P (e3 ∧ V )] dτ =
L(−θ)V (τ = θ) − V (τ = 0)

θ
.

The right-hand side of the above equality vanishes in L∞([0, T ]×E,L2(T2)) as θ → ∞. Hence the limit
is independent of the choice of v.

In order to complete the proof of the lemma, it is thus sufficient to show that the limit exists for the
choice (3.3)-(3.4), and to compute the limit in this case. For all k = (kh, k3) ∈ Z

3, we have

〈

Nk, ∂τv
int
〉

=

√
εν

a

∫ a

0

cos(k′3z)nh(k) · ik′h
|k′h|2

(∂τ ĉT,3(·, kh) − ∂τ ĉB,3(·, kh)) dz

+

√
εν

a

∫ a

0

n3(k) sin(k′3z) (∂τ ĉB,3(·, kh)(a− z) + ∂τ ĉT,3(·, kh)z) dz

=
√
εν n3(k)

1k3 6=0

k′3

[

∂τ ĉB,3(·, kh) − (−1)k3∂τ ĉT,3(·, kh)
]

+

√
εν

a
1k3=0 nh(k) · ik′h

|k′h|2
(∂τ ĉT,3(·, kh) − ∂τ ĉB,3(·, kh)) .

Notice that if k3 = 0, then
nh(k) · k′h = 0;

consequently, we have

〈

Nk, ∂τv
int
〉

= −i
√

εν

aa1a2

1k3 6=0|k′h|
|k′|k′3

[

∂τ ĉB,3(t, τ, kh;ω) − (−1)k3∂τ ĉT,3(t, τ, kh;ω)
]

.

In a similar way,

〈

Nk, e3 ∧ vint
〉

=

√
εν

a

∫ a

0

cos(k′3z)nh(k) · i(k
′
h)⊥

|k′h|2
(ĉT,3(·, kh) − ĉB,3(·, kh)) dz

=
√
εν1k3=0nh(k) · i(k

′
h)⊥

|k′h|2
(ĉT,3(·, kh) − ĉB,3(·, kh))

=

√

εν

aa1a2
1k3=0

1

|k′h|
(ĉB,3(·, kh) − ĉT,3(·, kh)) .

Notice that if l ∈ Z
3 is such that lh 6= kh, then

〈

Nl, ∂τv
int
〉

= 0,
〈

Nl, e3 ∧ vint
〉

= 0.

We deduce from the above calculations that

L(−τ)P(∂τ v
int + e3 ∧ vint) (3.9)

= −i
√

εν

aa1a2

∑

k∈Z3

1k3 6=0|k′h|
k′3|k′|

eiλkτ
[

∂τ ĉB,3 − (−1)k3∂τ ĉT,3

]

(t, τ, kh;ω)Nk

+

√

εν

aa1a2

∑

k∈Z3

1k3=0
1

|k′h|
(ĉB,3(t, τ, kh;ω) − ĉT,3(t, τ, kh;ω))Nk.

We decompose the sum in the right-hand side into two sums, one bearing on kh such that |kh| > A,
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denoted by S1,A, and the other on |kh| ≤ A, denoted by S2,A, for some A > 0 arbitrary. We have

‖S1,A(t, τ)‖2
L2

≤ Cεν

∥

∥

∥

∥

∥

∥

∑

|kh|>A

∑

k3∈Z

1k3 6=0|k′h|
k′3|k′|

eiλkτ
[

∂τ ĉB,3 − (−1)k3∂τ ĉT,3

]

(t, τ, kh;ω)Nk

∥

∥

∥

∥

∥

∥

2

L2

+ Cεν

∥

∥

∥

∥

∥

∥

∑

|kh|>A

1

|kh|
(ĉT,3(t, τ, kh;ω) − ĉB,3(t, τ, kh;ω))Nkh,0

∥

∥

∥

∥

∥

∥

L2

≤ Cεν
∑

|kh|>A

(

|∂τ ĉB,3(t, τ, kh;ω)|2 + |∂τ ĉT,3(t, τ, kh;ω)|2
)

+
∑

|kh|>A

(

|ĉB,3(t, τ, kh;ω)|2 + |ĉT,3(t, τ, kh;ω)|2
)

.

Since cB, cT , ∂τ cB, ∂τcT belong to L2(T2, L∞([0,∞)× [0, T ]×E)), we deduce that the sum S1,A vanishes
in L∞([0, T ]× [0,∞), L2(T2 × [0, a]×E)) as A→ ∞. Thus we work with A sufficiently large, but fixed,
so that S1,A is arbitrarily small in L2 norm, and we focus on S2,A.

For k ∈ Z
3 fixed, we have, according to Proposition 1,

1

θ

∫ θ

0

eiλkτ
[

∂τ ĉB,3 − (−1)k3∂τ ĉT,3

]

(t, τ, kh;ω) dτ

= −iλk
1

θ

∫ θ

0

eiλkτ
[

ĉB,3 − (−1)k3 ĉT,3

]

(t, τ, kh;ω) dτ

+
1

θ

{

eiλkθ
[

ĉB,3 − (−1)k3 ĉT,3

]

(t, θ, kh;ω) −
[

ĉB,3 − (−1)k3 ĉT,3

]

(t, 0, kh;ω)
}

−→
θ→∞

−iλkE−λk

[

ĉB,3(t, kh) − (−1)k3 ĉT,3(t, kh)
]

(ω)

in L∞([0,∞)t, L
2(E)). Using Lebesgue’s Theorem, we deduce that as θ → ∞

1

θ

∫ θ

0

S2,A(t, τ) dτ →
√
εν

∑

|kh|≤A

∑

k3∈Z

|k′h|
|k′|2 E−λk

[

ĉB,3(t, kh) − (−1)k3 ĉT,3(t, kh)
]

Nk (3.10)

and the convergence holds in L∞([0, T ], L2(T2 × [0, a] × E)). Moreover, for c = cT,3 or cB,3, we have

∑

k∈Z3

|k′h|2
|k′|4 |E−λk

[ĉ(t, kh)]|2 ≤ C
∑

k3∈Z∗

1

1 + |k3|2
‖E−λk

[c(t)]‖2
L2(T2)

≤ C‖c‖2
L∞([0,∞)×[0,∞)×E,L2(Vh).

Thus the right-hand side of (3.10) converges in L2(T2 × [0, a] × E) as A → ∞. Eventually, we infer
(3.8).

• Definition of w.
Remember that uint should be an approximate solution of equation (1.1), and that δuint, vint are

strongly oscillating terms, small in H1 norm. Consequently, since ūint(t, τ) = L(τ)w(t), we have

∂tu
int + uint · ∇uint +

1

ε
e3 ∧ uint − ∆hu

int − ν∂2
zu

int

≈ L
(

t

ε

)

∂tw + ūint · ∇ūint − ∆hū
int +

1

ε

[

∂τδu
int + Lδuint

]

+
1

ε

[

∂τv
int + e3 ∧ vint

]

= L
(

t

ε

)

[∂tw +Q(τ, w,w) − ∆hw]

+
1

ε

[

L (τ) ∂τ

(

L (−τ) δuint(t, τ)
)]

|τ= t
ε

+ Σ

(

t,
t

ε

)

,
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where
Q(τ, w,w) = L(−τ)P [∇(L(τ)w ⊗ L(τ)w)] .

and Σ is defined by

Σ(t, τ) :=
1

ε

[

∂

∂τ
vint(t, τ) + e3 ∧ vint(t, τ)

]

. (3.11)

Thus it is natural to choose w and δuint such that for all t, τ ,

∂tw +Q(τ, w,w) − ∆hw + L (−τ) PΣ (t, τ) +
1

ε
∂τ

[

L (−τ) δuint(t, τ)
]

= 0. (3.12)

The quantity L(−τ)PΣ(t, τ) has already been computed in Lemma 3.1 (see (3.9)). Since w does not
depend on τ , the first idea is to average the above equation on a time interval [0, θ], and to pass to the
limit as θ → ∞ in order to derive an equation for w. We have already proved in Lemma 3.1 that if
cB,3, cT,3 are sufficiently smooth, then

lim
θ→∞

1

θ

∫ θ

0

L (−τ) PΣ (t, τ) dτ

=

√

ν

ε

1√
aa1a2

∑

k∈Z3

|k′h|
|k′|2 E−λk

[

ĉB,3(t, kh) − (−1)k3 ĉT,3(t, kh)
]

Nk

in L∞
loc([0,∞)t, L

2(T2 × [0, a) × E)). Moreover, with the notation (3.2),

Q(τ, w,w) =
∑

k,l,m∈Z3

ei(−λl−λm+λk)τb(t, l;ω)b(t,m;ω)
〈(

N l · ∇
)

Nm, Nk
〉

Nk,

and it is proved in [3] that if w is sufficiently smooth,

1

θ

∫ θ

0

Q(τ, w,w) ⇀ Q̄(w,w)

in the distributional sense, where Q̄ is defined by (1.5). Hence, we define w as the unique solution in
L∞(E, C([0,∞),H ∩H0,1)) ∩ L∞(E,L2

loc([0,∞), H1,0)) of the equation

∂tw + Q̄(w,w) − ∆hw +

√

ν

ε
S̄[cB,3, cT,3] = 0,

w|t=0 = u0 ∈ H ∩H0,1,

(3.13)

where

S̄[cB,3, cT,3] :=
1√
aa1a2

∑

k∈Z3

|k′h|
|k′|2 E−λk

[

ĉB,3(t, kh) − (−1)k3 ĉT,3(t, kh)
]

Nk.

