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Abstract

The goal of this paper is to describe in mathematical terms the effect on the ocean
circulation of a random stationary wind stress at the surface of the ocean. In order to
avoid singular behaviour, non-resonance hypotheses are introduced, which ensure that the
time frequencies of the wind-stress are different from that of the Earth rotation. We prove
a convergence result for a three-dimensional Navier-Stokes-Coriolis system in a bounded
domain, in the asymptotic of fast rotation and vanishing vertical viscosity, and we exhibit
some random and stationary boundary layer profiles. At last, an average equation is derived
for the limit system in the case of the non-resonant torus.

1 Introduction

The goal of this paper is to study mathematically a problem arising in ocean dynamics, namely
the behaviour of ocean currents under stimulation by the wind. Following the books by Pedlosky
06, [ and Gill [§], the velocity of the fluid in the ocean, denoted by wu, is described by
the incompressible Navier-Stokes equations in three dimensions, in rotating coordinates, with
Coriolis force:

p(Opu+u - Vu+ 20 Au) — ApApu — Ay0?u = Vp, t>0, (z,y,2) € U(t) C R,

divu = 0.

In the above equation, A, and A, are respectively the horizontal and vertical turbulent viscosi-
ties, p is the pressure inside the fluid, p is the homogeneous and constant density, and (e is the
rotation vector of the Earth (€ > 0 and e is a unitary vector, parallel to the pole axis, oriented
from South to North). U(t) is an open set in R?; notice that U(¢) depends on the time variable
t: indeed, the interface between the ocean and the atmosphere may be moving, and is described
in general by a free surface z = h(t).

In order to focus on the influence of the wind, let us now make a series of crude modeling
hypotheses on the boundary conditions: first, we assume that the lateral boundaries of the
ocean are flat, and that the velocity u satisfies periodic boundary conditions in the horizontal
variable. We also neglect the fluctuations of the free surface, namely, we assume that h(t) = aD,
with a, D positive constants. This approximation, although highly unrealistic, is justified by
the fact that the behaviour of the fluid around the surface is in general very turbulent. Hence,
as emphasized in [ff], only a modelization is tractable and meaningful. Let us also mention
that the justification of this rigid lid approximation starting from a free surface is open from a
mathematical point of view. At last, we assume that the bottom of the ocean is flat; the case
of a nonflat bottom has already been investigated by several authors, and we refer to [, [4, ]
for more details regarding that point.



As a consequence, we assume that U(t) = [0,a;L) x [0,a2L) x [0,aD], L > 0 is the typical
horizontal lengthscale, and u satisfies the following boundary conditions

u is periodic in the horizontal variable with period [0,a1L) x [0,a2L),
u;—o = 0 (no slip condition at the bottom of the ocean)
OxUp|s—ap = Aoo, (influence of the wind)

uz|z—qp = 0, (no flux condition at the surface).

Let us now reduce the problem by scaling arguments. First, we neglect the effect of the
horizontal component of the rotation vector e, which is classical in a geophysical framework (see
[]). Furthermore, we assume that the motion occurs at midlatitudes (far from the equator),
and on a “small” geographical zone, meaning L < Ry, where R is the earth radius. In this
setting, it is legitimate to use the so-called f-plane approximation (see [E]), and to neglect the
fluctuations of the quantity es-e with respect to the latitude. In rescaled variables, the equation
becomes

1
OutY +utY - Vut + geg Au®Y —nApu®’ — V@?u‘g’” +Vp=0, (1.1)
where
U A LA,
= — = V= ——
“Toro T ur pUD?’

and U is the typical horizontal relative velocity of the fluid. We are interested in the limit
r<l, exl, n~1

Such a scaling of parameters seems convenient for instance for the mesoscale eddies that have
been observed in western Atlantic (see [Lf]). One has indeed

U~b5cm-s™t, L~ 100km, D ~ 4km and Q ~ 107%™}
which leads to € ~ 5 x 1073, Possible values for the turbulent viscosities given in [Lf] are
A ~107em? /s and A, ~ 10em? /s

so that v = 1073 . Moreover, the amplitude of the wind stress at the surface of the ocean may
be very large; thus we set

ApSoD

§im 202

where Sp is the amplitude of the wind velocity, and we study the limit 3 — oco. Equation ([L.1)
is now supplemented with the boundary conditions

671/ —_—
Uy = 0,
g,V _ £
a’*’uh|z:m = o, (12)
87” —_—
u3|z:a 0

The assumptions on the wind-stress ¢ will be made clear later on.



1.1 General results on rotating fluids

Let us now explain heuristically what is the expected form of u*" at the limit. Assume for
instance that v = ¢ and that the family u” admits a two-scale limit in time, say u", as ¢ — 0;
we thereby mean that

Vo € C5°([0, 00) x [0,00) x T? x [0, al)

/ / u®?(t, xp, )(b(ttxh, >dtdxhdz
T2 x0,a]

— / / / uO(t, 7,2, 2)0 (t, 7,21, 2) dt dr dxy, dz
o Jo JT2x[0,4]

Rigorous definitions and properties of two-scale convergence can be found in the paper by G.
Allaire [[l].

Then, assuming that u®" is bounded in a “good” functional space, we may pass to the
two-scale limit in ([[.1]), which yields

Ou +e3 Aul =0,
divu® = 0, (1.3)
u? = u) =0

3|z=0 3lz=a ’

Hence we introduce the vector space
H = {u € L*(T? x [0,a])®, divu =0, Us|m0 = Ugjsmq = 0} .

We denote by P the orthogonal projection on H in L?(T? x [0,a])?, and we set L := P(e3 A -).
Notice that P differs from the Leray projector in general, because of the no-flux conditions at
the bottom and the surface of the fluid. It is known (see for instance [fJ]) that there exists a
hilbertian basis (Nk)gezs\ oy of H such that for all k,

k‘37'('

Ples A N) = iAp N with A\ = — .
( : |knl? + (ks)?

The vector Ny, is given by

A cos(kz)ni (k)
Ni(zp, 2) = e*non | cos(ky2)ng (k)
sin(kz)ng (k)
where .
(k) = ———=r- (iks + k1 \r)
,/alaga]k ]
1 -7,/ / .
TLZ(k) \/W’k ’( ’Lkl + kQ)\k) lf kh 7& O,
L
k
na(k) = ,/a1a2a|k’|
and

else.




Consequently, we infer from equation equation ([.J) that u°(¢,7) € H almost everywhere,
and that there exists a function u% such that

u’ = exp(—7L)uY = Z e~ T ( N, ul ) N,
k

Thus the main effect of the Coriolis operator L is to create waves, propagating at frequencies
of order 7. The goal is now to identify the function u?, which in general depends on the slow
time variable ¢. This is achieved thanks to filtering methods, developed independently by S.
Schochet in [[[9] and E. Grenier in [[l]. Precisely, setting

t
u?” = exp <—L> utv
€

it is proved in [B, [[4] in the case of Dirichlet boundary conditions at z = 0 and z = a that uy”

converges strongly in L?([0,00) x T? x [0, a]) towards a function u$. Moreover, the function u}

satisfies a nonlinear equation of the type

Opuf + Q(ud,ul) — Apuj =S, (1.4)

where the quadratic term Q(u%, u%) corresponds to the filtering of oscillations in the non-linear

term, and the source term S to the filtering of oscillations in lower order terms in u*". More
precisely, for wi,wy € H N HY(T? x [0,a]), Q is defined by (see [f, Proposition 6.1 and [[4])

2Q(wy, wp) == w— liH(l] [exp (éL) P (exp <—£L> wi - Vexp (—éL) w2>
exp <EL> P <exp <—£L> ws - V exp <—EL> w1>]
€ € €

= > 3 (Nkwr) (N, wa) N, (1.5)

meZ3 (k,1)eEXm
where the resonant set Ky, is defined for m € Z3 \ {0,} by
K = {(k,1) € Z°, kp +1lp =mp, \g + N = Ay and 3y € {=1,1}%, miks +nmols = m3}
and the coefficient oy, , by
e tym = (Nm, (Ni, - V)Ni) + (Nin, (N - V) Ny)

In order that the equation on u% is defined unambiguously, the value of the source term S has
to be specified. In the present case, we have

5= —\fgsgw%) —UBSr(o),

where Sp : H — H is a linear continuous non-negative operator (see [H, 4, H]) recalled in
formula (.9) below, and S7(c) depends on the time oscillations in the wind-stress . Thus, in
the next paragraph, we precise the assumptions on o, and we define the source term Sp.



1.2 Definition of the limit equation

e Let us first introduce the hypotheses on the time-dependance of the wind velocity. Since the
Coriolis operator generates oscillations at frequencies of order £7!, it seems natural to consider
functions ¢ which depend on the fast time variable ¢/e. The case where this dependance is
periodic, of almost periodic, has been investigated by N. Masmoudi in [[L4] in the non-resonant
case, that is, when the frequencies of the wind-stress are different from +1. The results of [[I4]
were then extended by the author and Laure Saint-Raymond in [{]. In fact, it is proved in [
that when the wind-stress oscillates with the same frequency as the rotation of the Earth (i.e.
+1), the typical size of the boundary layers is much larger than the one of the classical Ekman
layers. Moreover, a resonant forcing overall destabilizes the whole fluid for large times. Here,
we wish to avoid these singular behaviours, and thus to consider a more general non-resonant
setting.

We assume that the function ¢, is random and stationary in the fast time variable. Pre-
cisely, let (E,F,mq) be a probability space, and let (0;);cr be a measure preserving group
transformation acting on E. We assume that the function o,, can be written

t
ow(t,z,y) = Spo <t, g,xh;w> , t>0, 2, €T? weE,

and taht the function o is stationary, i.e.
U(t7 T + 8, Th; w) = U(ta T, ZTh; st)

almost everywhere.

The periodic setting can be embedded the stationary (ergodic) setting in the following way
(see [[(H]): take E = R/Z ~ [0,1), and let mg be the Lebesgue measure on E. Define the group
transformation (6;);cr by

0;s=s+7 modZ V(r,s) ERXE.

Then it is easily checked that 6, preserves the measure mg for all 7 € R. Thus the periodic
setting is a particular case of the stationary setting; the almost periodic setting can also be
embedded in the stationary setting, but the construction is more involved, and we refer the
interested reader to [[L5].

The interest of the stationary setting, in addition of its generalization of the almost periodic
one, lies in the fact that the solution of ([L.1))-([.d) ought to be a random function. Hence, we
also expect to recover a random function in the limit €, — 0. In fact, we will prove rigorously a
strong convergence result of this kind; additionnally, we will characterize the average behaviour
of w in the limit. This type of result could be of particular use in the framework of a mathematical
theory of turbulence, for which macroscopic quantities of the fluid under consideration (the
turbulent viscosity, for example), should be computed as averages of random microscopic ones.

Since the function ¢ is not an almost periodic function, we now introduce a notion of
approximate spectral decomposition of . For a > 0, let

Ga(N) = % /Rexp(—a|7'|)e_i)‘70(7') dr, (1.6)

and define the family of functions (04 )a>0 by the formula

oo(r) = /ReXp(—a])\])ei)‘T&a()\) dx. (1.7)



It can be proved that the family (04)a>0 converges towards o, as a — 0, in L2 ([0, 00) x
[0,00), L®(E, L*(T?)) (see Lemma p.3J in the Appendix). We assume that there exists s > 2
such that the following non-resonance hypotheses hold:

(H1) For all a >0, T >0, 6, € L>=([0,T] x E, L}(Ry, H*(T?))), and

VT >0, SUIO> ||5-a||L°°([O,T]><E,L1(]R,HS(11'2))) < +o0.
a>

(H2) There exist neighbourhoods Vi of 41, independent of o > 0, such that

VT >0, hm sup  [|Ga(A) || Lo (0,1x B, 15 (12)) = 0.
a=0 eV, UV

We refer to Remark [L.2 below for some details about the meaning of hypotheses (H1)-(H2)
for almost periodic functions. Let un now explain how random oscillations are filtered:

Proposition 1. Let ¢ € L'(R, x E) be stationary, and let A € R. Then the family
1[0 .
qﬁg\ tweE KR 5/ ¢(T,w)e_l)‘TdT, >0
0

converges, almost surely and in L'(E), towards a function denoted by Ex[¢] € L'(E) as 6 — oc.
Moreover, E)]¢] satisfies the following equality:

Ex[0](0:w) = Ex[9](w)e™

almost surely in w, for all T € R.
Additionnally, if o satisfies (H1)-(H2), then

Exlo] =0 (1.8)

for X\ in a neighbourhood of £1.