We refer to Proposition 6.5 p. 145 in [3] and to the comments following Proposition 2 in the Introduction
of this paper for existence and uniqueness results about equation (3.13). Notice that if cB,3, cT,3 ∈
L∞([0, T )× [0,∞)τ × E,H1(T2)), then S̄[cB,3, cT,3] ∈ L∞([0, T ]× E,H0,1).

• Definition of δuint.
Once w is defined, there only remains to obtain an equation on δuint. As stated before, δuint is chosen

so that equality (3.12) holds for all τ ≥ 0. According to the above computations, this amounts to taking
δuint such that

∂

∂τ

[

L(−τ)δuint(τ)
]

= εQ̄(w,w) − εQ(τ, w,w) +
√
ενS̄[cB,3, cT,3] − εL(−τ)PΣ(t, τ),

L(−τ)δuint(τ) = ε

∫ τ

0

[

Q̄(w,w) −Q(s, w,w)
]

ds

+

∫ τ

0

[√
ενS̄[cB,3, cT,3] − εL(−s)PΣ(t, s)

]

ds

δuint(τ) = εL(τ)

∫ τ

0

[

Q̄(w,w) −Q(s, w,w)
]

ds (3.14)

+L(τ)

∫ τ

0

[√
ενS̄[cB,3, cT,3] − εL(−s)PΣ(t, s)

]

ds.
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Equivalently, δuint satifies the equation

∂τ δu
int + Lδuint = εL(τ)

[

Q̄(w,w) − εQ(τ, w,w)
]

+
√
ενL(τ)S̄[cB,3, cT,3] − εPΣ(t, τ).

We now derive a bound on the coefficients of δuint:

Lemma 3.2. Let T > 0, N > 0, and let w ∈ L∞(E, C([0, T ],H)) such that

〈Nk, w(t)〉 = 0 ∀k, |k| > N, ∀t ∈ [0, T ].

Let cB,3, cT,3 ∈ L∞([0, T ]× [0,∞)×E,L2(T2)) be such that the assumptions of Lemma 3.1 are satisfied.

Let Σ be given by (3.11), and δuint by (3.14). Then for all k ∈ Z
3, for all η > 0, there exists a

constant Cη,k such that for all τ ≥ 0, for all ε, ν > 0 such that ν = O(ε),
∥

∥

〈

Nk, δu
int(t, τ)

〉∥

∥

L∞([0,T ],L2(E))
≤ (ε+

√
εν)(Cη,k + ητ).

Remark 3.2. The above Lemma is stated with a function w having only a finite number of Fourier
modes, which is not the case for the solution of (3.13) in general. However, when constructing the
approximate solution in paragraph 4.3, we will consider regularizations of the solution w of the envelope
equation (1.9), so that this issue is in fact unimportant.

Proof. We begin with the derivation of a bound for the term
∫ τ

0

[

Q̄(w,w) −Q(s, w,w)
]

ds

= −
∑

k,l,m
λl+λm 6=λk

〈Nk, Nl · ∇Nm〉 b(t,m)b(t, l)

(
∫ τ

0

ei(λk−λl−λm)sds

)

Nk.

Notice that the set (l,m) ∈ Z
3 × Z

3 such that b(t, l)b(t,m) 6= 0 is finite, and included in BN × BN .
Moreover, if (l,m) ∈ BN ×BN and λl + λm 6= λk, then there exists a constant αN,k > 0 such that

|λl + λm − λk| ≥ αN,k.

As a consequence, we have
∣

∣

∣

∣

〈

Nk,

∫ τ

0

[

Q̄(w(t), w(t)) −Q(s, w(t), w(t))
]

ds

〉∣

∣

∣

∣

≤ 1

αN,k
‖w‖2

L∞((0,T )×T2×[0,a]×E).

In a similar way, we now derive a bound on the second term in (3.14). According to Lemma 3.1, we
have, for all k ∈ Z

3,
1

τ

∫ τ

0

〈Nk,L(−s)PΣ(t, s)〉 ds→
√

ν

ε

〈

Nk, S̄[cB,3, cT,3]
〉

as τ → ∞, in L∞([0, T ], L2(E)). Let τη,k > 0 such that if τ ≥ τη,k, then
∥

∥

∥

∥

1

τ

∫ τ

0

〈Nk,L(−s)PΣ(t, s)〉 −
〈

Nk,

√

ν

ε
S̄[cB,3, cT,3]

〉∥

∥

∥

∥

L∞([0,T ],L2(E))

≤ η.

Now, for τ < τη,k, we have
∥

∥

∥

∥

〈

Nk,

∫ τ

0

[
√

ν

ε
S̄[cB,3, cT,3] − L(−s)PΣ(t, s)

]

ds

〉∥

∥

∥

∥

L∞([0,T ],L2(E))

≤ τη,k

∥

∥

∥

∥

〈

Nk,

√

ν

ε
S̄[cB,3, cT,3]

〉∥

∥

∥

∥

L∞([0,T ],L2(E))

+
√
τη,k

∫ τη,k

0

‖〈Nk,Σ(·, s)〉‖L∞([0,T ],L2(E)) ds

≤ Cη,k.

Gathering all the estimates, we infer the inequality announced in Lemma 3.2.
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Definition 3. Let cB, cT ∈ L∞
loc([0,∞)t, L

∞([0,∞)τ × E,L2(T2))) be almost periodic or stationary
functions, and let u0 ∈ H ∩H0,1. We define the interior operator U by

U [cB, cT , w0] (t) = L
(

t

ε

)

w(t) + vint

(

t,
t

ε

)

+ δuint

(

t,
t

ε

)

,

where w is the unique solution of equation (3.13) with initial data w|t=0 = u0, v
int is given by (3.3)-(3.4),

and δuint is given by (3.14).

4 Construction of an approximate solution

In this section, we explain how an approximate solution of (1.1) is constructed. To that end, we use the
boundary layer and interior operators defined in the previous sections. We first explain how to choose
the horizontal boundary conditions for the boundary layer term, together with the vertical boundary
condition for the interior term. We then derive an equation for the principal term w, which we call the
“envelope equation”. At last, we define some additional corrector terms which will be needed in the
convergence proof; the latter is postponed to the next section.

4.1 Coupling of the boundary conditions

We set
uBL = Bper

B (cB,h) + Bδ
T (cT,h),

uint = U(u0, cB,3, cT,3)

where the boundary conditions cB, cT are yet to be defined.
In order to match the boundary conditions (1.2), we must take uBL and uint such that

(

uBL
h + uint

h

)

|z=0
= o(c),

∂z

(

uBL
h + uint

h

)

|z=1
= o(c),

(

uBL
3 + uint

3

)

|z=0
= o(

√
ενc),

(

uBL
3 + uint

3

)

|z=1
= o(

√
ενc),

denoting by c the order of magnitude of cT , cB, in a sense to be made clear later on.
We now examine each of the boundary conditions independently. Since L(τ)w is the principal term

in uint, we will neglect the horizontal components of vint and δuint at z = 0 and z = a.

• Horizontal condition at z = 0. The Dirichlet boundary condition leads to

cB,h(t, τ, xh;ω) = −
∑

k∈Z3

e−iλkτeik′
h·xhb(t, k;ω)

(

n1(k)
n2(k)

)

. (4.1)

Thus cB,h is almost periodic in the fast time variable τ , and we set

uB(t, τ, xh, ζ;ω) =
∑

k∈Z
3,

kh 6=0

∑

±
eik′

h·xhe−iλkτe−η±
k

ζ

(

w±
k (t;ω)

√
εν

ik′
h·w

±
k

η±
k

)

(4.2)

where w±
k is defined by

w±
k (t;ω) = −1

2
b(t, k;ω)

(

n1(k) ± in2(k)
n2(k) ∓ in1(k)

)

and

ustat(t, x) = ψ

(

z√
νt

)

∑

±
α±(t;ω)e±i t

ε





1
±i
0



 (4.3)
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where

α±(t;ω) = ∓ 1√
aa1a2

∑

k3∈Z
∗,

sgn(k3)=±1

b(t, 0, k3;ω).

Notice that since ĉB,h(t, k) = −b(t, k)nh(k), we have γ±(t) = 0, with the notation of Section 2.

• Vertical condition at z = 0. Since w ∈ H, we have w3|z=0 = 0. Thus we take cB,3 such that

cB,3 := −uB,3|ζ=0(εν)
−1/2,

and thus

cB,3(t, τ, xh;ω) = −
∑

k∈Z
3,

kh 6=0

∑

±

ik′h · w±
k

η±k
eik′

h·xhe−iλkτ .

Hence cB,3 is also almost periodic in the fast time variable τ .

• Horizontal condition at z = a. Since ∂zu
int
h|z=a = 0, we merely take

cT,h(t, τ, xh;ω) = σ(t, τ, xh;ω). (4.4)

Hence cT,h is random and stationary in the fast time variable, and thus yields a boundary layer
term equal to

uδ
T,h(t, τ, xh, ζ;ω)

=
β
√
νε√

4π

∑

±

∫ ∞

0

1√
s

exp

(

−ζ
2

4s
− δs

)

(σ ± iσ⊥)(t, τ − s, xh, ω)e±is ds (4.5)

and

uδ
T,3(t, τ, x, ω)

=
νεβ√

4π

∑

±

∫ ∞

0

ϕ

(

ζ√
s

)

[divhσ ∓ irothσ] (t, τ − s, xh;ω)e−δs±isds. (4.6)

• Vertical condition at z = a. The calculation is similar to that at z = 0. We infer

cT,3 = −uT,3|ζ=0(εν)
−1/2 (4.7)

cT,3(t, τ, xh;ω) =
β
√
νε

2

∑

±

∫ ∞

0

[divhσ ∓ irothσ] (t, τ − s, xh;ω)e−δs±isds.

The relations (4.1), (4.4) allow us to write cB in terms of the solution w of the envelope equation
(3.13). Conversely, equation (3.13) depends on cB,3, and thus on the coefficients b(t, k) of w. In other
words, there is a coupling between the boundary condition at the bottom for uBL, and the equation
satisfied by w. Since w is the only non-vanishing term in L2 norm, we choose (as is usually done in the
rotating fluids literature) to write an explicit equation for w, and to express uBL in terms of w.

4.2 The envelope equation

The goal of this paragraph is to compute the term S̄[cB,3, cT,3] occurring in equation (3.13) when cB,3, cT,3

are given by (4.4) and (4.7) respectively. Since cB,3 is almost periodic, easy calculations lead to

E−λk
(ĉB,3(t, kh)) = −1kh 6=0

∑

±

ik′h · w±
k

η±k

=
1

2
√
a1a2a

1kh 6=0b(t, k;ω)|k′h|
∑

±

1 ± λk√
1 ∓ λk

1 ± i√
2
.
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There remains to compute the coefficients E−λk
(ĉT,3(t, kh)); since the boundary condition cT,3 depends

on the small parameter δ, the corresponding Ekman pumping term will depend on δ as well. However,
thanks Proposition 1, the non-resonance hypotheses (H1)-(H2) allow us to pass to the limit in the
coefficients E−λk

(ĉT,3(t, kh)) as δ vanishes, and thus to derive a limit equation for the function w.
• First, by definition of Eλ, we have, for all kh ∈ Z

2, for all λ ∈ R,

Eλ [ĉT,3(t, kh)] (ω)

=

√
ενβ

2

∑

±
lim

θ→∞

1

θ

∫ θ

0

∫ ∞

0

σ̂±(t, τ − s, kh;ω)e−δs−iλτ±is ds dτ

=

√
ενβ

2

∑

±
lim

θ→∞

∫ ∞

0

(

1

θ

∫ θ

0

σ̂±(t, τ, kh; θ−sω)e−iλτ dτ

)

e−δs±is ds,

where
σ̂±(kh) = ik′h · σ̂(kh) ∓ k′h · (σ̂(kh))⊥.

Thanks to Lebesgue’s dominated convergence Theorem and Proposition 1, we infer, for all δ > 0,

Eλ [ĉT,3(t, kh)] (ω) =

√
ενβ

2

∑

±

∫ ∞

0

Eλ

[

σ̂±(t, kh)
]

(θ−sω)e−δs±is ds

=

√
ενβ

2

∑

±

∫ ∞

0

Eλ

[

σ̂±(t, kh)
]

(ω)e−δs±is+iλs ds

=

√
ενβ

2

∑

±
Eλ

[

σ̂±(t, kh)
]

(ω)
−1

−δ + i(λ± 1)
.

Since σ ∈ L∞
loc([0,∞)t, L

∞([0,∞)τ × E,H3/2(T2)), we know (see Proposition 6.5 p. 145 in [3]) that
for all δ > 0, for all u0 ∈ H ∩ H0,1, there exists a unique solution wδ ∈ L∞(E, C([0,∞),H ∩ H0,1)) ∩
L∞(E,L2

loc([0,∞), H1,0)) of the equation

∂tw
δ + Q̄(wδ, wδ) +

√

ν

ε
SB(wδ) + νβSδ

T (σ) = 0

wδ(t = 0) = w0;

(4.8)

the operators SB and Sδ
T are defined by

SB(u) =
∑

k∈Z3

〈Nk, u〉AkNk,

Sδ
T (σ) =

1

2
√
aa1a2

∑

k∈Z3

∑

±

(−1)k3 |k′h|
|k′|2

E−λk
[σ̂±(kh)]

−δ + i(−λk ± 1)
,

(4.9)

where

Ak :=
|k′h|2

2
√

2a1a2a|k′|2
∑

±

1 ± λk√
1 ∓ λk

(1 ± i).

Notice ℜ(Ak) ≥ 0; hence the Ekman pumping due to the Dirichlet condition at z = 0 induces a damping
term in the envelope equation.

• The idea is then to pass to the limit in Sδ
T (σ) as δ → 0 when σ satisfies (H1)-(H2), using (1.8).

Let us admit for the time being that the last property of Proposition 1 holds, i.e.

∃η > 0, ∀λ ∈ [−1 − η,−1 + η] ∪ [1 − η, 1 + η], Eλ(σ) = 0. (4.10)

Property (4.10) entails that the second sum in the right-hand side of (4.9) bears only on the triplets
(k1, k2, k3) such that

|λk − 1| ≥ η, |λk + 1| ≥ η,
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which entails
|k3| ≤ C(η)|kh|.

Consequently, since σ ∈ L∞([0,∞)2 × E,H1(T2)), we deduce that Sδ
T (σ) converges as δ → 0 in

L∞([0,∞) × E;L2(T2 × [0, a))) towards

ST (σ) :=
1

2
√
aa1a2

∑

k∈Z
3,

kh 6=0

(−1)k3

|k′h|
(

λkk
′
h − i(k′h)⊥

)

· E−λk
[σ̂(kh)]Nk. (4.11)

Thus for all T > 0, the source term Sδ
T (σ) remains bounded in L∞((0, T ) × E,H0,1) as δ → 0; thus

wδ is bounded, uniformly in δ, in L∞(E, C([0, T ],H ∩H0,1) ∩ L2([0, T ], H1,0)). Moreover, let w be the
unique solution in L∞(E, C([0,∞),H ∩H0,1)) ∩ L∞(E,L2

loc([0,∞), H1,0)) of

∂tw + Q̄(w,w) − ∆hw +

√

ν

ε
SB(w) + νβST (σ) = 0,

w|t=0 = u0.

(4.12)

A standard energy estimate leads to the following error bound, for all T > 0,

||w − wδ||L∞([0,T ]×E,L2) + ||∇h(w − wδ)||L∞(E,L2([0,T ]×T2×[0,a]))

≤ Cνβ||ST (σ) − Sδ
T (σ)||L∞(E,L2([0,T ]×T2×[0,a])). (4.13)

Thus, when constructing the approximate solution in the next paragraph, we will use the function
wδ, but we will keep in mind that wδ converges towards w as δ vanishes.

• Let us now turn to the proof of property (4.10) (which is the same as (1.8)). We choose η0 > 0
such that

[−1 − η0,−1 + η0] ⊂ V−, [1 − η0, 1 + η0] ⊂ V+.

For λ ∈ R arbitrary, and for θ > 0, we have

∥

∥

∥

∥

∥

1

θ

∫ θ

0

σ(τ, ω)e−iλτ dτ

∥

∥

∥

∥

∥

L∞([0,T ],Hs(T2))

=

∥

∥

∥

∥

∥

1

θ

∫ θ

0

(σ − σα + σα)(τ, ω)e−iλτ dτ

∥

∥

∥

∥

∥

L∞([0,T ],Hs(T2))

≤ ||σ − σα||L∞((0,θ)×[0,T ]×E,Hs(T2))

+
1

θ

∥

∥

∥

∥

∥

∫ θ

0

∫

R

e−α|µ|+iµτ−iλτ σ̂α(µ) dµ dτ

∥

∥

∥

∥

∥

L∞([0,T ],Hs(T2))

≤ ||σ − σα||L∞((0,θ)×[0,T ]×E,Hs(T2))

+

∥

∥

∥

∥

∫

R

e−α|µ| e
i(µ−λ)θ − 1

i(µ− λ)θ
σ̂α(µ) dµ

∥

∥

∥

∥

Hs(T2)

≤ ||σ − σα||L∞((0,θ)×[0,T ]×E,Hs(T2))

+

(

sup
µ∈V−∪V+

‖σ̂α(µ)‖L∞([0,T ]×E,Hs(T2))

)

(|V+| + |V−|)

+

∫

R\(V−∪V+)

e−α|µ|
∣

∣

∣

∣

ei(µ−λ)θ − 1

i(µ− λ)θ

∣

∣

∣

∣

‖σ̂α(µ)‖L∞([0,T ]×E,Hs(T2)) dµ dτ.

Let us now evaluate the last integral when λ is close to ±1, say for instance

|λ− 1| ≤ η0
2
.
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Then if µ ∈ R \ (V− ∪ V+), we have |µ− 1| ≥ η0, and thus

|µ− λ| ≥ η0
2
.

In particular,
∣

∣

∣

∣

ei(µ−λ)θ − 1

i(µ− λ)θ

∣

∣

∣

∣

≤ 2

|µ− λ|θ ≤ C

θ
.

Hence, for all θ > 0, for λ such that |λ± 1| ≤ η0/2, the following inequality holds for all α > 0

∥

∥

∥

∥

∥

1

θ

∫ θ

0

σ(τ, ω)e−iλτ dτ

∥

∥

∥

∥

∥

L∞([0,T ],L2(E,Hs(T2)))

≤ ||σ − σα||L∞([0,θ]×[0,T ]×E,Hs(T2)) +
C

θ
+ sup

µ∈V−∪V+

‖σ̂α(µ)‖L∞([0,T ]×E,Hs(T2)) (|V+| + |V−|) .

In the above inequality, we first take θ large enough, so that the left-hand side is close to ‖σ̄(λ)‖, and
C/θ is small. Then we let α go to zero, with θ fixed; we deduce that

σ̄(·, λ) = 0 ∀λ such that d(λ,±1) ≤ η0
2
.

4.3 The approximate solution

The approximate solution is obtained as the sum of some interior terms and some boundary layer terms;
although we have to construct several correctors in order to obtain a good approximation of the function
uγ , we emphasize that all terms vanish in L2 norm, except the solution wδ of the approximated envelope
equation (4.8). In this paragraph, we build the correctors step by step, using the general constructions
of the previous sections. At each step, we will give some bounds on the corresponding term.