Q

Proposition [[ is proved in Appendix B, except property ([L.§), which will be proved in the
course of the proof page 9.
With the above definition of £, the source term St is defined by

t) K, —i(k)T) - Eox, [6(¢, - kn)] N,
where
ot kp;w o(t,rp;w e~ Rh T doy

1/(11&2 T2
Notice that Sr(o) is a random function in general, and is well-defined thanks to (H1)-(H2)
provided o € L>([0,Tp] x [0,00), x E, H'(T?)) for all Ty > 0.

e We now state an existence result for the limit system, based on the analysis in [fJ]. To that
end, we introduce the anisotropic Sobolev spaces H** by

H* = {ue L*(T* x [0,a3]) / V(ap,3) EN* X N, |oy| < 5, ]3| < 8/, Viho%u e L},

Then the following result holds:



Proposition 2. Let v,e,3 > 0 be arbitrary.
Let ug € HN HY, and let o € L32,([0,00);, L=([0,00), x E, H3?(T?)).

Assume that the hypotheses (H1)-(H2) hold. Then Sr(o) € L ([0,00):, L°(E, H?)), and
consequently, the equation

Ow + Q(w,w) — Apw + \/gSB(w) +vpSr(o) =0, (1.9)

Wt=0 = U0

has a unique solution w € L>®(E,C([0,00), HNH"Y)) such that Vju € L®(E, L2 ([0,00), H*!)).

loc

Remark 1.1. (i) Notice that the function w is random in general because of the source term
St.

(i) In [3], Proposition [ is proved for Sy = 0 (see Proposition 6.5 p. 145). As stressed by
the authors, the result is non trivial since the system ([.9) is similar to a three-dimensional
Navier-Stokes equation, with a vanishing vertical viscosity. The proof relies on two arguments:
first, a careful analysis of the structure of the quadratic term Q shows that the limit equation
is in fact close to a two-dimensional one. Second, the divergence-free property enables one to
recover estimates on the vertical derivatives on the third component of the velocity field, and
thus to bypass the difficulties due to the lack of smoothing in the vertical direction.

In fact, the proof of Proposition |} can easily be adapted from the one of Proposition 6.5 in
[3/, and is thus left to the reader. The method remains exactly the same, the only difference
being the presence of the source term St in the energy estimates. Thanks to the assumptions on
o, St belongs to H', and thus the estimates are preserved. Moreover, it is sufficient to prove
the Proposition “trajectory by trajectory”, i.e. for w € E fixed.

1.3 Convergence result

Theorem 1. Assume that v = O(e), and that \/ev3 = O(1).

Let o € L2 ([0,00)s, L°°([0, 00), X E, HY(T?)) such that (H1)-(H2) are satisfied, and 8,0 €
HY(T?, L>°(]0,inf); x [0,00), x E)).

Let u € L}, ([0, 00), L*(E, H(T? x [0,as]))) N LiZ. (0, 00), L (B, LA(T* x [0, a])))) be a
weak solution of ([L1), supplemented with the conditions ([.3) and the initial data u’lgt’io =ug €

H x H%L. Let w be the solution of ([.9). Then for all T >0,

t
u®’ — exp <——L> w — 0
€

in L2([0,T] x E, H'%) N L>([0, T], L*(E x T? x [0, a3)])).

In the case of the nonresonant torus (see ([.11)) below), it is likely that the hypothesis
v = O(e) can be relaxed. Indeed, in this case, the equation on w decouples between a nonlinear
equation on the vertical average of w on the one hand, and a linear equation on the vertical
modes of w on the other hand (see section f]). Moreover, it can be proved that the purely
horizontal modes of w decay exponentially in time at a rate exp(—\/u—/et), and the rate of
decay does not depend on the particular horizontal mode considered. Thus, in this particular

case, the regime v > ¢ may be investigated, using arguments similar to those developed in [4.

Remark 1.2. Let us now explain the meaning of hypotheses (H1)-(H2) for almost periodic
functions. Let ky, € Z2, and let ¢ € L*°(]0,00) x T?) such that

o(r,n) = €5 37 Gu)eit,

pneM



where M 1is a countable set. The fact that ¢ as only one horizontal Fourier mode is not crucial,
but merely helps focusing on the time spectrum. Then it can be checked easily that for all o > 0,

ba (N, 1) etk oh () P————

( > Y
pneM

In particular, for all s > 0, there exists a constant C(s) such that

1ballzr @ iy < Cls) D o) / ey VeL

;LEM

< 0 Y |bw)|.

pneM

Thus hypothesis (H1) is satisfied provided ‘gzg(,u)‘ < 0.

On the other hand, assume that

= d(M,{~1,1}) > 0, (1.10)

i.e. that there are no frequencies in a neighbourhood of £1. Then if A\ € (=1 —n/2,—1+n/2) U
(1 —=n/2,1+n/2), we have

and consequently, setting VF := (£1 —n/2,+1 +n/2), we have, for all s > 0

ngba()\)H < C’(s)la.

H*(T?) Ui

sup
AeV-uvt

Thus hypothesis ([L.10) entails (H2). Additionnally, hypothesis ([[.10) cannot be easily relazed,
as shows the following construction: consider the sequence i, := 1—1/n, and choose a sequence

of positive numbers ¢, such that
Z Pn < 00.
n

For 7 € R, set
— Y
n

Then for all o > 0, for alln >0

In particular,
Oléi—>rI]0 ¢a(ﬂn) = 100

for all n, and thus condition (H2) is not satisfied.



1.4 Average behaviour at the limit

We have already stressed that the solution w of equation ([.9) is, in general, a random function.
Thus one may wonder whether the average behaviour of w at the limit can be characterized. In
general, the nonlinearity of equation ([[.9) prevents us from deriving an equation, or a system of
equations, on the expectation of w, which we denote by E[w]. However, when the torus is non
resonant, equation ([L.9) decouples, and in this case we are able to exhibit a system of equations
satisfied by E[w].

Let us first recall a few definitions:

Definition 1 (Non-resonant torus). The torus T3 := T?x [—a, a) is said to be non-resonant
if the following property holds: for all (k,n) € Z3\ {0} x Z3\ {0},

(e {=1, 11, mAe + m2An—k — m3An = 0) = kgng = 0. (1.11)

We refer to [ff] for a discussion of hypothesis ([.11) and its consequences. Let us mention that
(T17) holds for almost all values of (a,a1a,2) € (0,00)3. When the torus is non-resonant, the
structure of the quadratic form @ defined by ([L.§) is particularly simple, and the system ([.9)
can be decoupled into a two-dimensional Navier-Stokes equation on the vertical average of w,
and a linear equation on the z-dependent part (see [[]). The advantage of this decomposition
in our case is that the vertical average of Sp(c) is deterministic, at least when the group
transformation (60;),>o acting on E is ergodic (see [0]).

Definition 2 (Ergodic transformation group). Let (6;)-cr be a group of invariant trans-
formations acting on the probability space (E, A,mg). The group is said to be ergodic if for all
Aec A,

0rACA VreR)=mg(A) =0 ormg(A) =1.

We now state our main result on the average behaviour at the limit:

Proposition 3. Assume that the torus T3 is non-resonant, and that the transformation group
(0:)rer is ergodic.

Let ug € HNH®, and let o € L2 ([0,00)¢, L®([0,00), x E, H3?(T?)) such that hypotheses
(H1)-(H2) hold. Let w € L>(E,C([0,00), HN H"Y)) N L>®(E, L2 ([0,00), H'?)) be the unique
solution of equation ([L.9).

Then

Elw] = w + w,

where w = (wp, 0) is the solution of a 2D-Navier-Stokes equation

v 1
Oywy, + wy, - Vywp, — Apwy, + \/jiﬂ_)h + vBE [ST(0)]), = Vap,
€ V2aajaz
divpwy, = 0,
1 [
Wh|p—o(Th) = —/ uo,n(h, 2) dz,
as Jo
and W solves a linear deterministic equation
O + 2Q(w, W) — Ap + \ESB(w) =0,



1.5 Strategy of proof of Theorem i

The proof relies on the construction of an approximate solution, obtained as the sum of some
interior terms, the largest of which is exp(—7/eL)w(t), and some boundary layer terms which
restore the horizontal boundary conditions violated by the interior terms. We refer to the works
by N. Masmoudi [[[3, [4], N. Masmoudi and E. Grenier [[[0], N. Masmoudi and F. Rousset
2, and F. Rousset [I§ for an extensive study of boundary layers in rotating fluids, or in
incompressible fluids with vanishing vertical viscosity for [[[3J]. We emphasize that in fine, all
terms will be small in L2 norm, except exp(—1/eL)w(t).
Following [{] (Chapter 7), let us assume that as €, v — 0,

us ulnt,O + uBL,O + €umt’1 + uBL,l 4+
1

. 1 . 1.12
ps,l/ ~ gplnt,fl + ngL,fl _|_p1nt,0 _|_pBL,0 4o ( )

where

t

€

t a—z i t z

- T,Y, +pB ta_axaya_ .

€ Ui € Ui

Above, 7 is a small parameter that will be chosen later on. The functions u’T (resp. u’é, piT, p’é)

are such that ‘
wp(t,z,y,() = 0 as ( — oo.

We then plug the Ansatz ([L.1J) into equation ([L.I]), and identify the different powers of e.
In general, there is a coupling between u™ and uPY: indeed, we have seen that

uint’o(t, 7) = exp(—7L)w(t),

and thus ©™? does not match the horizontal boundary conditions in general. As a consequence,
the value of u'™ at the boundary has to be taken into account when constructing the boundary
layer. On the other hand, the third component of uP" does not vanish at the boundary, which
means that a small amount of fluid may enter or leave the interior of the domain. This phe-
nomenon is called Ekman suction, and gives rise to a source term (called the Ekman pumping
term) in the equation satisfied by u™*. This leads to some sort of “loop” construction, in which
the boundary layer and interior terms are constructed one after the other.

Rather than following this construction step by step, we first explain how a generic boundary
layer term is constructed, given arbitrary boundary conditions on the horizontal component of
the velocity. We shall see that in general, the vertical component of the boundary layer term
does not vanish at the boundary, due to the divergence-free condition. Thus, in the third section,
we explain how a generic interior term u™ = "0 4 "1 is constructed, depending on the
initial data, and on arbitrary Dirichlet boundary conditions for the vertical component of the
velocity. In the fourth section, we detail how the approximate solution is obtained, and the fifth
section is devoted to the proof of convergence thanks to energy estimates. At last, we prove
Proposition [ in the sixth section.

10



2 The boundary layer operator

In this section, we construct a linear boundary layer operator, which maps boundary condi-
tions on the horizontal component of the velocity onto boundary layer terms. The boundary

conditions considered here are of three types:

e at the surface, we shall consider Neumann boundary conditions of the type

t
BL .
azuh|z:a — ﬁCT,h <t, g, Th; Cu) s

where 0y, (t, 7, 2,7y, w) is a stationary function of 7, T?-periodic with respect to zy,.

In this case, we expect uB to be of order n3||erp||e in L.

e at the bottom, we shall consider Dirichlet boundary conditions of the type

t
upr,p(2 =0) =cpy <t7 g7xh>

where cp j,(t, 7, xp,) is either an almost periodic or a stationary function of 7. In this case,

we expect uBY to be of order ||cp p||oo in L.

Moreover, when the function cp, is almost periodic, we assume that its frequencies are

the eigenvalues of the operator L. Hence we consider functions cp

. o
cpn(t, T, o) = E ¢Bn(t, k‘)eZkh The M’“T, A =
k€Z3 k0

of the type

L:3

T (2.1)

The divergence-free condition entails that the third component of uPB" is given by the fol-

lowing formulas:
ura(¢) = —n [ diviura(¢d'
¢

up3(() = 77/C divpur p(¢)d¢'.

Thus urs = O?||er.nllwiee), ups = OMl|ca.nllwie~). At last, in order to be consistent with

([.13), we assume that the pressure inside the boundary layer is given by

1 g, 1 a—z 1 z
p=-—_p  =_Pr +-pB |-
€ € Ui € n

where pr = O(nllerpllo), PB = O(lleB.nllo0)-

2.1 Stationary Neumann boundary conditions at the top

The construction of boundary layers with stationary boundary conditions is the main novelty
of this section. We focus on the boundary layer at the top of the fluid, that is, around z = a,

and we set
a—z

Ui

¢=

11



Then the pressure term in the third component of ([L.1) is of order ||cr 4||s, Whereas the lowest
order term in the left-hand side is of order n?||cz p||y1.00. Thus, since 7 is small, we infer

Ocpr =0,

and since pr vanishes at infinity, we have pB = 0: at first order, the pressure does not vary in
the boundary layer. Thus, we now focus on the horizontal component of w7, which is a solution

of
uT,1 Ve o fUur1 —Ur2
%) | ——=a )+ “) =0, 2.2
(o) =57 G+ () @2
Ocur pic=0 = —nBern(t,2,y,w), (2.3)

UT hjc=to00 = 0- (2.