• First step. The interior term at the main order.

We have seen that the interior term at main order is given as the solution of some envelope equation,
and that when all parameters ε, ν, β, δ vanish, the envelope equation becomes (4.12). However, we
are not able to construct the boundary layer terms at the top for δ = 0, and thus we must keep an
approximated solution of the envelope equation, namely wδ. Moreover, when constructing the corrector
terms uBL, δuint, vint, we will need some high regularity estimates in space and time on wδ, which are
in general not available for wδ or w. Thus we introduce a regularization of wδ with respect to the time
variable, and we truncate the large frequencies in wδ. Let χ ∈ D(R), with

χ(t) = 0 ∀t ∈ [0,∞), χ(t) = 0 ∀t ∈ (−∞,−1],

χ(t) ≥ 0 ∀t ∈ R,

∫

R

χ = 1.

For n ∈ N
∗, set χn := n−1χ(·/n), and define, for n,N > 0,

wδ
n,N := PN

[

wδ ∗t χn

]

= (PNw
δ) ∗t χn,

where PN stands for the projection onto the vector space generated by Nk for |k| ≤ N. The convolution
in time is well-defined thanks to the assumptions on the support of χ. We have clearly

lim
n,N→∞

sup
δ>0

‖wδ − wδ
n,N‖L∞([0,T ]×E,L2) = 0,

lim
n,N→∞

sup
δ>0

‖wδ − wδ
n,N‖L∞(E,L2([0,T ],H1,0)) = 0.

We recall that Q̄ is bilinear continuous from

L∞([0, T ], H0,1) × L2([0, T ], H1,0) into L2([0, T ], H−1,0).
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(see Proposition 6.6 in [3] for a proof of this non trivial fact). Precisely, for a, b ∈ H1 ∩ H, it can be
proved, using the methods of [3], that there exists a constant C > 0 such that

‖Q̄(a, b)‖H−1,0 ≤ C‖a‖1/2
L2 ‖a‖1/2

H1,0‖b‖1/2
L2 ‖b‖1/2

H1,0 (4.14)

+C‖∂3a‖L2‖b‖1/2
L2 ‖b‖1/2

H1,0 + C‖∂3b‖L2‖a‖1/2
L2 ‖a‖1/2

H1,0 .

It is easily deduced from the above inequality that wδ
n,N is an approximate solution of (3.13), with

an error term rδ
n,N which vanishes in L2([0, T ], H−1,0) as n,N → ∞. Indeed, we have

rδ
n,N = Q̄(wδ

n,N , w
δ
n,N ) − PN Q̄(wδ , wδ) ∗ χn + νβPNS

δ
T [σ − σ ∗ χn]

=
[

(P − PN )Q̄(wδ, wδ)
]

∗ χn +
[

Q̄(PNw
δ,PNw

δ) − Q̄(wδ , wδ)
]

∗ χn

+
[

Q̄(wδ
n,N , w

δ
n,N ) − Q̄(PNw

δ ,PNw
δ) ∗ χn

]

+ νβPNS
δ
T [σ − σ ∗ χn].

The convergence towards zero of the last three terms follows from the continuity of Q̄ in H−1,0 and the
regularity of σ. We thus focus on the first one, which we write

Q̄(wδ
n,N (t), wδ

n,N (t)) − Q̄(PNw
δ ,PNw

δ) ∗ χn

=

∫

R

Q̄(wδ
n,N (t),PNw

δ(u))χn(t− u) du−
∫

R

Q̄(PNw
δ(u),PNw

δ(u))χn(t− u) du

=

∫

R

Q̄(wδ
n,N (t) − PNw

δ(u),PNw
δ(u))χn(t− u) du,

and thus, using inequality (4.14) together with the L∞([0, T ], H0,1) bound on wδ, we infer
∥

∥Q̄(wδ
n,N (t), wδ

n,N (t)) − Q̄(wδ, wδ) ∗ χn(t)
∥

∥

H−1,0

≤ C

∫

R

∥

∥wδ
n,N (t) − PNw

δ(u)
∥

∥

1/2

H1,0

∥

∥PNw
δ(u)

∥

∥

1/2

H1,0 χn(t− u) du

+ C

∫

R

∥

∥wδ
n,N (t) − PNw

δ(u)
∥

∥

H0,1

∥

∥PNw
δ(u)

∥

∥

H1,0 χn(t− u) du

+ C

∫

R

∥

∥wδ
n,N (t) − PNw

δ(u)
∥

∥

H1,0

∥

∥PNw
δ(u)

∥

∥

H0,1 χn(t− u) du.

Eventually, we get
∥

∥Q̄(wδ
n,N (t), wδ

n,N (t)) − Q̄(wδ , wδ) ∗ χn(t)
∥

∥

L∞(E,L2([0,T ],H−1,0))

≤ C sup
|h|≤ 1

n

∥

∥wδ − τhw
δ
∥

∥

L∞(E,L2([0,T ],H1,0))
+ C sup

|h|≤ 1
n

∥

∥wδ − τhw
δ
∥

∥

L∞([0,T ]×E,H0,1)
,

where τhw : (t, x) 7→ w(t + h, x). The right-hand side of the above inequality vanishes as n → ∞,
uniformly in δ.

Hence we work with wδ
n,N instead of w from now on; for all k, s > 0, there exists a constant Cn,N (k, s)

such that
‖∂k

t w
δ
n,N‖L∞(E,W k,∞([0,T ],Hs(T2×[0,a])) ≤ Cn,N (k, s).

In the sequel, we denote by Cn,N all constants depending on n and N (and possibly T ), but not on δ.

• Second step. The boundary layer terms at the first order.

The boundary condition cB,h is given by (4.1), where b(t, k) is replaced by

bδn,N(t, k) :=
〈

Nk, w
δ
n,N (t)

〉

.

Thus the boundary layer term at the bottom, uB, is defined by formula (4.2), and the stationary corrector
ustat by (4.3). Similarly, the boundary layer term at the bottom, uT , is given by formulas (4.5)-(4.6).
According to paragraph 2.4 and to the previous step, the boundary layer term

uBL(t, xh, z) := uB

(

t,
t

ε
, xh,

z√
εν

)

+ uT

(

t,
t

ε
, xh,

a− z√
εν

)

+ ustat(t, x)
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satisfies the following estimates
∥

∥uBL, z∂zu
BL, (z − a)∂zu

BL
∥

∥

L∞([0,T ]×T2×[0,a]×E)
≤ Cn,N + C

√
ενβ, (4.15)

∥

∥uBL
∥

∥

L∞([0,T ]×E,H1,0)
≤ Cn,N

[

(εν)1/4 + ν1/4
]

+ C(εν)3/4β,
∥

∥z∂zu
BL, (z − a)∂zu

BL
∥

∥

L∞([0,T ]×E,L2(T2×[0,a]))
≤ Cn,Nν

1/4 + C(εν)3/4β.

Moreover, uBL is an approximate solution of the linear part of equation (1.1) (we will treat the
quadratic term at the very end, when the whole approximate solution has been constructed), with an
error term equal to

[(∂t − ∆h)uB]

(

t,
t

ε
, xh,

z√
εν

)

+ ϕ

(

z√
νt

)

∑

±
∂tα

±(t)e±i t
ε

+

[(

∂t − ∆h +
δ

ε

)

uT

](

t,
t

ε
, xh,

a− z√
εν

)

,

where ∂t is the derivation operator with respect to the macroscopic time variable. Thanks to the first
step, we have

[

∫ T

0

∫

T2×[0,a]

∫

E

∣

∣

∣

∣

∂tuB

(

t,
t

ε
, xh,

z√
εν

)∣

∣

∣

∣

2

dm0(ω) dz dxh dt

]1/2

≤ Cn,N

[

(εν)1/4 + ν1/4
]

+ C(εν)3/4β,

(the same bound holds with uB replaced by uT ), whereas the terms ∆huB,∆huT are bounded in
L∞(E,L2([0, T ], H−1,0)) by

Cn,N

[

(εν)1/4 + ν1/4
]

+ C(εν)3/4β.

Moreover,
δ

ε

∥

∥

∥uT

(

·, ·
ε

)∥

∥

∥

L∞([0,T ]×E,L2)
≤ C

δ

ε
(εν)3/4β ≤ C

δ√
ε
.

At last, the error term due to ustat satisfies
∥

∥

∥

∥

∥

ϕ

(

z√
νt

)

∑

±
∂tα

±(t)e±i t
ε

∥

∥

∥

∥

∥

L∞(E,L2(T2×[0,a]))

≤ Cn,Nν
1/4.

• Third step. The interior corrector terms vint and δuint.

We now define the correctors vint and δuint as in (3.3)-(3.4) and (3.14) respectively, where the bound-
ary conditions cB,3 and cT,3 are given by (4.4), (4.7), and w = wδ

n,N in (3.14). Recall that we have

assumed ν = O(ε) and
√
νεβ = O(1), so that the boundary conditions cB,3 and cT,3 are of order one in

L∞. More precisely, using the fact that wδ
n,N has a finite number of Fourier modes on the one hand, and

(H1)-(H2) on the other, we deduce that

‖vint‖L∞([0,T ]×[0,∞)×T2×[0,a]) ≤ C
(√

εν‖wδ
n,N‖L∞([0,T,V 3

0
) + νεβ

)

≤ Cn,N

√
νε;

moreover, the boundary conditions cB,3, cT,3 satisfy the assumptions of Lemma 3.1 thanks to the hy-
potheses on σ. Thus, according to Lemma 3.2,

∀η > 0, ∀k ∈ Z
3, ∃Cη,k > 0,

∥

∥

∥

∥

〈

Nk, δu
int

(

t,
t

ε

)〉∥

∥

∥

∥

L∞([0,T ],L2(E))

≤ η + Cη,kε.

Thus we set, for K > 0 arbitrary,

δuint
K := PKδu

int =
∑

|k|≤K

〈

Nk, δu
int
〉

Nk.
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According to the above convergence result, for all K ∈ N, we have
∥

∥

∥

∥

δuint
K

(

t,
t

ε

)∥

∥

∥

∥

L∞([0,T ],L2(E,W 1,∞(T2×[0,a])))

→ 0 as ε, ν → 0.

Moreover, there exists a constant Cn,N such that

∥

∥

∥

∥

δuint
K

(

t,
t

ε

)∥

∥

∥

∥

L∞([0,T ]×E,W 1,∞(T2×[0,a]))

≤ Cn,N .

By replacing δuint by δuint
K , we have introduced an error term in (3.12) which is bounded in L∞([0,∞)×

E,L2([0, T ]× T
2 × [0, a]) by

∥

∥(P − PK)
[

Q̄(wδ
n,N , w

δ
n,N )

]∥

∥

L∞(E,L2([0,T ]×T2×[0,a]))

+
∥

∥(P − PK)
[

Q(s, wδ
n,N , w

δ
n,N )

]∥

∥

L∞([0,∞)×E,L2([0,T ]×T2×[0,a]))

+

√

ν

ε

∥

∥(P − PK)
[

S̄[cB,3, cT,3]
]∥

∥

L∞(E,L2([0,T ]×T2×[0,a]))

+ ‖(P − PK)Σ‖L∞([0,∞)×E,L2([0,T ]×T2×[0,a])) .

If ν = O(ε), and
√
νεβ = O(1), all terms vanish as K → ∞ uniformly in ε, ν, δ. Thus, we choose K > 0

sufficiently large (but fixed) so that the error term in the equation is o(1), and we work with δuint
K from

now on. Notice that K depends on n and N in general.
Let

uint(t) := L
(

t

ε

)

wδ
n,N (t) + vint

(

t,
t

ε

)

+ δuint
K

(

t,
t

ε

)

; (4.16)

we have defined vint and δuint so that uint is an approximate solution of equation (1.1), with an error
term which we now evaluate in L2([0, T ]× T

2 × [0, a] × E) + L2([0, T ] × E,H−1,0). Apart from the one
mentioned above, which is due to the truncation of the large spatial frequencies in δuint, the error term
is equal to

−∆hv
int

(

t,
t

ε

)

+ ∂t(δu
int
K + vint)

(

t,
t

ε

)

− ∆hδu
int
K

(

t,
t

ε

)

− ν∂2
z δu

int
K

(

t,
t

ε

)

+
[

uint · ∇
]

(δuint
K + vint)

(

t,
t

ε

)

+

[

(δuint
K + vint)

(

t,
t

ε

)

· ∇
]

L
(

t

ε

)

wδ
n,N (t).

The term −∆hv
int (t, t/ε) is bounded in L2([0, T ] × E,H−1,0) by

‖cB,3‖L∞([0,T ]×[0,∞)τ×E,H1(T2)) + ‖cT,3‖L∞([0,T ]×[0,∞)τ×E,H1(T2)) = o(1).

All the remaining error terms are bounded in L2([0, T ]× T
2 × [0, a] × E) := L2(Q) by

‖∂tδu
int
K ‖L∞([0,T ]t×[0, T

ε ]
τ
,L2(E×T2×[0,a])) + ‖∂tv

int‖L∞([0,∞)τ ,L2(Q))

+ ‖δuint
K ‖L∞([0,T ]t×[0, T

ε ]
τ
,L2(E,H2))

+ ‖uint‖L∞‖δuint
K + vint‖L∞([0,T ]t×[0, T

ε ]
τ
,L2(E,H1))

+ ‖uint‖L∞(E,L2([0,T ],H1))‖δuint
K + vint‖L2(E,L∞([0,T ]t×[0, T

ε ]
τ
×T2×[0,a]))

= o(1).

Above, we have used the fact that wδ
n,N , and whence vint, δuint

K , are smooth with respect to the time
variable t; thus the o(1) means that for all n,N,K, the limit of the above expression as ε vanishes is
zero, uniformly in δ.

To sum things up, we have

∂tu
int + uint · ∇uint − ∆hu

int − ν∂2
zu

int + ∇p = wrem
1 + wrem

2 ,
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where wrem
1 = o(1) in L2([0, T ] × E × T

2 × [0, a]) and wrem
2 = o(1) in L2([0, T ]× E,H−1,0). Moreover,

uint
|t=0 = u0 + o(1) in L2(T2 × [0, a]),

and there exists a constant Cn,N such that

‖uint‖L∞([0,T ]×T2×[0,a]×E) + ‖uint‖L∞([0,T ]×E,H1(T2×[0,a])) ≤ Cn,N .

• Fourth step. The boundary layer term at the second order.

At this stage, we have proved that uint (resp. uBL) is an approximate solution of the evolution
equation (1.1) (resp. of its linear part); moreover, the boundary layer term uBL and the corrector vint

have been built so that the boundary conditions are satisfied at the leading order. Precisely, we have

uBL
h|z=0(t) + uint

h|z=0(t) = vint
h|z=0(t, t/ε) + δuint

K,h|z=0(t, t/ε) + uT,h|ζ= a√
εν

(t, t/ε),

∂z

(

uBL
h|z=a(t) + uint

h|z=a(t)
)

= βσ(t, t/ε) +
1√
εν
∂ζuB,h|ζ= a√

εν
(t, t/ε) + ∂zu

stat
h|z=a(t),

uBL
3|z=0(t) + uint

3|z=0(t) = uT,3|ζ= a√
εν

(t, t/ε),

uBL
3|z=a(t) + uint

3|z=a(t) = uB,3|ζ= a√
εν

(t, t/ε).

The terms uT |ζ= a√
εν

, uB|ζ= a√
εν

and ustat
|z=a are exponentially small, thus satisfy the assumptions of Lemma

2 in the Appendix; they will be taken care of at the very last step. But in general, setting c̃B,h :=
vint

h|z=0 + δuint
K,h|z=0, the quantity ε−1c̃B,h does not vanish. Thus, we define another boundary layer term

in order to restore the Dirichlet boundary condition at z = 0. We now have to make precise which parts
are almost periodic or random stationary in c̃B,h(t, τ). We have

vint
h|z=0 = vint

h =
√
εν∇h∆−1

h (cT,3) −
√
εν∇h∆−1

h (cB,3).

The first term in the right-hand side is clearly random and stationary, whereas the second one is almost
periodic. Concerning the term δuint

K , the situation is not so clear. Using (3.14), we write

δuint
K (t, τ) =

∑

|k|≤K

e−iλkτ δbk(t, τ)Nk,

where

δbk(t, τ) := ε

〈

Nk,

∫ τ

0

(

Q̄(wδ
n,N , w

δ
n,N ) −Q(s, wδ

n,N , w
δ
n,N )

)

ds

〉

+

〈

Nk,

∫ τ

0

√
ενS̄[cB,3, cT,3] − εL(−s)PΣ(t, s)

〉

.

According to Lemma 3.2,

sup
t∈[0,T ]

∥

∥

∥

∥

δbk

(

t,
t

ε

)∥

∥

∥

∥

L2(E)

= o(1),

and

sup
t∈[0,T ]

∥

∥

∥

∥

∂

∂t
δbk

(

t,
t

ε

)∥

∥

∥

∥

L∞(E)

= O(1).

Thus we forget the fact that δbk depends on the microscopic time variable τ , and we merely treat δuint
K

as an almost periodic function. Hence we use the construction in paragraph 2.3, and we set

δuBL := Bper
D

(

−δuint
K,h|z=0 +

√
εν∇h∆−1

h (cB,3)
)

+ Bstat
N

(√
εν∇h∆−1

h (cT,3)
)

.

As before, it is easily proved that δuBL is an approximate solution of the evolution equation (1.1),
with an error term which is o(1) in L2([0, T ], H−1,0).

• Fifth step. The “stopping” corrector.

Let us now examine the remaining boundary conditions.
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⊲ Horizontal component at z = 0: this term is the simplest of all. We have

δB,h(t) :=
(

uint
h (t) + uBL

h (t) + δuBL
h (t)

)

|ζ= a√
εν

= uT,h|ζ= a√
εν

(t, t/ε),

and thus, using the same arguments as in Proposition 4, we prove that there exists a constant C
such that

‖δB,h(t)‖H3(T2) ≤ C exp

(

− a√
εν

)

‖∂tδB,h(t)‖H3(T2) ≤
C

ε
exp

(

− a√
εν

)

.

Since ε−k exp (−a/√εν) = o(1) for all k ∈ N
∗, δB,h satisfies the conditions of Lemma 2 in the

Appendix.

⊲ Vertical component at z = 0: we compute

δB,3(t) :=
(

uint
3 (t) + uBL

3 (t) + δuBL
3 (t)

)

|z=0
= uT,3|ζ= a√

εν
(t, t/ε) + δuBL

3|z=0(t).

It is easily proved that uT,3|ζ=a/
√

εν(t, t/ε) satisfies the hypotheses of Lemma 2, provided σ is

sufficiently smooth. Concerning δuBL
3 , we have, according to the assumptions on σ,

‖δuBL
3|z=0‖L∞([0,T ],L2(E,H3(T2)) ≤ o(

√
εν) + C(νε)3/2β,

‖∂tδu
BL
3|z=0‖L∞([0,T ],L2(E,H3(T2))) = o(1).

Thus δB,3 satisfies the conditions of Lemma 2. Notice that the regularity conditions of Lemma 2
account for the H4 regularity assumption on σ (see (H1)-(H2)).