We now choose 7 so that all the terms in (R.2) are of the same order, that is,

N = \/VE.

Moreover, since cp, is a stationary function of time, it seems natural to look for stationary
solutions of (R.9), and thus for fundamental solutions ¢1, s of (R.2) in the following sense: ¢;
(i = 1,2) is a solution of (R.9) in the sense of distributions and satisfies (R.4), and

Icp1ic=0 = do(T) (é) ) O pajc=0 = do(t) <(1)>

where Jg denotes the Dirac mass at 7 = 0. If we can construct ¢; and @2 satisfying the above
conditions, then a good candidate for ur is

wrn(ty 720, G w) = Vel 3 / er (6,7 — 5, 2n3w)p; (5)ds.
0

Jj€{1,2}

Hence we now define 1, p5. Since the fundamental solution of the heat equation is known, let
us make the following change of unknow function (see [[[4]):

HY =0 [e57 (pj1 £igiopio Fivir.)], j=1.2
Then, setting eli = (1, F9), ezi := (=%i,1), we infer that H]i = Geji, where G satisfies

0,G—RG=0, 7>0,(>0,
Gle=0(T) = do(7), (2.5)

The boundary condition at ¢ = 0 should be understood as follows: for all ¢ € Cp(R), for all
T>0

lim [ /0 T o(r— 8)Gls, C)ds] — (7).

¢—0,(>0
It can be checked (see Chapter 4, section 1 in [LI]) that

2

C—), >0, (>0,

¢
G(1,¢) == W exp (—47_

12



is a solution of (P.5)), which leads to

Ocps(1,¢) = % {e_”H;'(T, ¢)+ e+”Hj_(T, C)}

= %G(T, () {e_”ej + €+iT6;} .

Unfortunately, when we integrate this formula with respect to ¢ in order to obtain an explicit

expression for uyy, the convolution kernel thus obtained is

1 G\ T -
p;(1.¢) = T P <_E> [6 ZT@; + GHTGJ ] )
and is not integrable near 7 = +o0o. Hence, in the spirit of [[4], we consider an approximate

corrector in the boundary layer: for 4 > 0, we set
C2
Gs(1,¢) = \/57'3/2€p< yp —5T>.

Then the corresponding corrector is given by

ug’,h('?ﬂ'a(ﬂ”) = _B\/E—V Z / eXp( (58)CT7J‘(-7T

je{l2}
> 1 ex _C_2 :|:'L o e . —6s:|:isd
p (=5 ) ern & ich) (o7 — 5, w)e s

— 8, w)ds (2.6)

The approximate corrector u% satisfies the exact boundary conditions at ( = 0, and equation

(B:2) up to an error term of order §

1
aq-u%h — a?ugﬂ’h + (u%h) + 5ug~7h = 0
The third component of u% is then given by

UT 3(¢) \/_/ lehuT s

which yields

5 VL, ¢ (55) amennes
wpa(, 7, w (divpe irotyc T
Fa(om e Cw v > nerh F irotper,)(

where ¢ is defined by ¢'({) = exp (—44—2>, o(+00) = 0.
In horizontal Fourier variables, we have

— s, w)efzgsilsds’

uTg(t T,Th,C w) = VEB Z Zelk xh/ <\§§> chEh(t — 5, kp,w)e 5F S ds  (2.7)
k €72 +
where
cTh(kh) = Z/{?h CTh(kh) (k?;l)J‘ . éT,h(kh)-

13



We define the operator B% by

t a—=z
B el (b o, 25 w) = udh (2, 2p, Sy w
T[CT,h](7xhaz7 ) uT(agaxha EV’ >7

where uf. is defined by (2.6)-(B:7).

We now give an estimate on the boundary layer term computed above when assumptions
(H1)-(H2) are satisfied. The proof is postponed to paragraph P.4.

Proposition 4. Assume that e, € L®([0,00) x R, x ExT?)NL>® (2 x [0, 00) x T%,C(R;)), and
that crp, satisfies (H1)-(H2). Then there exists a constant C' > 0, such that for all 6,v,e,3 > 0,

HuéT’ Ca(u&T"Loo([o,oo)txmxwx[o,oo)ng) < Cvevp, (28)
[ cacut < OVevp. (2.9)

L2 ([0,00)¢ xR x E,L2([0,00)¢,H(T?)))

2.2 Stationary Dirichlet boundary conditions at the bottom

The construction is the same as for Neumann boundary conditions, and is in fact more simple
because we need not integrate with respect to the variable (. Thus, with the same notations as
above, the corrector in this case is given by

u5B,h('777 LCw Z / G5 7286;— te e €j } CTJ(t - 37x7y;w) ds, (2'10)
]E{l 2}
and
[ ve Zk Tp C —dstis
UB73(‘,T,',<,CU) = T —eXp 4 CTh( S,k‘h,(d)e ds.
ky€Z? i

The same estimates as in Proposition [ hold. The corresponding operator is denoted by
Biat,

2.3 Almost-periodic Dirichlet boundary conditions at the bottom

In this case, the computation has already been performed by several authors (see for instance
4, B)); hence we will merely briefly recall the method and the expression of u% - Unlike in
M), no smgular behaviour occurs for kj, # 0 because there is no resonant forcing on the non-
homogeneous horizontal modes, meaning that A\ # +1 when k;, # 0. For kj, = 0, the frequency
Ak is equal to the frequency of rotation of the Earth (i.e. |A\x| = 1) and thus we use the so-called
“stationary correctors” defined in [[l] in that case.

As in the top boundary layer, we have pp = 0, and thus the function up} satisfies the
evolution equation (R.3), together with the boundary conditions

uB,h(taTaxayaC = 0) = CBnh (taT’ xh)
= ) gt k)t Te M (2.11)
k€Z3 k40
U%ﬁ(f,T,CE,y,C = +OO) = 0. (212)

14



The decomposition (P.11]) leads us to search for a corrector up satisfying

upp = Z UB, ks

keZ3

where each term up j, 1, satisfies (.13) and (R.9), and

_ A —ixgr ikl -z, (1K)
uB hklc=0(t; T, ) = Cpn(t, k)e e'"n (m(k)) .

The periodicity in time of the boundary condition prompts us to choose upj x as a periodic
function of 7, with frequency M. Also, it is classical to seek up 1, as an exponentially decaying
function of ¢; the rate of decay is then dictated by the equation. The precise expression of up j,
is the following (see [[[4]):

First case: kp, # 0.

In this case, up pk is an exact solution of (R.g), and is equal to

; 1.0 +
UB, h,k (t7 Y, C) = Z wlil;: (tv w)e_ZAkT—Hkh.xh_nk ¢ (213)
+

where
144
k
= ViFh—
T SV

e = Yot () o) (1)

The vertical part of the boundary layer is then given by
1 . 1.0 +
up3k(t, T, 2,y,() = Ver Y n_iik;‘ SwE (tw)e TR, e (2.14)
+ 'k

Second case: kp = (0,0).

In this case, the construction of the stationary correctors in [[] proves that there are indeed
boundary layers, but which are of order \/vt, and not \/ev in general. Thus the size of the
boundary layer depends (slowly) on time. In fact, in order to obtain good estimates on the
boundary layer term, we do not use exactly the definition of [[l. We rather use the following
Ansatz

Wt T, 2) = (L) Z w(—(fig)(ks)eisgn(ks)ﬁ (2.15)

I
<=
N
t‘N

~~
~_
™ 4
o)
H_
=
@)
ay
|
P
H —
-~
~~__

where

In order that vt is an approximate solution of the linear part of equation ([L.1]), the function

o must be such that
1
590 = 4(X) =0,
Yx=0 =1,

15



which yields

W(X) = %/: exp (-“{) du.

With this definition, us*#*(¢) vanishes outside a layer of size /vt localized near the bottom of
the fluid. Hence u5*** is an approximate solution of the linear part of equation ([.1)), and uT;a:ta
is exponentially small.

We define the operator B by

t
B%er[CBJ’L] (ta Th, Z) = UupB <t) ga Th, > + uStat(t, Thy Z).

z
Vev
We gather the results of this paragraph in the following Lemma

Lemma 2.1. Let up be defined by (R.13)-(R.14) and u**** by (R.1). Then the following estimates
hold

1/2
. ks
lusn COcunnll iz iomyy < C | D 1esa(k)? (HW L1
kez3,
kn£0
s ps COcunpll pzanrexpponyy < C D 1eBalk)l,
keZ3,
k0
1/2
k
HUB?n Ca(uBBHL2 (T2 x[0,00)¢ <C\/€V Z |CB 2 :k‘|||k3| >
kez3,
kp#0
HUB,37 CaCuB,3|’L2 (T2x[0,00)¢) <C Z ’k‘ ‘CBh )’
keZ3,
Ky 0

and
HUSth(t), ZaZUStat(t)HLQ(’]I‘QX[O,QD < C(Vt)1/4 Z ‘éB(t7O,k3)’7
kseZ*

ustat(t), 20,uat(t) HLOO(']I‘2 0.0 <C Z lés(t,0,ks3)|.
kseZ*

The proof of the above Lemma is left to the reader.

2.4 Estimates on the boundary layer terms

This section is devoted to the proof of Proposition .

Proof of Proposition [J. We focus on the horizontal component of u%; the vertical one is treated
with similar arguments. Recall that ugﬂ , 1s given by (B.6); in order to simplify the notation, we

denote by ¢ the horizontal boundary condition cr, and we set ct=c+ich.

16



First, we write

> 1 2 :
ug“h("Ta ‘,(,W) = \/V—gﬁ Z/O — exp <_% — 65) Ci(',’T -8, -,w)eﬂs ds
+

’ VA

Jir Z/ 7 eXp (—C—Z - 55) (ci - ci) (7 — 5, -, w)er™ ds.
T

The second term can easily be evaluated thanks to Lemma [p.J in the Appendix

L exp —C—Q —0s (cjE - ci) (7 — 5, w)et™ ds
0 s 4s o

L ([0,T]|x Ex[0,00)+,H?(T2))

IN

© 1 2
|le = callzoe (j0.17% Ex[0,00) -, H5(T2)) v (-% - 58> ds (2.16)

g||c — Ca |L°°([O,T]xEx[O,oo)T,HS(’]I‘Q))-

IN

As for the first term, recalling the definition of ¢,, we have

1 2 )
= exXp (—— - 55) (T — 5, w)eT ds (2.17)

2 .
/ / e~ exp <_i_s _ 53> o) Ay - w) M=) Fis g\ g, (2.18)

We first evaluate

00 2
iex (_C_> o~ (FHOED)s g
0o Vs

We split the integral into two parts, one going from s = 0 to s = 1, and the other from s = 1
to s = co. It is obvious that for all { > 0,6 > 0, A € R,

1 2 1 2
1 exp C —(6+i(A£1))s ds| < / L exp _C_ ds < l (219)
0 Vs 4s 2

\/_
Integrating by parts the second integral, we obtain
1 Y\ —(srion)s
— - d
1 Vs P < 45) ‘ ’

1 2
s+ P <_Z

20+iAED)) i $3 | 2 s | |

We are now ready to derive the L*° estimate; the function

.%'2 z

x— (11— E)Q_T

is bounded on R. Hence, gathering (R.19) and (R.20), we deduce that there exists a constant C
such that for all { > 0,0 > 0, A € R,

1 CQ —(6+i(A£1)) 1
_ > ? S <
/0 \/g exXp < 43> e ds

[V

1 -
—C['*w+uAiny

17



Inserting this inequality in (R.1§), we obtain

© 1 2 )
exp (_C_ — 53) ci( —s,,w)e” P ds

e
< C/eap‘ 1+; ‘c}a(- A, w)‘ dA
- R |0 +i(A£ 1) Y
1
< C 5 all o +/ T 1 /v 1 v AO( '7)‘7'7 dA
> |:SlolszO’+7 HL (Q,L1(R) Ve |6—|—’L()\:|:1)| ‘C ( w)’ :|
+C |Ca (s A, w)| dA
< C

sup |[Cal| o (5,01 ®) + sup [éa(N)|In(d)
« )\EV:F

Above, we have used the following facts: there exists a constant ¢; > 0 such that
0+iAED)[>[AEL1 > YVAeR\ Vg,

and there exists another constant cs > 0 such that
Fl4co

/ !5+2(Ai1\‘ Floes /02 + (1+A)2
We deduce that for all o > 0, for all § > 0,

d\ < Cln(5).