⊲ Horizontal component at z = a:

δT,h(t) = ∂z

(

uint
h (t) + uBL

h (t) + δuBL
h (t)

)

|z=a
− 1

β
σ

=
1√
εν
∂ζuB,h|ζ= a√

εν
(t, t/ε) + ∂zu

stat
h|z=a(t) + ∂zδu

BL
h|z=a(t).

For all s > 0, we have

∥

∥

∥∂zu
stat
h|z=a

∥

∥

∥

L∞([0,T ]×E,Hs(T2))
≤ Cn,N

1√
νT

exp

(

− a2

4νT

)

= o(ε),

∥

∥

∥∂t∂zu
stat
h|z=a(t)

∥

∥

∥

L∞([0,T ]×E,Hs(T2))
≤ Cn,N

1

ν3/2
exp

(

− a2

4νT

)

= o(ε).

(Remember that ν = O(ε).) Thus all terms of the right-hand side are exponentially small as ε
vanishes, and satisfy the conditions of Lemma 2.

⊲ Vertical component at z = a: let

δT,3(t) :=
(

uint
3 (t) + uBL

3 (t) + δuBL
3 (t)

)

|z=a

= uB,3|ζ= a√
εν

(t, t/ε) + δuBL
3|ζ= a√

εν
(t).

Once again, δT,3 is exponentially small in all Hs norms, and thus matches the conditions of Lemma
2.

We thus define ustop, given by Lemma 2, so that

ustop
h|z=0 = −δB,h, ∂zu

stop
h|z=a = −δT,h

ustop
3|z=0 = −δB,3, ustop

3|z=a = −δT,3,
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and such that ustop is an approximate solution of the linear part of equation (1.1), with an error term
which is o(1) in L2.

We now define

uapp := uint + uBL + δuBL + ustop (4.17)

= uint + urem. (4.18)

By construction, the remainder urem is o(1) in L∞([0, T ], L2(E×T
2 × [0, a]) and uapp satisfies conditions

(1.2). The goal of the next section is to prove that uapp is an approximate solution of (1.1), and to
conclude that uε,ν − uapp vanishes thanks to an energy estimate.

5 Energy estimates - proof of convergence

In the previous section, we have constructed a function uapp, given by (4.17), where uint - given by (4.16)
- is an approximate solution of equation (1.1), and uBL, δuBL, ustop, defined respectively in the second,
fourth and fifth step of paragraph 4.3, are approximate solutions of the linear part of equation (1.1) and
are all o(1) in L2.

The organization of this section is as follows: first, we prove that uapp is indeed an approximate
solution of (1.1). Then we evaluate the difference between uε,ν and uapp thanks to an energy estimate.
At last, we prove Theorem 1 by conveniently choosing the parameters n,N, δ occurring in uapp.

• Let us first prove that the function uapp is an approximate solution of equation (1.1). The core of
the proof lies in the following Lemma:

Lemma 5.1 (Non linear estimate on the remainder term). For all n,N, as ε, ν, β → 0 with

ν = O(ε) and β
√
εν = O(1), we have

sup
δ>0

∥

∥uint · ∇urem + urem · ∇uint + urem · ∇urem
∥

∥

L2([0,T ]×T2×[0,a]×E)
→ 0.

Proof. First, we have

∥

∥(urem · ∇)uint
∥

∥

L2([0,T ]×T2×[0,a]×E)

≤ ‖urem‖L2([0,T ]×T2×[0,a]×E)

∥

∥uint
∥

∥

L∞([0,T ]×E,W 1,∞)

≤ Cn,N

(

‖uBL‖L2 + ‖δuBL‖L2 + ‖ustop‖L2

)

.

The right-hand side vanishes thanks to the estimates of the previous section.
The other terms are slightly more complicated. We write

uint · ∇urem + urem · ∇urem = uapp · ∇urem

= uapp · ∇ustop + uapp · ∇
(

uBL + δuBL
)

.

The first term in the right-hand side is bounded in L2([0, T ]× E × T
2 × [0, a]) by

‖uapp‖L∞‖ustop‖L2([0,T ]×E,H1) ≤ Cn,Nε.

We thus focus on the second term, which we further split into

uapp
h · ∇h

(

uBL + δuBL
)

+ uapp
3 ∂z

(

uBL + δuBL
)

.

We have

∥

∥uapp
h · ∇h

(

uBL + δuBL
)∥

∥

L2([0,T ]×E×T2×[0,a])

≤ ‖uapp‖L∞([0,T ]×E×T2×[0,a])‖uBL + δuBL‖L2([0,T ]×E,H1,0)

≤ Cn,N

(

ν1/4 + (εν)3/4β
)

.
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We split the other term as follows

∥

∥uapp
3 ∂z

(

uBL + δuBL
)∥

∥

2

L2(T2×[0,a]
=

∫

T2

∫ a/2

0

∣

∣uapp
3 ∂z

(

uB + δuBL
)∣

∣

2

+

∫

T2

∫ a/2

0

|uapp
3 ∂zuT |2

+

∫

T2

∫ a

a/2

∣

∣uapp
3 ∂z

(

uB + δuBL
)∣

∣

2

+

∫

T2

∫ a

a/2

|uapp
3 ∂zuT |2 .

For z ≥ a/2, t > 0, we have

∣

∣∂z

(

uB + δuBL
)

(t)
∣

∣

2 ≤ Cn,N

[

(εν)−1 exp

(

− ca√
εν

)

+
1

νt
exp

(

− ca√
νt

)]

and thus
∫ T

0

∫

T2

∫ a

a/2

∣

∣uapp
3 ∂z

(

uB + δuBL
)∣

∣

2

≤ Cn,N

[

(εν)−1 exp

(

− ca√
εν

)

+ exp

(

− ca√
νT

)]

.

Similarly,
∫ T

0

∫

T2

∫ a/2

0

|uapp
3 ∂zuT |2

≤ Cn,Nβ
2 exp

(

− ca√
εν

)

≤ C(εν)−1 exp

(

− ca√
εν

)

.

We now evaluate the two remaining terms. The idea is the following: since uapp
3 vanishes at the boundary,

we have
uapp

3 (z) ≈ Cz for z = o(1),

and uapp
3 (z) ≈ C(z − a) for z − a = o(1),

and z∂zuB, (z − a)∂zuT are evaluated in (4.15). Moreover, we can split uapp into

uapp(t) =

[

L
(

t

ε

)

wδ
n,N (t) + δuint

K

(

t,
t

ε

)]

+

[

vint

(

t,
t

ε

)

+ uBL(t)

]

+
[

δuBL(t) + ustop(t)
]

.

By definition of vint and ustop, the vertical component of each of the three terms in brackets vanishes at
z = 0 and z = a; additionally, the first term is bounded in L∞([0, T ] × E,W 1,∞) by a constant Cn,N ,
while the (vertical components of the) second and third ones are respectively of order

Cn,N

(√
εν + (εν)3/4

)

and Cn,N (εν)5/4 + o(ε)

in L∞([0, T ]× E,H1,0). Once again, the term o(ε) must be understood as

∀n,N, lim
ε,ν→0

sup
δ>0

ε−1‖ustop‖ = 0.

As a consequence, we have
∫

T2

∫ a/2

0

∣

∣uapp
3 (t)∂z

(

uB + δuBL
)

(t)
∣

∣

2

≤
∥

∥

∥

∥

z−1

[(

L
(

t

ε

)

wδ
n,N

)

3

(t) + δuint
K,3

(

t,
t

ε

)]∥

∥

∥

∥

2

L∞

∥

∥z∂z

(

uB + δuBL
)

(t)
∥

∥

2

L2

+

∥

∥

∥

∥

z−1

[

vint
3

(

t,
t

ε

)

+ uBL
3 (t) + δuBL

3 (t) + ustop
3 (t)

]∥

∥

∥

∥

2

L2

∥

∥z∂z

(

uB + δuBL
)

(t)
∥

∥

2

L∞ .
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Using Hardy’s inequality together with the divergence-free property, we infer that

∫

T2

∫ a/2

0

∣

∣uapp
3 (t)∂z

(

uB + δuBL
)

(t)
∣

∣

2

≤ Cn,N

∥

∥

∥

∥

∂zū
int
3 (t) + δuint

K,3

(

t,
t

ε

)∥

∥

∥

∥

2

L∞
ν1/2

+ Cn,N

∥

∥

∥

∥

∂z

[

vint
3

(

t,
t

ε

)

+ uBL
3 (t) + δuBL

3 (t) + ustop
3 (t)

]∥

∥

∥

∥

2

L2

≤ Cn,N

∥

∥

∥

∥

L
(

t

ε

)

wδ
n,N (t) + δuint

K

(

t,
t

ε

)∥

∥

∥

∥

2

W 1,∞
ν1/2

+ Cn,N

∥

∥

∥

∥

vint
h

(

t,
t

ε

)

+ uBL
h (t) + δuBL

h (t) + ustop
h (t)

∥

∥

∥

∥

2

H1,0

≤ o(1).

The term
∫

T2

∫ a

a/2

|uapp
3 (t)∂zuT (t)|2

is treated in a similar way. Gathering all the terms, we deduce the convergence result stated in Lemma
5.1.

In the rest of this section, we denote by wrem
1 any term which satisfies

∀n,N, lim
ε→0

sup
δ>0

‖wrem
1 ‖L2([0,T ]×E×T2×[0,a]) = 0, (5.1)

and by wrem
2 any term which satisfies

∀n,N, lim
ε→0

sup
δ>0

‖wrem
2 ‖L2([0,T ]×E,H−1,0) = 0. (5.2)

According to paragraph 4.3 and to Lemma 5.1, uapp satisfies an equation of the type

∂tu
app + uapp · ∇uapp +

1

ε
e3 ∧ uapp − ∆hu

app − ν∂2
zu

app

= ∇p+ wrem
1 + wrem

2 + rδ
n,N + O

(

δ√
ε

)

L2

, (5.3)

We recall that the remainder rn,N satisfies

lim
n,N→∞

sup
ε,ν,δ

‖rδ
n,N‖L2([0,T ]×E,H−1,0) = 0.

Equation (5.3) is supplemented with the boundary conditions (1.2) and the initial condition

uapp
|t=0 = w0 + δw1

0 + δw2
0 ,

where δw1
0 and δw2

0 are such that

lim
n,N→∞

sup
δ,ε,ν

‖δw1
0‖L∞(E,L2(T2×[0,a])) = 0,

∀n,N, lim
ε,ν→0

sup
δ>0

‖δw2
0‖L∞(E,L2(T2×[0,a])) = 0.

In order to avoid too heavy notation, we will simply write

uapp
|t=0 = w0 + o(1).
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• We now evaluate the difference between uε,ν and uapp thanks to an energy estimate. The function
uε,ν − uapp is a solution of

∂t(u
ε,ν − uapp) +

1

ε
e3 ∧ (uε,ν − uapp) − ∆h(uε,ν − uapp) − ν∂2

z (uε,ν − uapp)

= ∇p′ + wrem
1 + wrem

2 − rδ
n,N + O

(

δ√
ε

)

L2

− (uε,ν · ∇)(uε,ν − uapp) − [(uε,ν − uapp) · ∇]uapp.

Taking the scalar product the above equation by uε,ν−uapp and using the Cauchy-Schwarz inequality,
we deduce that for all t > 0, for almost every ω ∈ E,

1

2

d

dt
‖uε,ν(t, ω) − uapp(t, ω)‖2

L2 +
1

2
‖uε,ν(t, ω) − uapp(t, ω)‖2

H1,0

≤
∫

T2×[0,a]

|[((uε,ν(t, ω) − uapp(t, ω)) · ∇)uapp(t, ω)] · (uε,ν(t, ω) − uapp(t, ω))|

+ ‖wrem
1 (t, ω)‖2

L2(T2×[0,a]) + ‖wrem
2 (t, ω)‖2

H−1,0

+
∥

∥rδ
n,N

∥

∥

2

H−1,0 + C
δ2

ε
+ C‖uε,ν(t, ω) − uapp(t, ω)‖2

L2 .

In the above inequality, we have dropped the term ν‖∂z(u
ε,ν − uapp)‖2

L2 in the right-hand side. We now
evaluate the term

∫

T2×[0,a]

|((uε,ν − uapp) · ∇)uapp · (uε,ν − uapp)| .

First, let us write
uapp =

[

uint + ustop
]

+
[

uBL + δuBL
]

.

The function uint + ustop is bounded in L∞([0, T ] × E,W 1,∞(T2 × [0, a]) by a constant Cn,N ; similarly,
∇h(uBL + δuBL) is bounded in L∞([0, T ] × E × T

2 × [0, a]). As a consequence, we have
∫

T2×[0,a]

∣

∣(uε,ν − uapp) · ∇
[

uint + ustop
]

· (uε,ν − uapp)
∣

∣

+

∫

T2×[0,a]

∣

∣(uε,ν
h − uapp

h ) · ∇h

[

uBL + δuBL
]

· (uε,ν − uapp)
∣

∣

≤ Cn,N‖uε,ν − uapp‖2
L2([T 2×[0,a]).

There remains to derive a bound for the term
∫

T2×[0,a]

∣

∣(uε,ν
3 − uapp

3 )∂z

[

uBL + δuBL
]

· (uε,ν − uapp)
∣

∣ ;

the calculations are quite similar to those of Lemma 5.1. We first split the integral on [0, a] into two
integrals, one bearing on [0, a/2] and the other on [a/2, a]. The term uT (resp. uB+δuBL) is exponentially
small on [0, a/2] (resp. on [a/2, a]), and thus we neglect it in the final estimate. Moreover, we have for
instance

∫ a/2

0

∫

T2

∣

∣(uε,ν
3 − uapp

3 )∂z

[

uB + δuBL
]

· (uε,ν − uapp)
∣

∣

≤
∥

∥

∥

∥

1

z
(uε,ν

3 − uapp
3 )

∥

∥

∥

∥

L2

∥

∥z∂z

[

uB + δuBL
]∥

∥

L∞ ‖uε,ν − uapp‖L2

≤ C‖∂z(u
ε,ν
3 − uapp

3 )‖L2(T2×[0,a]) ‖uε,ν − uapp‖L2(T2×[0,a])

≤ C‖uε,ν − uapp‖H1,0 ‖uε,ν − uapp‖L2(T2×[0,a]) .

Eventually, we infer that
∫

T2×[0,a]

∣

∣(uε,ν
3 − uapp

3 )∂z

[

uBL + δuBL
]

· (uε,ν − uapp)
∣

∣

≤ C ‖uε,ν − uapp‖2
L2(T2×[0,a]) + C‖uε,ν − uapp‖H1,0 ‖uε,ν − uapp‖L2(T2×[0,a]) .
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Gathering all the above estimates and integrating on E, we deduce that

∂

∂t
‖uε,ν − uapp‖2

L2(E×T2×[0,a]) + ‖uε,ν − uapp‖2
L2(E,H1,0)

≤ C ‖uε,ν − uapp‖2
L2(E×T2×[0,a])

+ ‖wrem
1 ‖2

L2(E×T2×[0,a]) + ‖wrem
2 ‖2

L2(E,H−1,0) +
∥

∥rδ
n,N

∥

∥

2

L2(E,H−1,0)
+
Cδ2

ε
.

Using Gronwall’s Lemma, we infer that for all t ∈ [0, T ],

‖(uε,ν − uapp)(t)‖2
L2(E×T2×[0,a]) +

∫ t

0

‖uε,ν − uapp‖2
L2(E,H1,0) (5.4)

≤ C
[

‖wrem
1 ‖2

L2([0,T ]×E×T2×[0,a]) + ‖wrem
2 ‖2

L2([0,T ]×E,H−1,0)

]

+ C

[

∥

∥rδ
n,N

∥

∥

2

L2([0,T ]×E,H−1,0)

δ2

ε

]

.

• We are now ready to prove Theorem 1. Let us write

uε,ν(t) − L
(

t

ε

)

w(t) = [uε,ν − uapp] (t) +

[

uapp(t) − L
(

t

ε

)

wδ
n,N (t)

]

+

[

L
(

t

ε

)

[wδ
n,N − wδ](t)

]

+ L
(

t

ε

)

[wδ − w](t),

where

⊲ the term uε,ν − uapp satisfies the energy estimate (5.4);

⊲ the term uapp(t)−L
(

t
ε

)

wδ
n,N (t) is equal to urem+vint+δuint

K , and thus vanishes in L∞([0, T ], L2(E,H1,0))
as ε, ν → 0, uniformly in δ > 0, and for all n,N,K;

⊲ the term wδ
n,N−wδ vanishes as n,N → ∞ uniformly in δ, ε, ν according to the first step in paragraph

4.3;

⊲ the term wδ − w vanishes as δ → 0, uniformly in ε, ν, according to (4.13).

Let η > 0 be arbitrary. We first take n0, N0 large enough so that for all δ > 0, ε, ν, β > 0,

‖rδ
n0,N0

‖2
L∞([0,T ]×E,H−1,0) ≤ η,

‖wδ
n,N − wδ‖2

L∞([0,T ]×E,L2), ‖wδ
n,N − wδ‖2

L∞(E,L2([0,T ],H1,0)) ≤ η.

Remembering properties (5.1)-(5.2), we deduce that there exists ε0, ν0 > 0 such that for all δ, for all
ε < ε0, ν < ν0 with ν ≤ Cε and β

√
εν ≤ C,

‖wrem
1 ‖2

L2([0,T ]×E×T2×[0,a]) ≤ η,

‖wrem
2 ‖2

L2([0,T ]×E,H−1,0) ≤ η,
∥

∥

∥

∥

uapp(t) − L
(

t

ε

)

wδ
n0,N0

(t)

∥

∥

∥

∥

2

L∞([0,T ],L2(E,H1,0))

≤ η.

At this stage, we have, for all δ > 0, for all ε, ν, β such that 0 < ε < ε0 and ν = O(ε),
√
νεβ = O(1),

∥

∥

∥

∥

uε,ν(t) − L
(

t

ε

)

w(t)

∥

∥

∥

∥

2

L2(E×T2×[0,a])

+

∫ t

0

∥

∥

∥uε,ν(s) − L
(s

ε

)

w(s)
∥

∥

∥

2

L2(E,H1,0)
ds ≤

Cη + C‖wδ − w‖2
L∞([0,T ],L2(E×T2×[0,a])) + C‖wδ − w‖2

L2([0,T ]×E,H1,0) +
Cδ2

ε
.

39



We now let δ → 0 in the right-hand side, and we obtain

∥

∥

∥

∥

uε,ν(t) − L
(

t

ε

)

w(t)

∥

∥

∥

∥

2

L2(E×T 2×[0,a])

+

∫ t

0

∥

∥

∥uε,ν(s) − L
(s

ε

)

w(s)
∥

∥

∥

2

L2(E,H1,0)
ds ≤ Cη

for ε, ν small enough. The convergence result is thus proved.

6 Mean behaviour at the limit

This section is devoted to the proof of Proposition 1. Let us recall what the issue is: in general, the
source term ST in (1.9) is a random function, and thus so is w. Hence, our goal is to derive an equation,
or a system of equations, on E[w]. We emphasize that such a derivation is not always possible, because
of the nonlinear term Q̄(w,w). However, we shall prove that the vertical average of wh, denoted by w̄h,
is always a deterministic function. Moreover, if the torus is nonresonant (see (1.11)), then w − w̄ solves
a linear equation, and thus in this particular case we can derive an equation for E[w − w̄].