1
LHlle=calloog + | sup |éa(A)]In(9)
+ —

HuéT,hHOO < Cyevp

Taking the infimum with respect to « of the right-hand side, with § > 0 fixed, we deduce that

< Cy/evp.

s
6>0

We now turn to the derivation of the L? estimate, which is similar to the above computations.
The main difference lies in the fact that we need to integrate by parts (2.20) yet another time,

which yields

* 1 C2> —(5iOED))s

exp -— e ds
e (

= m eXP <_C22> - 2(6 —1—1'(1)\ +1))? [1 - %2] o <_%2>

1 1 C\ —(5+irtl))s
- — (= d
seroEr ), 10 (f) ‘ >

where

Consequently, remembering (R.19), we have

1 C2> —(§+i(A£1))s
— exp ds
/o Vs <

1
s rioEnE| 2|7

1 o 1 ¢
+2\5+i()\i1)]2/1 o ¢<$> ds

18



Plugging this estimate into (R.1§) and using (H1)-(H2), we infer that for all { > 0, for all
s> 0,

<1 CQ 5 + +is
XD | — - =08 o (T — 5, w)e" ds

< o[ (- f) ‘|

¢? ,
+C' exp <_Z> <1 + sup ||Coz(>\)HLoo([O,T]xE,HS(T?))) ln(5)>
eV

¢? . 1
exp <_Z I+ SU‘P Hca()‘)||L°°([0,T]><E,HS(T2))) s

>\€q:

¢ ; -
¢ ( - >' ds} <1 + sup [[€a (M)l oo (jo,17x £, 12(T2))) 5) :

AeVE

Hs(T2)

2
+C'1——

e}
1 s2

Here, we have used the inequality

/ d\ </¢1+02 d\ - C
Ve [0+iAED2 7 Jrie, 2+ AED2 T 5

There only remains to prove that each term of the right-hand side has a finite L? norm. First,
thanks to Jensen’s inequality, we have

[ ([ Em(S) e s [ Zem(-5)
/ dS/ e da < oo,

¢ 2 2
()= e gl (Gl e
o([7) ([ oo )<
We also have to evaluate the L? norm of the integral in (R.16); we have

([ el o]
/0 [ ; \/_e p( ds ) ds| dC

2
: /OO [/OO 1 ( e > ]
< — —exp|———u| du| dx
=8¢, (5% 0 0 \/a du

u=4s

IN

Similarly,

LU

IN

1 [ee) 0 1 2
< —3/ / —exp <—x——u> du dx
62 Jo Jo wu 2u
1 0 o 1 1.2
< — —exp|———u| dudzx
- 53/0 /o Vu p( 2 )
< <
— 5%’
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Gathering all the terms, we obtain, for all «,d > 0,

o 2
|
u
/0 H T Loo (10,71 [0,00) 7% B, L2([0,00) ¢, S (T2))

— Valloo N 1
< CByev <M + 1+ sup |64.q(N)] <— + ln(5)>> .
52 AEV_ 4

Taking the infimum of the above inequality with respect to «, we infer the L? estimate on u% h-

The estimates on ui}g and Cﬁcui} are derived in a similar fashion.

O

3 The interior operator

This section is devoted to the construction of an approximate solution u™ to the evolution
equation ([[.1) supplemented with the initial condition

int
Uy =uo €H

and with boundary conditions of the type

. t
ug‘lgzo(t,xh) = \/eveps <t, —,xh> ,

e

; (3.1)
ug‘lgza(t,xh) = evers (t, g,xh>
where cp and cp are periodic with respect to the horizontal variable xj, and either almost
periodic or random and stationary with respect to the fast time variable.
We decompose u'™ into three terms

. : t . t . t
u™(t) o= u™ <t, —> + o™ <t, —) + u™™ <t, —) ,
3 3 3

where @™ is the preponderant term, and v™, éu™ are corrector terms, the roles of which
are respectively to ensure that the boundary conditions (B.1]) are satisfied, and that u™™ is an
approximate solution of ([L.1]).

We have already seen in paragraph [[1] that it is natural to seek @™ as
at(t,7) = L(T)w(t),
where £(7) = exp(—7L) is the Coriolis semi-group, and

w(t) = > b(t, k)N € H. (3.2)
kez3

The construction of w, v'™™ and du'™ is as follows: first, we define a corrector v'™ which satisfies

the boundary conditions (B.1]), but not equation ([L.1]). Then, we derive an equation on @™ 4

du™; filtering the oscillating terms in v™ yields the equation on w. Then, the term du'™ is

defined so as to take into account the oscillating terms in the equation on @™ + dui™.

e Definition of vi™t,
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We look for a divergence-free function v'™ satisfying (B-1]). Of course, conditions (B.1]) do
not determine v unequivocally. A possible choice is

NG,

v (t, T ) = - lers (t,m,2n) 2+ cp3 (t, T, 2p) (@ — 2)] (3.3)
mt(t T, 1‘) = @\/E—Vthhl [0373 (t, T, .%'h) —Cr,3 (t, T, .%'h)] . (3.4)

In fact, if cg and cr are both almost periodic functions of the form (R.1]), then a more
convenient choice can be made, which is the so-called “non-resonant” choice in [14]. In this case,
the equation on du'™
chosen here not to distinguish between stationary and almost periodic boundary conditions, and
thus to work with the expressions (B.3)), (B.4).

We give here the statement and proof of a Lemma which will be useful in the construction
of Ju'™ and w.

is more simple, since there is no source term due to v'**. However, we have

Lemma 3.1. Assume that the functions cp 3, cr 3 are random stationary, and that O-cp3,0-cB3
belong to L?(T?, L°°([0,00)? x E)).

Let v € ([0,00); x [0,00),, L*(T? x E)) such that d;v € L52,([0,00); % [0,00),, L*(T? x E))
and

dive = 0, (3.5)
v3(t, 7, xp, 2 = 0) = Veveps(t, T, xp),
v3(t, T, xp, 2 = 1) = evers(t, 7, zp), . (3.7)
Then as 0 — oo, the family
/ L(—7)P[0-v+e3 Av] dT

converges almost everywhere and in L>([0,00), L>(T? x [0,a] x E)), and its limit does not
depend on the function v. Precisely,

’kh‘ ~ ks ~
lim Sy = E_x, |eBs(kn) — (—1)™¢érg(kn)| Nk, (3.8)
000 Vaaiaz kZZ?) |2~ { ]

where ¢(kp) = \/al—a Jp2 c(zp)e e~k o,

Remark 3.1. The same result can easily be proved when the functions v, cg, cr are assumed
to be almost periodic of the form (R1). (In fact, we recall that the almost periodic case can be
embedded in the random stationary one). When (R.)) holds, the limit of Sy as @ — oo takes the
form

[ i
1)% t,k)N
W%w[ 3= (=D)erg| (k)N
Proof. Let v',v? be two solutions of (B.H)-(B.79), and let V = v' — 2. Notice that V €
L>(]0,00)¢ x [0,00),; L2(E,H)), and 0,V € L*>([[0,00); x [0,00),; L?(E x T? x [0,a])). We
write 9

- [L(=n)V(7)].

L(—T)P[0;V +e3AV]=L(—7)[0;V +LV]= 5

21



Consequently,

L(—0)V(r=8) - V(r=0)

/c V[0,V + P (e5 A V)] dr = .

The right-hand side of the above equality vanishes in L°°([0, c0), L?) as # — oo. Hence the limit
is independent of the choice of v.

In order to complete the proof of the lemma, it is thus sufficient to show that the limit exists
for the choice (B.d)-(B4), and to compute the limit in this case. For all k = (kj, k3) € Z3, we
have

. Jev ¢ _— i/{?/ R
(Ny,, ,01) = = cos(ksz)np (k) - i ‘2 (OrCrs(t, T, kn;w) — 0rép3(t, 7, kpiw)) dz
0

b YR siny2) (02t ks)(a — ) + Oréralt. T Raiw)?) de

a Jo
_1 R
= \/E—yng(/{?) k:/ |:3 CB 3(t T, kh, ) ( 1)k38TCT73(t,T, kh;w)
Vev — ik, )
+ legzo nh(k) ‘/{3/ ’2 (8 CTg(t T, kh, ) 8TCB7g(t,T, k:h;w)) .
Notice that if k3 = 0, then
np(k) - kj, = 0;

consequently, we have

(Nj,, 00y = —i, |-~ Lig 0k [aTeBg(t,T ks w) — (—1)R30, 0 5(t, T k:h;w)] .
aaras |K'|K} ' ’ ' ’

In a similar way,

: i(k
(Ng,e3 Ao™) = \/_/ cos(kyz)np (k) - Tkhl)Q (ers(t, 7, kp;w) — éps(t, T, kp;w)) dz

— i(k . .
— V- S eratom i) = ema(tr i)

eV 1
= —1 t.7. kn; —C t.7. kn; .
P 0]k ‘(03,3( Ty kpyw) — érg(t, 7, kp;w))

Notice that if I € Z3 is such that I;, # kj,, then
<Nl, aTvi“t> =0, <Nl, ez N\ vint> =0.
We deduce from the above calculations that

Tvmt + e3 A oY) (3.9)

1 k
Z ks#O’ A AT [(9 CB3 — (—1)k36T5T3] (t, 7, kp;w)Ng
aalas | K| \
t, T,k era(t. T kn N,..
\/E,;Z: o= 0|z<:| (€B,3(t, 7 kn; w) = Er3(t, 7, kn; w)) Ny
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We decompose the sum in the right-hand side into two sums, one bearing on kj such that
|kn| > A, denoted by Si 4, and the other on |ky,| < A, denoted by S5 4, for some A > 0 arbitrary.
We have

1p520|k R R
ISatnlE < Cov|| 355 HeElen o6, - (<100 era] (i) Ny
k| >A ksE€Z 1o

1 A
+ Cev Z | (ers(t, T, kn;w) — épa(t, T, kp;w)) Ni, o

|kh|>A h| L2

Cev Z (‘3TéB7g(t,T, kh;w)]2+ ’876T73(t,7', kh;w)‘z)
|kn|>A

+ Z (|éB,3(taT, khaw)|2 + |6T,3(t57—, ]Ch,(d)|2) .
|k‘h|>A

IN

Since ¢g, e, Oy cp, Orcr belong to L?(T?, L>=([0, 00)% x E)), we deduce that the sum S1,4 vanishes
in L>°([0,00) x [0,00), L*(T? x [0,a] x E)) as A — oo. Thus we work with A sufficiently large,
but fixed, so that Sj 4 is arbitrarily small in L? norm, and we focus on So 4.

For k € Z3 fixed, we have, according to Proposition [l

1[0
5/ T {876373 — (—1)k3676T,3} (t, T, kp;w) dr
0

1 [
= —i)\k—/ M7 {633 - (—1)k3@T3] (t, 7, kpyw) dr
0 s ’ 7
1 ) N R . N
+ 3 {eM’ce [03,3 — (—1)kBCT,3] (t,0,kp;w) — [CB,{& — (_1)k30T,3] (t707kh§w)}

— —iMEox, [ealt ) — (< 1séna(t b)) (@)

6—o00

in L>([0,00)¢, LY(E)). Using Lebesgue’s Theorem, we deduce that as 6§ — oo

k
/ Soalt,)dr —ev > N ’| ,’Tls A [éB,g(t,kh) — (=D)kséqs(t kp)| Ny (3.10)

kn| <A k3€Z

and the convergence holds in L{® ([0,00), L?(T? x [0, a] x E)). Moreover, for ¢ = cr3 or cp 3, we
have

IN

k|2 .
v ’:,’4 € [t k)] 2

1 2
¢ Z 1+ |ks ‘2 HE—)\k[ c(t )]||L2(11‘2)
k€Z3

k3€Z*

IN

CllelZo0 10,00 0.00)  2.L2(V3)-

Thus the right-hand side of (B-I() converges in L?(T? x [0,a] x E) as A — oco. Eventually,
we infer (B.§). O

e Definition of w.
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Remember that u™ should be an approximate solution of equation (1), and that §ui™t, vt
are strongly oscillating corrector terms. Consequently, since @™ (¢, 7) = L(7)w(t), we have
. . . 1 .
atulnt + ulnt X Vulnt + —eg A 1nt Ahu Vagumt
€
t . . . 1 . . 1 . .
~ [ (_) 8tw(t) —l—ﬂmt . alnt o Ahﬂlnt 4= [aT(Sulnt + Léumt] 4+ = [aTUmt + es /\vlnt] ,
€ € €
t t int t
= L . [Orw + Q(T,w,w) — Ay yw] + L . Or (E(—T) ou (t,T))‘TZL + 3 t,g ,
where
Q(r,w,w) = L(=7)P[V(L(T)w @ L(T)w)].
and X is defined by
1[0
X(t, 7)== [(9 v (8, 7) + ez A vmi(t, 7)} . (3.11)
T
Thus it is natural to choose w and du™ such that
1 .
dw + Q(1,w,w) — Agyw + L (—7)PE (t,7) + =0; [L(—T7) du™] = 0. (3.12)
€

The quantity £(—7)PX(t, 7) has already been computed in Lemma B.1 (see (B.9)). Since w does
not depend on 7, the first idea is to average the above equation on a time interval [0, ], and to
pass to the limit as § — oo in order to derive an equation for w. We have already proved in
Lemma B.1] that if ¢B,3, cr,3 are sufficiently smooth, then

elggoa/ L(—1)PX(t,T) dr = \/7 T

in L°°([0, 00)s, L2(T? x [0,a) x E)). Moreover, with the notation (B.2),

k ~ ~
Z |’ /]TLE—M [03,3(75, kn) — (_1)RSCT,3(takh)} N,
kezs

Q(1,w,w) = Z AT ARFAIT (¢ 12 w)b(t, m;w) <(Nl : V) N™, Nk> N*,
k,lmeZ3

and it is proved in [§] that if w is sufficiently smooth,

[%
5 | atrww) o)

in the distributional sense, where Q is defined by ([L.§). Hence, we define w as the unique
solution in L*>(E,C([0,00), H N H*')) N L>(E, L2 ([0,00), H*!)) of the equation

Ow + Q(w,w) — Apw + \/?S[CB,g,CT,g] =0,

Wjt=0 = Up € HN Ho’l,

(3.13)

where

K R .
Sles.s,cr3] Z il E_x, {03,3(& kn) — (1) érs(t, kh)} Ny.

~ Jaaiaz ot |k'|?

We refer to Proposition 6.5 p. 145 in [ff] and to the comments following Proposition f] in the
Introduction of this paper for existence and uniqueness results about equation (B.1J). Notice
that if cp 3, cr3 € L([0,T) x [0,00), x E, HY(T?)), then S[cp s, crs] € L®([0,T] x E, HL).
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e Definition of du'™t.

Once w is defined, there only remains to obtain an equation on du™. As stated before, fui™*
is chosen so that equality (B.13) holds for all 7 > 0. According to the above computations, this
amounts to taking du™ such that

a int _
(L) =

eQ(w,w) — eQ(r,w,w) + evS[cp 3, cr3) — eL(—T)PE(t, T),
L(—7)0u™ (1) = / Q(s,w,w)] ds

\/6_115 [cB,3,cr,3) — eL(—s)PE(t, s)] ds

su™(r) = / [Q(w,w) — Q(s,w,w)] ds (3.14)

0

+L(7) /OT [VevS(cps, crs] — eL(—s)PX(t, s)] ds.

Equivalently, du™ satifies the equation

D 6u™ + Lou™ = eL(1) [Q(w,w) — eQ(7,w,w)| + VevL(r)S[cps, cr3) — ePL(t, 7).

We now derive a bound on the coefficients of dul™*:

Lemma 3.2. Let T >0, N >0, and let w € C([0,T],H) such that
(N, w(t)) =0 Vk, k| > N, Vte[0,T].

Let cp3,cr3 € L°°([0,00) x [0,00) x E, L*>(T?)) be such that the assumptions of Lemma are
satisfied.

Let X be given by (B11), and su™ by BI4). Then for all k € Z3, for all n > 0, for all
T >0, there exists a constant Cy . such that for all >0, for all e,v > 0 such that v = O(e),

H<Nk,(5ulnt t ’7' HLOO(OT} LQ( (6+ \/_)( n,k +777—)

Remark 3.2. The above Lemma is stated with a function w having only a finite number of
Fourier modes, which is not the case for the solution of (B.13) in general. However, when
constructing the approzimate solution in paragraph [{.3, we will consider regularizations of the
solution w of the envelope equation ([.9), so that this issue is in fact unimportant.

Proof. We begin with the derivation of a bound for the term
| 10w w - s, w.w)] ds
0
= — Y Nk, Ni- VNR) bt m)b(t,1) ( / ei()"“_/\l_)"”)sds> Np.
0

k,l,m
N AmZ AL
Notice that the set (I,m) € Z3x Z?3 such that b(t,1)b(t,m) # 0 is finite, and included in By x By.
Moreover, if (I,m) € By x By and \; + A, # A, then there exists a constant ay > 0 such
that
|)\[ + )‘m - >\k| > QN k-

25



As a consequence, we have

1
< —
ON .k

)

HwH%OO((O,T)XTQ x[0,a]x E)*

(3 [ 1000 - Qs (0] as)

In a similar way, we now derive a bound on the second term in (B.I4). According to
Lemma B, we have, for all k € Z3,

N \ﬁ (Ne, Slems,ers))

T

as 7 — 00, in L*°([0,T], L*(E)). Let 7, > 0 such that

2 [ 1509 — (N [ Senaseral )

Now, for 7 < 7, %, we have

"<Nk’ /OT [\/gS[CB,g,CT,?,] — L(—s)PX(t, s)] d3>
<Nk, \/25[0373, CT73]>

Gathering all the estimates, we infer the inequality announced in Lemma B.2. .

<n forT >,
Le([0,T],L2(E))

Lo ([0,T],L%(E))

Tn,k
v /O 1Nk S, 80 e go77.2208) 95

IN

T,k

Le([0,T],L2(E
< Cr],k-

0

Definition 3. Let cg,cr € L*([0,00)%, L2(T?)) be almost-periodic or stationary functions, and
let ug € H®. We define the interior operator U by

Ulep, er,wol (t,7) = L(T)w(t) +v™(t, 1) + ou™(t, ),

where w is the unique solution in L35,([0,T%),V§) of B13) with initial data wy—g = wo, v is
given by (B.3)-B.4), and 6u'™ is given by (B.14).

4 Construction of an approximate solution

In this section, we explain how an approximate solution of (@) is constructed. To that end,
we use the boundary layer and interior operators defined in the previous sections. We first
explain how to choose the horizontal boundary conditions for the boundary layer term, together
with the vertical boundary condition for the interior term. We then derive an equation for the
principal term w, which we call the “envelope equation”. At last, we define some additionnal
corrector terms which will be needed in the convergence proof; the latter is postponed to the
next section.

4.1 Coupling of the boundary conditions

We set BL o 5
u’r = By (cBn) + Brery),

u™ =U(ug, cp 3, cr3)
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where the boundary conditions cg, cr are yet to be defined.
In order to match the boundary conditions (@), we must take uPY and u™ such that

(UEL + uii?t)|zzo = o(c),

0. (up® +uii) ., = olo),

(B + i), = ofv/2v0),

(us® +u")._, = o(Veve),
denoting by ¢ the order of magnitude of ¢r,cp, in a sense to be made clear later on.

We now examine each of the boundary conditions independently. Since £(7)w is the principal
term in u™, we will neglect the horizontal components of v and §u™ at z = 0 and z = a.

e Horizontal condition at z = 0. The Dirichlet boundary condition leads to

cpn(t, T opw) = — Z e TIMNT LT (¢ ko w) <n1(k)> . (4.1)

kez3 na(k)
Thus cp j, is almost periodic in the fast time variable 7, and we take
+1.
up(t o, Gw) = Y 3 eMhme e ( i “ZL) (4.2)
IR ’ S - LW .
kez3, HE
k570

where wz‘[ is defined by

L (k) ina(k)
wi (tw) = —5b(t, ki) (ni(k) + mi("’)

and
. 1
uS(t x) = <—> o (tw eFie | £i 4.3
() =0 () Dttt | £ (43)
where .
+
at(thw)=F Z b(t,0, ks;w).
\/aa1a9 ks €Z",
sgn(ks)==+1

e Vertical condition al z = 0. Since w € H, we have wz.—g = 0. Thus we take cp 3 such

that
o ~1/2
CB3 = _UB,3\C:0(5V) /
. +
ikl - wE o,
cp3(t, T,xpw) = — Z E —h &k T k otk Th g =iAeT
kez3, * "k
kp£0

Hence cp 3 is also almost periodic in the fast time variable 7.
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int

e Horizontal condition at z = a. Since azuh‘zza

= 0, we merely take
CT7h(t’Ta CEh;W) = U(t?Ta CEh;W). (44)

Hence cr, is random and stationary in the fast time variable, and thus yields a boundary
layer term equal to

ug",h(ta T) xha C’ C(J)

_ Bvve Z/OO L exp (—i—i - 58) (0 2ot )(t, 7 — s,ap,w)e™ ds (4.5)

and

u5T73(t, T, T,Ww)

- \V/Zﬁ Z /°° © (%) [divyo Firotpo] (t, 7 — s, 25 w)e—és:tisds. (4.6)
T i 0

o Vertical condition at z = a. The calculation is similar to that at z = 0. We infer

cr3 = —UT,3\C:0(5V)_1/2
o
cra(t, Ty apw) = BVQMSZ/ [divy,o T irotyo] (&, 7 — s,z om)e %Fds. (4.7)
— Jo

The relations ([.1), ([£4) allow us to write cp in terms of the solution w of the envelope
equation (B.1J). Conversely, equation (B.13) depends on cp 3, and thus on the coefficients b(t, k)
of w. In other words, there is a coupling between the boundary condition at the bottom for
uBl, and the equation satisfied by w. Since w is the only non-vanishing term in L? norm, we
choose (as is usually done in the rotating fluids literature) to write an explicit equation for w,

and to express P in terms of w.

4.2 The envelope equation

The goal of this paragraph is to compute the term S[cp 3, cr 3] occurring in equation (B.13)
when cp3,crg are given by (f4) and ([L]) respectively. Since cp 3 is almost periodic, easy
calculations lead to

A ik} - wi
Ennlemalthn) = g0 ) T
+ k

1 1+, 1&£4
—1 b(t, k;w) |k E —_— .
2\ /a1a2a kn#00(L, ks w)| k| i TF A, 2

There remains to compute the coefficients £_, (¢r,3(t,kp)); since the boundary condition
cr,3 depends on the small parameter ¢, the corresponding Ekman pumping term will depend on
§ as well. However, thanks Proposition [, the non-resonance hypotheses (H1)-(H2) allow us
to pass to the limit in the coefficients £_), (ér3(t, ky)) as § vanishes, and thus to derive a limit
equation for the function w.
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e First, by definition of &, we have, for all k;, € Z2, for all A € R,

Ex [éT,g(t, kh)] (w) _ \/6_VB ZG_)OO ; / / — s, kp; w)efzgsfi)n—iis ds dr

1 ) )
= \/aﬁ ZG_)OO/ <§ /0 (t,T, kn; G,Sw)eﬂ” dT) e 95H g,

& (k) = ikj, - 6(kn) F ki, - (6:(kn))*.

Thanks to the Lebesgue’s dominated convergence Theorem and Proposition [l, we infer, for all
6 >0,

where

Exlera(t,kn)] (W) = @Z /0 Te (675 (8, kn)] (0_sw)e % ds
+

_ \/82_’/6 Z/OO 5)\ [&i(t, kh)] (w)e—és:tis+i)\s ds
1+ J0

- 326 [% k)] (w)m.

Assume that o € L ([0,00)¢, L®([0,00), x E, H'(T?)). We then know (see Proposition 6.5
p. 145 in [{]) that for all § > 0, for all ug € H N H%!, there exists a unique solution w’ €
LOO(E,C([O, oo),H NH"Y) N L®(E, L2 _(]0,00), H?)) of the equation

loc

o’ + Q(u’, w’) + \/gSB(w‘;) + 1853 (0) =0

(4.8)
wd (t = 0) = w;
the operators Sp and S% are defined by
Sp(u) = Z (Nk, u) AgNp,
keZ3 4 9)
S0 Z Z D)Fs [k En, [67F (Kn)] 4
2\/aa1a2 ot K2 —0+i(=X\g £ 1)
where P \
1+
— h k
Ay = 2 > +14).

2v/2a;asalk’ V1F N

Notice R(Ay) > 0; hence the Ekman pumping due to the Dirichlet condition at z = 0 induces
a damping term in the envelope equation.

e The idea is then to pass to the limit in S.(c) as § — 0 when o satisfies (H1)-(H2), using
(L.g). Let us admit for the time being that

In >0, YA€ [-1—n,—1+7{ L —n1+7], &xlo)=0. (4.10)

Property ([.10) entails that the second sum in the right-hand side of ([..9) bears only on the
triplets (k1, k2, k3) such that
Ao =1 Zn, Ak +1] =,
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which entails

|ks| < C(n)lknl.

Consequently, since o € L>([0,00)% x E, H'(T?)), we deduce that S3(c) converges as § — 0 in
L>(]0,00) x E; L*(T? x [0,a))) towards

1 (—1)ks
St(o) N s k;, ‘%’ (

k0

Akl — z‘(k;;L)i> &y, [6:(kn)] N*. (4.11)

We deduce that for all Ty > 0, the source term S%[o] remains bounded in L((0,Tp) x
E,H%) as § — 0; thus w® is bounded, uniformly in 6, in L°°(E,C([0,Tp], H N H%')) N
L>(E, L*([0, Ty, H%?)). Moreover, let w be the unique solution in L*(E,C([0,00), HNH*!))N
L>(E, L% ([0, 00), H0)) of

Ow + Q(w,w) — Apw + \/gSB(w) +vpBSr(o) =0, (4.12)

W|t:0 = Uup.