Our first result is the following:

Lemma 6.1. Assume that the group transformation (θτ )τ∈R is ergodic. Let u0 ∈ H ∩H1, and let w be

the solution of (1.9). Set

w̄h =
1

a

∫ a

0

wh.

Then w̄ is the unique solution in C([0,∞), L2(T2))∩L2
loc

([0,∞), H1(T2)) of the two-dimensional Navier-

Stokes equation







∂tw̄h + w̄h · ∇w̄h − ∆hw̄h +

√
ν

aa1a2

√
2ε
w̄h + νβE [ST (σ)]h = 0,

w̄h|t=0 = 1
a

∫ a

0 w0,h.
(6.1)

In particular, w̄h is a deterministic function.

Proof. Let us recall that if

φ =
∑

k∈Z3

φ̂(k)Nk ∈ H,

then

Ph(φ) :=
1

a

∫ a

0

φh =
∑

kh∈Z2

φ̂(kh, 0)nh(kh, 0).

Thus we have to project equation (1.9) onto the horizontal modes, which correspond to k3 = 0. It is
easily checked that

Ph (SB(w)) = SB,h(w̄h) =
1√

2aa1a2

w̄h,

and we recall (see [14] and Proposition 6.2 in [3]) that there exists a function p̄ ∈ L2(T2) such that for
all w ∈ H1 ∩H

Ph(Q̄(w,w)) = (w̄h · ∇h)w̄h + ∇hp̄.

Thus we only have to prove that
Ph(ST (σ)) = E [ST,h(σ)] ,

almost surely in E. We use the following fact, of which we postpone the proof: if λ ∈ R, kh ∈ Z
2, then

E[Eλ[σ]] =

{

E[σ] if λ = 0,
0 else.

(6.2)

Moreover, if λ = 0, then
Eλ[σ] = E[σ] almost surely. (6.3)
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Note also that λk = 0 if and only if k3 = 0. Remembering (4.11), we deduce that

E[ST,h(σ)] = − i

aa1a2

∑

kh∈Z2

1

|k′h|2
(k′h)⊥ · E[σ̂(kh)]

(

ik′2
−ik′1

)

= − i

aa1a2

∑

kh∈Z2

1

|k′h|2
(k′h)⊥ · E0[σ̂(kh)]

(

ik′2
−ik′1

)

= Ph[ST (σ)].

Thus the lemma is proved, pending the derivation of (6.2) and (6.3). Concerning (6.2), the invariance
of the probability measure m0 with respect to θτ entails that

E [Eλ[σ]] = E[σ] lim
θ→∞

1

θ

∫ θ

0

e−iλτ dτ,

and (6.2) follows easily. Equality (6.3) is a consequence of Birkhoff’s ergodic theorem (see [20]).

The first point in Proposition 3 follows easily from the above Lemma (together with Theorem 1), by
simply noticing that the sequence

exp

(

− t

ε
L

)

w(t) =
∑

k

e−iλk
t
ε b(t, k;ω)Nk

weakly converges in L2([0, T ]× T
2 × [0, a] × E) towards

∑

k∈Z
3,

λk=0

b(t, k;ω)Nk = w̄(t).

Remark 6.1. Notice that
rothPh[ST (σ)] = −E [rothσ] .

Hence we recover the result of [5]: the vorticity φ := rothw̄h is a solution of

∂tφ+ w̄h · ∇hφ− ∆hφ+

√
ν

aa1a2

√
2ε
φ = νβE [rothσ] .

From now on, we assume that the torus is nonresonant (see (1.11)). Consequently, with w̄ = (w̄h, 0),
we have

Q̄(w − w̄, w − w̄) = 0.

Moreover, using (6.2)-(6.3), it is easily checked that

E [ST,3(σ)] = 0.

Setting u = w − w̄, we deduce that u solves a linear equation, namely

∂tu+ 2Q̄(u, w̄) − ∆hu+

√

ν

ε
SB(u) + νβST (σ) − νβE[ST (σ)] = 0.

Since w̄ is deterministic, we have
E
[

Q̄(u, w̄)
]

= Q̄(E[u], w̄).

Hence we can further decompose u into w̃+ ũ, where w̃ is deterministic and does not depend on σ, and ũ
is random with zero average. The precise result is stated in the following lemma, from which Proposition
3 follows immediately:

Lemma 6.2. Assume that the hypotheses of Proposition 3 hold. Then

w = w̄ + w̃ + ũ

where:
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• the function w̄ is deterministic and satisfies (6.1);

• the function w̃ is deterministic and satisfies






∂tw̃ + 2Q̄(w̄, w̃) − ∆hw̃ +

√

ν

ε
SB(w̃) = 0,

w̃|t=0 = u0 − w̄|t=0;

• the function ũ is random, with zero average, and satisfies






∂tũ+ 2Q̄(w̄, ũ) − ∆hũ+

√

ν

ε
SB(ũ) + νβST (σ) − νβE[ST (σ)] = 0,

ũ|t=0 = 0.

Appendix A: convergence of the family σα

Lemma 1. Let T > 0. Assume that σ ∈ L∞([0, T ] × E, C(R)) ∩ L∞([0, T ] × Rτ × E). Then for all

T ′ > 0,
σα − σ → 0 in L∞((0, T ) × (0, T ′) × E) as α→ 0.

Proof. By definition of σα, we have

σα(t, τ, ω) =
1

2π

∫

R×R

exp(−α|λ| − α|s|)eiλ(τ−s)σ(t, s, ω) ds dλ

=
1

2π

∫

R

exp(−α|s|) 2α

α2 + (τ − s)2
σ(t, s, ω) ds

=
1

π

∫

R

exp(−α|τ + αs|) 1

1 + s2
σ(t, τ + αs, ω) ds.

Consequently,

σ(t, τ, ω) − σα(t, τ, ω) =
1

π

∫

R

exp(−α|τ + αs|) 1

1 + s2
[σ(t, τ, ω) − σ(t, τ + αs, ω)] ds

+
1

π
σ(t, τ, ω)

∫

R

[1 − exp(−α|τ + αs|)] 1

1 + s2
ds.

The convergence result of Lemma 1 follows easily.

Appendix B: proof of Proposition 1

Let λ ∈ R be arbitrary, and let φ ∈ L1(E).
Consider the probability space

Eλ := E × [0, 2π), Pλ := P ⊗ dµ

2π
,

where µ is the standard Lebesgue measure on [0, 2π]. Let us define the following group of transformations,
acting on (Eλ, Pλ)

T λ
τ (ω, ϕ) := (θτω, ϕ− λτ mod2π), τ ∈ R.

Then it is easily checked that T λ
τ is measure-preserving for all τ ∈ R. And if T > 0, we have, for all

ϕ ∈ [0, 2π],
∫ T

0

Φ(θτω)e−iλτ dτ = e−iϕ

∫ T

0

Φ(θτω)eiϕ−iλτ dτ

= e−iϕ

∫ T

0

Ψ
(

T λ
τ (ω, ϕ)

)

dτ,
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where the function Ψ ∈ L1(Eλ) is defined by

Ψ (ω, ϕ) := Φ(ω)eiϕ.

Hence, according to Birkhoff’s ergodic theorem (see [20]), there exists a function Ψλ ∈ L1(Eλ),
invariant by the group of transformations

(

T λ
τ

)

τ∈R
, such that

1

T

∫ T

0

Φ(θτω)e−iλτ dτ → eiϕΨλ(ω, ϕ),

Pλ - almost surely in Eλ and in L1(Eλ). Moreover, the function

(ω,Φ) 7→ eiϕΨλ(ω, ϕ)

clearly does not depend on ϕ. Hence, we set

Φλ(ω) := eiϕΨλ(ω, ϕ) ∀(ω, ϕ) ∈ Eλ,

and we have proved that
1

T

∫ T

0

Φ(θτω)e−iλτ dτ → Φλ(ω)

almost surely in ω and in L1(E).
Now, since Ψλ is invariant by the group

(

T λ
τ

)

τ∈R
and Φλ does not depend on ϕ, we have, almost

surely in ω,

Φλ(θτω) = eiϕΨλ(θτω, ϕ)

= eiϕ−iλτΨλ(θτω, ϕ− iλτ mod2π)

= eiϕ−iλτΨλ
(

T λ
τ (ω, ϕ)

)

= eiϕ−iλτΨλ (ω, ϕ)

= e−iλτΦλ(ω).

This completes the proof of Proposition 1.

Appendix C: the stopping Lemma

Lemma 2 (Stopping condition). Let T¿0, and let δ0, δ1 ∈ L∞([0, T ], H2(T2)) be two families such

that
∫

(δ1,3 − δ0,3)dxh = 0

and such that as ε→ 0,

1

ε
‖δi‖L∞([0,T ],H1(T2)) → 0, ‖δi‖L∞([0,T ],H3(T2)) → 0 and ‖∂tδi‖L∞([0,T ],H1(T2)) → 0.

Then there exists a family w ∈ L∞([0, T ], L2(T2 × [0, a])) with ∇ · w = 0 such that

w|z=0 = δ0, w3|z=1 = δ1,3 and ∂zwh|z=1 = δ1,h

and such that as ε→ 0,

‖w‖L∞([0,T ],L2) → 0,

∥

∥

∥

∥

∂tw +
1

ε
Lw − ν∂zzw − ∆hw

∥

∥

∥

∥

L∞([0,T ],L2)

→ 0.

For a proof of the above Lemma, see [4].
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