A standard energy estimate leads to the following error bound, for all T' > 0,

[w — ws]| oo (0,17x £,22) + |V a(w — ws)|| Lo (5,22 (j0,71xT2x[0,4]))
§
< Crvp||Srlo] = StlolllLe=(E,r2(0,11xT2x[0,a]))- (4-13)
Thus, when constructing the approximate solution in the next paragraph, we will use the
function w®, but we will keep in mind that w® converges towards w as § vanishes.

e Let us now turn to the proof of property ({.10) (which is the same as ([.§)). We choose
1o > 0 such that
[1—mno,—1+m] C V., [1—mno,1+mno CV;.

For A € R arbitrary, and for 6 > 0, we have

1

0 ) 1
‘—/ U(T,w)e_“\T dr
6 Jo

0 .
= '— / (0 — 0o + 00)(T,w)e 7 dr
0 Jo

< o = aallre(0,0)x0)

0
A /Re—ozu—l—z;rr—z)\ra_a(lu) d,u dr

llo = callLee((0,0)x0)

e € -1
/Re RS Ga(p) dp

R
0

IN

+

IN

llo — aallLee((0,0)x0)

+< sup |5a(u)|> IVl + Vo))

pneV_uUVy
ei(u—A)G -1

N / T
R\(V_UV4) i(u—A)0

Let us now evaluate the last integral when A is close to +1, say for instance

6a(p)] dpdr.

Mo
A—1] < =.
A-1<
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Then if p € R\ (V2 UV,), we have | — 1| > 1o, and thus
Mo
— > —.
R

In particular,
eln=20 _ 1 2 C
< < —.
i(p=2)0 | = [p—=A0 0

Hence, for all § > 0, for A such that |\ + 1] < 7y/2, the following inequality holds for all o > 0:

‘ 1 /0 — AT
— [ o(r,w)e dr
0 0

< o = aallree(0,0)x0) + 7

+ sup |G ()] (V3] +[V-]).
peV_uUVy
In the above inequality, we first take 6 large enough, so that the left-hand side is close to (),
and C'/60 is small. Then we let « go to zero, with 6 fixed; we deduce that

5(-A) =0 VA such that d(), £1) < %

4.3 The approximate solution

The approximate solution is obtained as the sum of some interior terms and some boundary layer
terms; although we have to construct several correctors in order to obtain a good approximation
of the function u”, we emphasize that all terms vanish in L? norm, except the solution w® of
the approximated envelope equation ([L.§). In this paragraph, we build the correctors step by
step, using the general constructions of the previous sections. At each step, we will give some
bounds on the corresponding term.

e First step. The interior term at the main order.

We have seen that the interior term is given as the solution of some envelope equation, and
that when all parameters ¢, v, 3,6 vanish, the envelope equation becomes () However, we
are not able to construct the boundary layer terms at the top for 6 = 0, and thus we must keep
an approximated solution of the envelope equation, namely w®. Moreover, when constructing
the corrector terms uBY, du™, v we will need some high regularity estimates in space and time
on w’, which are in general not available for w® or w. Thus we introduce a regularization of w?
with respect to the time variable, and we truncate the large frequencies in w’. Let x € D(R),

with
x(t) =0 Vte[0,00), x(t)=0 Vte (—oo,—1],
x(t) >0 VteR, /le.
R
For n € N*, set x,, := n~'x(-/n), and define, for n, N > 0,

w,‘iN = Py [w‘s *4 Xn] = (IP’Nw‘;) *t Xns

where Py stands for the projection onto the vector space generated by N for |k| < N. The
convolution in time is well-defined thanks to the assumptions on the support of x. We have
clearly

N igg\lw Wy, N Lo ((0,11x 2,22) = 0,

. 5.6 _
nJl\lrrEoo 2218 |w® —wh nll oo (2,22 (0,17, E51.0)) = 0.
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We recall that @ is bilinear continuous from
LOO([O,T],HOJ) X LQ([O,T],HLO) into LQ([O,TLH_LO)_

(see Proposition 6.6 in [f] for a proof of this non trivial fact). Precisely, for a,b € H' N'H, it
can be proved, using the methods of [, that there exists a constant C' > 0 such that

= 1/2 1/2 1/2 1/2
1Q(a,0) |10 < Cllalla lallkeolIBIIEE 10l 12 (4.14)
+C||sal| 2 [b] 511117 + Cl9sbl g2 [lall 12 all 2o

It is easily deduced from the above inequality that w,‘i  1s an approximate solution of (B.13),

with an error term 7° » which vanishes in L2([0,7], H 1) as n, N — co. Indeed, we have
B = Q) — Bx O, w®) x xn + vEPNSHo — 0% Xl
= Q@) yywld v) = QBN Pyu®) « xa| + [QBNw’ Pyu®) — Qe w)| 5 xn
+ [(IP’ —Pn)Qw®, w?)| % xn + vBPNSH[o — 0 % xn)-

The convergence towards zero of the last three terms follows from the continuity of Q in H
and the regularity of ¢. We thus focus on the first one, which we write

n(t), UJ& N (1) = QPNw’ , Pyw’) * xy,

Q(w),
— / Qwd) n (), Pyw® (u))Xn (t — u) du — /R Q(Pyw’ (u), Paw’ (w))xn(t — u) du

= [ Q) = Pau () B @)t — ) du
and thus, using inequality ([E14) together with the L>°([0, 7], H%!') bound on w?®, we infer
Qw0 wh v ) = Qb )+ xa®)]|

< C’/]R w%N(t) — Pyw’ (u) Zio Pyw’ (u) leo Xn(t —u) du
+ C’/]R wa’N(t) — Pyuw’ (u) o Pyw® (u) o Xn(t —u) du
+ 0 [ fubwo -yt [Bxet @], xalt - w) o

Eventually, we get

| @ttt wnv ) = Q) 30y vy € s - 04 P

)

+ C sup Hw‘S—Thw‘SH

|h|<i Le=([0,T],H"!)

where Tpw : (t,x2) — w(t+h,x). The right-hand side of the above inequality vanishes as n — oo,
uniformly in 4.

Hence we work with wfl n instead of w from now on; for all k, s > 0, there exists a constant
Cr,n(k,s) such that 7

Hafwg,NHka([O,T},HS) < Cpn(k,s).
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In the sequel, we denote by C,, y all constants depending on n and N (and possibly T), but not
on 4.

e Second step. The boundary layer terms at the first order.
The boundary condition cp, is given by ([.1]), where b(t,k) is replaced by bsz(t’ k) :=

<Nk,wfl’N(t)>. Thus the boundary layer term at the bottom, up, is defined by formula ([.9),

and the stationary corrector u**** by ([3). Similarly, the boundary layer term at the bottom,
ur, is given by formulas ([.5)-([.6]). According to paragraph P.4 and to the previous step, the
boundary layer term

t z t a—z
uPH(t, mp, 2) 1= up (t, =2 Ths ﬁ) +ur <75, = Ths ﬁ) + u*?(t, z)

satisfies the following estimates

HUBLa ZazuBLa (Z - a)azuBLHLOO([QT}X’IF?X[O,Q}XE) < C"vN + C@ﬁ, (4'15)
HUBLHLoo([o,T}xE,HLO) <Cpn |:(€y)1/4 4 y1/4} + C(ay)3/4ﬁ’

HZaZ’LLBL, (Z — CL)@ZU )) S Cn,N |:(6V)1/4 + V1/4:| + C(gy)3/4ﬁ‘

BL
HLoo([o,T] x B,L2(T2 x[0,a]

Moreover, 4B is an approximate solution of the linear part of equation ([[.1]) (we will treat

the quadratic term at the very end, when the whole approximate solution has been constructed),
with an error term equal to

(D, — Ap)us] <t, é,xh, \%)

0 Loy 02 . £ (1)etit
+|:<at_Ah+6)uT:| <t’6a$h’ \/E—V>+gp<\/y—t>;ata (t)e )

where 0; is the derivation operator with respect to the macroscopic time variable. Thanks to
the first step, we have

I

(idem with ur) whereas the terms Apup, Ajur are bounded in L (E, L2([0,T], H~19)) by

2

t
atuB (t, s Th,
g

1/2
%) dmg(w) dz dxp dt]

< Cp N [(EV)W‘ + ul/ﬂ + C(ev)?/8,

Cov | (e0)4 +014] 4 C(ev)i8.

Moreover,
0 . 1) 0
° - < C=(ev)¥p < C—.
€ HuT ( ’ a)”Loo([o,T]xE,L2) - 5(67/) ps NG
At last, the error term due to us**" satisfies
Z gy Fit 1/4
® <—> Z@toz (t)e™'= < Cpnv /.
\/V_t + L2
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o Third step. The interior corrector terms v"™ and du"™.

We now define the correctors ™ and du™ as in (B.3)-(B.4) and (B.14) respectively, where
the boundary conditions cp 3 and cr 3 are given by (f4), (£7), and w = w®  in (B.14). Recall
that we have assumed v = O(e) and /reff = O(1), so that the boundary conditions cp,3 and
cr3 are of order one in L°°. More precisely, using the fact that wfl N has a finite number of

Fourier modes on the one hand, and (H1)-(H2) on the other, we deduce that

0™ || oo (0,77 x [0,00)x T2 x [0,0]) < C <\/5_V‘|wg,NHLO°([O,T,VO3) + Vﬁﬁ) < CpnVe;

moreover, the boundary conditions cp 3, cr 3 satisfy the assumptions of Lemma B.] thanks to
the hypotheses on ¢. Thus, according to Lemma B.3,

<n+ Cn,ka

. t
vn >0, Vk € Z*, 3C, ) > 0, H<Nk,6umt (t, —>>
€ Le([0,T],L%(E))

Thus we set, for K > 0 arbitrary,

5umt = Prdu™ = Z <Nk,6uint> Ng.
|k|<K

According to the above convergence result, for all K € N, we have

int E
e (1)

Moreover, there exists a constant C,, x such that

; t
5u1nt t,—
e ()

By replacing éu™ by 5ui;(1t, we have introduced an error term in (B.13) which is bounded in
L>=([0,00) x E,L2([0,T] x T? x [0,a]) by

—0 ase,v—0.
Lo ([0,T],L2(E,W1.(T2x[0,a])))

< Cn7N
Lo ([0, T x E,W1:°° (T2 x[0,a]))

| = Pr) [Q(wf, v

+ || —Px) [Q(s. w:iN,

} HLOO E,L2([0,T]xT2x[0,a]))

] HLOO( [0,00)x E,L2([0,T]xT2x[0,a]))

\/7HIP’ Px) [S[eBs, cr,3] HLoo E,L2([0,T]xT2x[0,a]))

+ (P = Pr)Z foo ((0,00) x 2, £2([0,7]x T2 ¢ [0,a])) -

If v = O(e), and /ref = O(1), all terms vanish as K — oo uniformly in &,v,0. Thus, we
choose K > 0 sufficiently large (but fixed) so that the error term in the equation is o(1), and
we work with 5ui}§t from now on. Notice that K depends on n and N in general.

Let
u™(t) = L <£> w) y(t) + o™ (t, é) + O (t, é) ; (4.16)

we have defined v'"® and §u'™ so that u!™ is an approximate solution of equation ([[.T]), with an

error term which we now evaluate in L?([0,T] x T? x [0,a] x E) + L?([0,T] x E, H~ ). Apart
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from the one mentioned above, which is due to the truncation of the large spatial frequencies
in du™, the error term is equal to

—Appmt <t, E) + 0y (6ulB® 4 ') (t, E) — Apout <t, E) — v Ut <t, E)
£ £ £ £
int int int t int int t t 1
+ [u -V] (duf +v™) t - ) + | (du + o™) t --V|L . wn,N(t).
The term —Apv™ (¢,t/¢) is bounded in L2([0,7] x E, H-%°) by

||CB,3HLOO([O,T]X[07oo)T><E,H1(11'2)) + HCT,BHLOO([O,T]X[O,oo)TxE,Hl(']I‘Q)) = o(1).

All the remaining error terms are bounded in L?([0,T] x T2 x [0,a] x E) := L?(Q) by
19:8UR | oo 0,790 x [0.2]. 22w xo.alyy T 1060 [l (0,00 22(@))
H5UIII§tHLoo([o T)ex[0,L] ,L2(E,H?))

1™ oo 2,z i) IOUR' + 0™ W 21 oo (0,77, [0, 7] xT2x[0.a])

= o(1).

Above, we have used the fact that w? N and whence v'™, 5u‘nt are smooth with respect to the
time variable ¢; thus the o(1) means that for all n, N, K, the hmlt of the above expression as ¢
vanishes is zero, uniformly in §.

+
I a8+ 0 o] ey
+

To sum things up, we have

)

atulnt + ulnt . vulnt o Ahulnt o Vagumt + vp — wrem + w;em

where w{™ = o(1) in L*([0,T] x E x T? x [0,a]) and w5™ = o(1) in L*([0,T] x E,H~17).
Moreover,
ulfto) = o +o(1) in L*(T* x [0,a]),

and there exists a constant (), xy such that
™| oo (0,71 x T2 x[0,0)x ) F [0 oo (0,77 x B, L (T2 x[0,0))) < C, V-

e Fourth step. The boundary layer term at the second order.

At this stage, we have proved that u™ (resp. uBL)
evolution equation ([[.1)) (resp. of its linear part); moreover, the boundary layer term u
the corrector v'™ have been built so that the boundary conditions are satisfied at the leading
order. Precisely, we have

is an approximate solution of the
BL and

ugﬁzo(t) +upt (1) = vpli_o(t,t/) + Sugy.—o(t, t/€) + ur hle=—2 (t,t/e),

. (Bl (1) + ulfo(0)) = Bor(t,t/2) + —=Bcuppic— o (1,1/2) + D 1),

Vev

= UT3)(=—2 _(t,t/e),

= UB3|(=— _(t, t/e).

BL i
usj;_o(t) + U%ngo(t

BL i
u3|z=a(t) + ugizza(t
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stat

o, are exponentially small, thus satisfy the assumptions

The terms uTK:\/tZ_V, uBK:\/Z—V and u
of Lemma [.4 in the Appendix; they will be taken care of at the very last step. But in general,
setting ¢cp p, := U}LITZ:O—FéuiII(lEh\z:O’ the quantity 6*163,;1 does not vanish. Thus, we define another
boundary layer term in order to restore the Dirichlet boundary condition at z = 0. We now
have to make precise which parts are almost periodic or random stationary in épp(t,7). We
have

v}ﬂtzzo =it = Vev VA Hers) — VErViA; Heps).

The first term in the right-hand side is clearly random and stationary, whereas the second one
is almost periodic. Concerning the term du%¥, the situation is not so clear. Using (B.14)), we

write . A
SRt (t,m) = Y e PHTSb(t, T) N,
|k|<K

where
obg(t,7) = 5<Nk,/ (Q(wiN,wa,N)—Q(s,wfl7N,w,‘i7N)> ds>
0
+ <Nka/ \/81/5'[0373,0@3]—5£(—s)]P’E(t,s)>.
0

According to Lemma B.3,

sup |[6bg <t, E> =o(1),
te[0,T] €/ l2(E)
and 5
sup || =70bg <t, E) =0(1).
tejo,7] || 0t €/ L= (m)

Thus we forget the fact that db; depends on the microscopic time variable 7, and we merely

treat 5ui;§t as an almost periodic function. Hence we use the construction in paragraph P.3, and

we set
ouPt = BYT (—oultty. o+ VEIVAA, (ens) )
+ BY (VerVinA, (ers)) -

As before, it is easily proved that JuPl is an approximate solution of the evolution equation
([L.Q), with an error term which is o(1) in L?([0,T], H~19).

e Fifth step. The “stopping” corrector.

Let us now examine the remaining boundary conditions.

> Horizontal component at z = 0: this term is the simplest of all. We have

S p(t) == (W (t) + up(t) + 5uEL(t))IC:\/% = ur =g (t,t/e),

and thus, using the same arguments as in Proposition [], we prove that there exists a
constant C' such that
a

168,10 s (r2) < Cexp <_\/E>

c a
1023, (D)l17+r2) < = exp <__€> _
Since e ¥ exp (—a/v/ev) = o(1) for all k € N*, &, satisfies the conditions of Lemma .4
in the Appendix.
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> Vertical component at z = 0: we compute
o,3(t) == (u*(t) +ub™(t) + 5u§L(t))‘Z:0 uT3|C_7(t t/e) +5u3‘z o(0).

It is easily proved that up g c—q/,/z vas(ts /) satisfies the hypotheses of Lemma p-4, provided

BL

o is sufficiently smooth. Concerning dus™, we have

(ve)3/?
ﬁ )

”at‘SO,h‘Su?]?\I;:o”LOO([O,T},B(E,HS(W))) = o(1).

HéuggzoHLOO([O,T},LQ(E,HS(TQ)) <o(Wev)+C

Thus dp 3 satisfies the conditions of Lemma [.4.

> Horizontal component at z = a:
1
orn(t) = 0. ( W) 4+ upt(t )+5UEL(t))|z:a - BU

\/— Oeup pic=—a (. /) + 0, URL , (£) + Oz8upl_, (1).

For all s > 0, we have

|

stat
aZuh|z:a

<Oy o’ (&)
n exp | ——— | = o(e),
Leqorixeasr2) — N T P\ 1w

< Coy— @\ _ )
Lo (0, T)x B, Ho(T2)) — "N 1372 FP\ Ty ) TS

(Remember that v = O(e).) Thus all terms of the right-hand side are exponentially small
as € vanishes, and satisfy the conditions of Lemma .4

> Vertical component at z = a:
Or,3(t) == (uf™(t) + ug™(t )+5U§L(t))|z o = UB3I(=—

Once again, dr3 is exponentially small in all H® norms, and thus matches the conditions
of Lemma p.4.

We thus define P given by Lemma f.4, so that

L (8,t/€) + ufE__y (1).

stop stop __
uh|z 0 5B,h’ 9; uh\z =a 5th

stop stop  _
u3|Z:0 = 53737 u3‘Z:a - 5T,37

and such that uS*P is an approximate solution of the linear part of equation ([L.1)), with an error
term which is o(1) in L2.

‘We now define

. t t t
uPPP(t,z) = u™ <t, —,:U> + B <t, —,:U> + duP <t, —,:U> + u**P(t, 1) (4.17)
€ € €
. ¢
= u™ (t, —,x) + U (L, x). (4.18)
€

By construction, the remainder u*™ is o(1) in L>([0,T], L?(E x T? x [0,a]) and u®PP satisfies
conditions ([[.7). The goal of the next section is to prove that u®P is an approximate solution
of ([L.1)), and to conclude that u®" — u*P vanishes thanks to an energy estimate.
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5 Energy estimates - proof of convergence

In the previous section, we have constructed a function u?PP, given by (), where v - given
by (B.16) - is an approximate solution of equation (1)), and uBY, suBl 45t°P | defined respectively
in the second, fourth and fifth step of paragraph [£.3, are approximate solutions of the linear

part of equation ([[1)) and are all o(1) in L2.

The organization of this section is as follows: first, we prove that u®PP is indeed an approx-
imate solution of ([[.1). Then we evaluate the difference between u* and u*P thanks to an

energy estimate. At last, we prove Theorem [I| by conveniently choosing the parameters n, N,

occurring in u?PP.

e Let us first prove that the function u®PP is an approximate solution of equation ([[.1]). The

core of the proof lies in the following Lemma:

Lemma 5.1 (Non linear estimate on the remainder term). For all n, N,

iupHumt Vurem+urem Vutnt+urem VuremHL2
>0

([0,T)xT2x[0,a]xE) 0 ase,v—0.

Proof. First, we have

| (ur™ - V) u 1™ | L2 j0 77 x T2 x [0,0] % B) HuintHLoo([o,T]xE,wLoo)

Oy (PPl 2 + 16uPH I + [[u™°P L) 1 -

The right-hand side vanishes thanks to the estimates of the previous section.
The other terms are slightly more complicated. We write

wlft . Y7qrem ot L e — g, @PP | Y7 rem

u?PP . S0P 4 2P . 7 (uBL + 5uBL) .

The first term in the right-hand side is bounded in L?([0,7] x E x T? x [0,a]) by

int
‘ ‘ L2([0,T]xT2x[0,a] X E)

IN

[wPP|| oc 4P || L2 (0,11 1,117 < Cn, e
We thus focus on the second term, which we further split into
upPP -V, (uPt 4 0uPh) + ufPPo, (uPt + ouPl).
We have

|upP®? - v, (uPF + 6uP) |2 o.11x ExT2x10.0)

IN

u Lo ([0,T]x ExT2 x[0,a]) | U u L2([0,T|x E,H1,0)
[P [uP + 5uP|
< Cyn <1/1/4 + (ey)3/4ﬂ> .

As for the other one, we have, for all t > 0,

1770 (0B + 607 fagrnsgo = [, / 320, (up -+ uPY) |
- . / U0, ur?
" // 2929, (g + 5u0)
+ // 2P0, |
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For z > a/2, t > 0, we have

10, (ug + 5uPL) (t)] < Cun [(gy)_l exp <—ﬁ> + 1 exp <—ﬁ>]

Vev vt Vot
and thus
T a app BL\ (2
L o (us + 0u)
0 T2 Ja/2
< CpnN |:(61/)_1 exp (—%) + exp <—%>:| .
Similarly,

T a/2 5
app
0 T2 Jo

< e (-2 < Ol e (-2 ).

We now evaluate the two remaining terms. The idea is the following: since uj
boundary, we have

PP yanishes at the

us™P(z) = Cz for z = o(1),
and us™(2) = C(z —a) for z —a = o(1),
and 20,up, (2 — a)d,ur are evaluated in ([L15). Moreover,
t ; t ; t
u?PP(t) = [ﬁ (—) wd N (t) 4 dult (t, —>} + [vmt <t, —> + uBL(t)} + [5uBL(t) + P (1)] .
€ ’ € €
By definition of v and u*°P, the vertical component of each of the three terms in brackets
vanishes at z = 0 and z = a; additionnally, the first term is bounded in L*°([0, T') x E, W) by

a constant C), n, while the (vertical components of the) second and third ones are respectively
of order

Con (\/_aw n (61/)3/4) and  Cpy(e0)%/* + o(e)
in L>=([0,T] x E, H%?). Once again, the term o(e) must be understood as

Vn, N, lim supe !|u**P| = 0.
e,v—0 5§50

As a consequence, we have

a/2 9
/ / {ugpp(t)ﬁz (up + 5uBL) (t){
T2 Jo

2
< (e (£)wtn), sy (s )] o0 s sy
c y 3 ’ g [,
2
+ | [vé,“t (t, ﬁ) +uBU (1) + SuB (1) + uz“”’(t)} 120- (u + 6uPt) (1)|]; -
L2
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Using Hardy’s inequality together with the divergence-free property, we infer that

/T/ u§PP ()0 (up + 5uP) (1)

2
nN a —1nt( )+5u1nt < z)

1/2

IN

14
LOO

2

+ Cun |0 [ int <t f) +uBU(t) + B (1) + ot )]
L2
1%

t 1 int t ?
) L= wn,N(t) + 6uK t,—
g £ Wi,

i t sto
b G o (1.2) + a0+ ) + 0500

o(1).

1/2

IN
Q
=z

2

H1.0

The term

L[] e @paer

is treated in a similar way. Gathering all the terms, we deduce the convergence result stated in

Lemma p.1]

O
In the rest of this section, we denote by w®" any term which satisfies
v, N, lim sup [[wi™ | L2 o 7% 212 x[0,07) = O (5.1)
e=04>0
and by wi™ any term which satisfies
Vn, N, limsup [[wy™| 210, 11x g,zr-1.0) = 0- (5.2)
0650 ' '

According to paragraph [£.9 and to Lemma .1, u®PP satisfies an equation of the type
Opu®PP 4 PP . VPP + l63 A UPPP — ApuPP — 92 PP
€
=V —}—wrem—{—wrem—{—r‘s +0 | — 5.3
p 2 n,N \/E L2 , (5.3)

We recall that the remainder ™ satisfies

. Jl\lfrilooslll,p Hrn ~llz2o,mxe,H-1.0) = 0.

Equation (f.J) is supplemented with the boundary conditions ([[.J) and the initial condition

app

1 2
U Zo = wo + dwg + dwy,

where 5wé and 5w8 are such that
l 5 oo — 0,
]\1[111 ;UEPU 16wg |l (E,L2(T2x[0,a]))

Vn,N, lim supH(SwOHLoo (E,L2(T?x[0,a])) = O-

e,v—0 5%0
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In order to avoid too heavy notation, we will simply write
uﬁfo = wp + o(1).

e We now evaluate the difference between u** and u®PP thanks to an energy estimate. The

difference u*¥ — u?PP is a solution of

1
Or(ufY — uPP) 4 —ez A (U= — u®P) — Ap(u™ — uPPP) — I (uS — u*PP)
3

)
Ve

Taking the scalar product the above equation by u®” — u?PP and using the Cauchy-Schwarz
inequality, we deduce that

1d
2dt

< [ ) Ty (e )
?x[0,a]

= Vp' +wi™ + wi™ — rn ~NTO ( > — (WY - V)(u®Y — uPP) — [(u™Y — u?PP) . V] u?PP,
L2

1
I = w4 S = P+ vl = a P,

2
o]+ O Gl — (e x pa
n,N 1,0 c 9 L2

R e o + 105 -0 + |

We now evaluate the term
L e ) gy e — ),
T2 x[0,a]
First, let us write .
uapp — [umt + ustop] + [UBL + 5UBL] )
The function 4™ 4 4P is bounded in L>([0,7] x E, Wh*°(T? x [0,a]) by a constant Cj, n;
T]

similarly, V3 (uP" 4 6uB) is bounded in L>([0,7] x R x E x T? x [0,a]). As a consequence, we
have

/ ‘(ue,u _ uapp) AV, [uint + ustop] . (us,u o uapp)‘
T2 x[0,a]

+ / ‘(uz,u app) vh [ BL + 5uBL] X (us,zx o uapp)‘
T2 x[0,a]

2
< Cn,NHu&V _ Uapp||L2([T2><[0,a])'

There remains to derive a bound for the term

AQX[O | ‘(ug,u ugpp)az [UBL + 5uBL] X (us,u o uapp)‘ :

the calculations are quite similar to those of Lemma [5.]. We first split the integral on [0, a] into
two integrals, one bearing on [0, a/2] and the other on [a/2,a]. The term ur (resp. up + duP)
is exponentially small on [0, a/2] (resp. on [a/2,a]), and thus we neglect it in the final estimate.
Moreover, we have for instance

a/2
/ / 8% app)az [UB + (5U,BL] i (ue,u _ uapp)|
T2

< H uz” — ug™” 120: [up + 80P ]| oo (g2 0,0 147 = 4Pl 212 ¢ 0,0
L2(T2x[0,a])

< C||3Z(U3 - ugpp)HL?(T?x[O,a]) J[u®" — Uapp||L2(T2x[o,a})

< Oflu™” = u™Pl[ o [[u™” = P 1220 a)) -
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Eventually, we infer that
/ ‘(ugy —u3?)o, [uBL + 5uBL] (U — uapp)‘
T2 x10,a]

2
< C ||u€”’ — uapp||L2(T2><[07aD + CHUE’V - uappHHl’O Huz—:,u - uapp||L2(']I‘2><[0,a]) :

Gathering all the above estimates and integrating on E, we deduce that

0 v 2 v 2 v 2
9t [Jus" — uapp||L2(E><’IF2><[0,a]) + [lu™” — Uapp||L2(E,HL0) < Cfu™ - uappHL2(E><']I‘2><[0,a])
2 C6?
rem |2 rem [|2 1)
+ W™ (22 (mxrexo,a) + 0™ 225, m-1.0) + ‘ Tn,N‘ L) e
Using Gronwall’s Lemma, we infer that for all ¢ € [0, T7,
2 ! 2
H(us,u _ uapp)(t)HLQ(EXTQX[O,a]) + /0 ||u€7” _ uapp”LQ(E,HLO) <
C rem |2 rem ||2 1 2 § 5.4
[T 1 72(10,11x ExT2x(0,a) F 102 120,71 % £, Hr-1.0y + || T, poxEE-) | (5.4)

e We are now ready to prove Theorem [l. First, notice that for all n, N > 0, we have

www(e) £ (£) wlle)

— 0.
Lo ([0,T)x E,H1,0) &V —0

sup
6>0

Consequently, let us write

)= (L) e = =@+ [wr ) - £ (2) o]

3

where

> the term u®” — u?PP satisfies the energy estimate (p.4);

> the term u®P(£)— L (L) wl v (¢) is equal to ™™ +v™ +§u | and thus vanishes as e,v — 0,

uniformly in 6 > 0, and for all n, N, K;

> the term wth — w’ vanishes as n, N — oo uniformly in J, ¢, v according to the first step

in paragraph [£.3;

1)

> the term w® — w vanishes as § — 0, uniformly in ¢, v, according to ({.13).

Let n > 0 be arbitrary. We first take ng, Ny large enough so that for all 6 > 0, e,v, 5 > 0,

5 5 5 5 5
”rnoJVo”%O"([O,T]XE,H*LO)’ [wp, v —w H%OO([O,T]XE,LQ’ lwp,n — w ”%OO(E,LQ([O,T],HLO)) gy

Remembering properties (5.1))-(F.9), we deduce that there exists 9,19 > 0 such that for all 4,
for all € < eg,v < vy with v < Ce and fB/ev < C,

2
W™ 172 0,77 x ExT2 x[0,0)) < 5

rem

2
W™ |22 0,775 2, 1.0y < 15

<n.

Le°([0,T],L2(E,H1.0))
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At this stage, we have, for all § > 0, for all ,v, such that 0 < ¢ < ¢p and v = O(e),

Ve = 0(1),

W) = L <3> w(t)

S 2

us’(s) — L <—) w(s)

3

ds <
LQ(E,HLO)

€

2 t
+ / |
L2(ExT2x[0,a]) JO
5 2 5 2 C4
Cn + Cllw” = wllpeo o1y, L2 (Bxr2x(o,a) T Clw” = Wiz o 1)< o) + =

We now let § — 0 in the right-hand side, and we obtain

t 2 t
() — L (—) w(t) +/ ‘
€ L2(ExT?x[0,a]) 0

for €, v small enough. The convergence result is thus proved.

S 2

us(s) — L <—) w(s)‘

e

ds < Cn
L2(E,H0)

6 Mean behaviour at the limit

This section is devoted to the proof of Proposition [ Let us recall what the issues are: in
general, the source term Sy in ([[.9) is a random function, and thus so is w. Hence, our goal is
to derive an equation, or a system of equations, on E[w]. We emphasize that such a derivation
is not always possible, because of the nonlinear term Q(w,w). However, we shall prove that the
vertical average of wy,, denoted by wy,, is always a deterministic function. Moreover, if the torus
is nonresonant (see ([[.11])), then w — w solves a linear equation, and thus in this particular case
we can derive an equation for E[w — w].
Our first result is the following:

Lemma 6.1. Assume that the group transformation (0),cr is ergodic. Let ug € H N HY, and
let w be the solution of (L.9). Set
1 a
Wy, = —/ W
aJo

Then w is the unique solution in C([0,00), L?(T?))N L2 ([0, 00), H'(T?)) of the two-dimensional
Navier-Stokes equation

Oy, + W, - Vo, — Apwy, + wy, +E[S7(0)], =0,

ND]
aajas\/2e (6.1)

_ 1 ra
Whjt=0 = 3 Jo Wo,h-
In particular, wy, is a deterministic function.

Proof. Let us recall that if
6= bk)Ne €N,
kez3
then 1 qe
Pa@) =5 [ on= 3 dttn Opnaian,0).
aJo
k€72
Thus we have to project equation ([[.9) onto the horizontal modes, which correspond to ks = 0.

It is easily checked that

1

Pu(Sp(w) = Spaon) = 5

W,
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and we recall (see [[[4) and Proposition 6.2 in [[]) that there exists a function p € L?(T?) such
that for all w € H N'H -
Pr(Q(w, w)) = (@ - Va)wh + Vap.

Thus we only have to prove that
Py(Sr(0)) = E[Sr(0)],

almost surely in . We use the following fact, of which we postpone the proof: if A € R, kj, € Z2,
then

[ E|o] ifAr=0,
Bl = { 57 (6.2
Moreover, if A = 0, then
Exlo] = Elo] as. (6.3)
Note also that A\, = 0 if and only if k3 = 0. Remembering (f.11)), we deduce that
) 1 1k}
E[S = —— —— (k)" - E[6(k 2
Sra@) =~ 3 gt Elot] ()
k‘hEZ2
1 1 1k,
ST DR CAR LT | Gy
aa1as khze;2 AR h —ik}
= BulSr(0)].

Thus the lemma is proved, pending the derivation of (6.2) and (p.d). Concerning (b.3), the
invariance of the probability measure mg with respect to 0 entails that

%
E[Ex[o]] = E[o] lim = [ e dr,

6—o00 0

and (B.9) follows easily. Equality (B.3) is a consequence of Birkhoff’s ergodic theorem (see [R(]).
O

Remark 6.1. Notice that
roty Pn[S7(0)] = —E [rotyo].

Hence we recover the result of [A].
From now on, we assume that the torus is nonresonant (see ([[.11))). Consequently, with

w = (wp,0), we have

Q(w — w,w — w) = 0.
Moreover, using (B.9)-(f.3), it is easily checked that
E [St3(0)] = 0.

Setting u = w — w, we deduce that u solves a linear equation, namely
_ v
Ay + 20(u, @) — Apu+ \/;SB(U) + uBS1(0) — vBE[ST(o)] = 0.
Since w is deterministic, we have

E [Q(u, w)] = Q(E[u], w).

Hence we can further decompose u into w + %, where @ is deterministic and does not depend
on o, and @ is random with zero average. The precise result is stated in the following lemma,
from which Proposition [] follows immediately:
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Lemma 6.2. Assume that the hypotheses of Proposition [ hold. Then
w=w-+w-+u
where:
e the function w is deterministic and satisfies (6.1]);

e the function W is deterministic and satisfies
_ v
Oyt + 20 (1, 1) — A + \/;53(17)) 0,
Wit=p = U0 — W}¢=0}

e the function @ is random, with zero average, and satisfies

Ayt + 2Q(w, ) — Apti + \/gSB(ﬁ) +vBSr(o) — vBE[ST(0)] =0,

’l~L|t:0 — 0

Appendix A: convergence of the family o,

Lemma 6.3. Let T > 0. Assume that o € L>°([0,T] x E,C(R)) N L>([0,T] x R, x E). Then
for all T" > 0,
0o —0—0 inL>®(0,T) % (0,T7")x E) as a — 0.

Proof. By definition of o, we have

1 4
oa(t, T, w) = — exp(—alX| — als))er T g (t, s,w) ds dX
21 JrRxRr
2a
= % ReXp(—Oé|S|)mO'(t,S,W) ds
1 1
= %/Rexp(—ah+as|)ma(t,7—|—as,w) ds.
Consequently,
(t.rw) —oaltrw) = 1 [ expl-alr +ash i lo(t.mw)  olt. 7+ as.w)] d
o(t,Tw) —oat, T w) = — Rexp ofr +asl) ;5 lo(t, mw) —ot, 7 +as,w)] ds

1 1
—l—;a(t,T,w) /R [1— exp(—a|r + as|)] e ds

The convergence result of Lemma . follows easily.
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Appendix B: proof of Proposition

Let A € R be arbitrary, and let ¢ € L'(E).
Consider the probability space

d
Ey:=Ex[0,2r1), Py:=P® 2—“
™

where p is the standard Lebesgue measure on [0,27]. Let us define the following group of
transformations, acting on (Ey, Py)

TMNw, @) == (B,w,p — A\t mod2r), 7€ R.

Then it is easily checked that ’TT)‘ is measure-preserving for all 7 € R. And if T" > 0, we have,
for all ¢ € [0, 2],

T . . T . .
/ D(O,w)e M dr = e_w/ D(0,w)e ™ dr
0 0

T
= e [0 (D) an
0
where the function ¥ € L'(E)) is defined by
U (w, ) = P(w)e.

Hence, according to Birkhoff’s ergodic theorem (see [P{]), there exists a function (ZAS

L'(E)), invariant by the group of transformations (TT)‘ FER such that

1 T . .
T / D(0rw)e T dr — P TMNw, @),
0

P, - almost surely in E) and in L'(E)). Moreover, the function
(w, @) > TN w, )
clearly does not depend on ¢. Hence, we set
PMNw) == T Nw, ) V(w,¢) € Ey,
and we have proved that

1 [T :
— / D(h,w)e™ N dr — dMNw)
T Jo

almost surely in w and in L!(E).
Now, since U* is invariant by the group (’TT)‘)
almost surely in w,

FER and ®* does not depend on ¢, we have,

PMNOw) = TN 0w, )
= M ING,w, o — iAT mod2r)
_ le—iAT A (T)(w, @))
_ TG () )

— efi)\T(I))\(w)‘

This completes the proof of Proposition [I. O

46



Appendix C: the stopping Lemma

Lemma 6.4 (Stopping condition). Let 5,01 € L®¥(R*, H2(T?)) be two families such that

/(51,3 — do,3)dxp, =0

and

1
EH(SZHHl(TQ) - 0, H(sZHH?,(qp) — 0 and Hat(SZHHl(TQ) —0ase—0
Then there exists a family w € L®(RT, L2(T? x [0,a])) with V - w = 0 such that
W,—g = 00, W3|z—1 = 01,3 and Oywp,—1 = d1p

and satisfying the following estimates

—0ase— 0.
L2 (Eega)

”w”L2(Eega) — 0 and

1
ow + —Lw — vd,,w — Apw
€

For a proof of the above Lemma, see [].
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