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On the numerical approximation of high-frequency acoustic

multiple scattering problems by circular cylinders

Xavier Antoine∗†, Chokri Chniti†, Karim Ramdani†

Abstract. The aim of this paper is to propose a numerical strategy for computing the solution

of two-dimensional time-harmonic acoustic multiple scattering problems at high-frequency. The

scatterers are assumed to be circular, leading therefore to semi-analytical representation formulae

of the scattered field through the solution of a large linear system of equations. Taking advantage

of the special block Toeplitz structure of the matrix of the linear system, a fast iterative and

preconditioned numerical method yielding large memory savings is proposed. Several numerical

experiments for general configurations are presented to show the efficiency of the numerical method.

1 Introduction

Multiple scattering problems find their origins in many applications related to different areas of

applied sciences: acoustics, electromagnetism, elasticity and water waves. For such problems,

the scattered field appears as the superposition of elementary scattered fields resulting from the

interaction between the incident wave and the scatterers on one hand, and between the scatterers

on the other hand. A better understanding of such problems requires a precise knowledge of the

influence of the different physical and geometrical parameters of the problem on these interactions.

Due to the complexity of this problem, computing a numerical solution requires a special care,

especially in the case where the number of objects is large and/or for high frequencies. For a recent

and complete overview of these issues with extended bibliographical references, we refer the reader

to the textbook [19] by P.A. Martin.

In this paper, we investigate the two-dimensional Helmholtz equation for circular cylinders.

Following Záviska and next Row [27, 21, 19], a multipole expansion formulation of the solution
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can be obtained. Unlike the case of one object where the Mie series solution expressed by the

Fourier coefficients is explicitly obtained through the inversion of a diagonal matrix, the case of

multiple scattering is more complex and requires the use of numerical methods. Indeed, it can

be shown (see Section 2 or [19] for more details) that the scattered field admits an expansion

as a superposition of Fourier series. The set of Fourier coefficients is then solution of a non-

diagonal and dense complex linear system which can be extremely large for many scatterers at

high-frequency. The numerical solution of this system has been already obtained by some authors

[17, 18, 23, 24, 25, 26, 28] (see also [16] for scattering by spheres). However, this remains restricted

to low-moderate wavenumbers. Alternative solutions using numerical methods based on Dirichlet-

to-Neumann non-reflecting boundary conditions have been recently developped by Grote and Kirsch

[15]. This technique has the advantage of allowing general shaped scatterers but, on the other hand,

it requires to mesh the finite computational domain. In particular, this leads to strong limitations

(as in the single scattering problem) as the wavenumber increases since e.g. small element sizes are

required.

To the best of the authors’ knowledge, the only papers dealing with high frequencies for multiple

scattering problems are the ones by Bruno, Reitich and their co-authors [2, 7, 8, 14] where scattering

by three convex and non-convex objects is analyzed for two- and three-dimensional problems. The

authors consider an integral equation formulation of the Dirichlet problem and derive a fast high-

order method for computing the multiple scattered field. This robust solver therefore allows to

consider general shaped obstacles. While the technique is efficient and robust, it is very technical

and requires specific developments in the background of integral equations. The present paper

proposes to come back to the scattering problem by circular cylinders using the multipole expansion

and to develop a reliable and robust accurate numerical solution for large frequencies and many

scatterers.

The outline of the paper is the following. In Section 2, we recall some classical results on the

problem of multiple scattering by circular cylinders and on its resolution using multipole expansion

formulation. In particular, we will see that the Fourier coefficients of the local scattered field solve

an infinite linear system (see (19)). Section 3 explains how to suitably truncate the above infinite

dimensional system to get an accurate numerical solution. Section 4 deals with the numerical

resolution of the complex, dense and large size linear system obtained. We take advantage of the
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special block Toeplitz structure of the linear system to reduce the memory storage and accelerate

the computation of the matrix. Next, we propose a fast iterative solution of the linear system using

a Krylov solver in conjunction with an original geometrical preconditioner. Several examples,

corresponding to many geometrical configurations, are provided to understand the characteristics

of the algorithm for high wavenumbers and for a large number of scatterers. Finally, in Section 5,

we conclude by summing up our results and outlining some future directions of work.

2 Multiple scattering by M circular cylinders

Consider a homogeneous acoustic medium filling the whole space R2 and containing M disjoint

scatterers B1, . . . ,BM . We assume that each scatterer Bp, p = 1, . . . ,M , is a bounded subdomain

of R2 of boundary ∂Bp. We denote by Ω− =
M⋃
p=1

Bp the domain occupied by the obstacles. We

consider the scattering problem of an incident plane wave uinc(r) = eikβ·r of direction β by Ω−

(where the time dependence is assumed to be of the form e−iωt and where the wavenumber k is

real). In other words, we want to determine the scattered wave u solving the exterior boundary

value problem

(E)


∆u+ k2u = 0 (R2 \ Ω−)
Λu = −Λuinc (∂Ω−)

lim
|x|→+∞

|x|1/2
(
∇u · x

|x|
− iku

)
= 0.

To model sound-soft and sound-hard obstacles, the boundary operator Λ appearing in the above

relations denotes either the trace or the normal trace operator on ∂Ω−. A natural idea to solve

numerically the multiple scattering problem (E) is to reduce it to a family of single scattering

problems. By linearity, this can be achieved by introducing M fictitious scattered waves u1, . . . , uM ,

where each field up corresponds to the wave reflected only by the scatterer p when it is illuminated

by the incident wave and the scattered waves uq, for q = 1, . . . ,M with q 6= p. More precisely, we

have the following result (see [5] for the proof).

Theorem 1. Let u be the solution of the multiple scattering problem (E). Then, the family of M

coupled single scattering problems for p = 1, . . . ,M :

(Ep)



∆up + k2up = 0 (R2 \ Bp)

Λup = −Λ

uinc +
M∑

q=1,q 6=p
uq

 (∂Bp)

lim
|x|→+∞

|x|1/2
(
∇u · x

|x|
− iku

)
= 0.
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admits a unique solution (u1, . . . , up). Furthermore, the following decomposition holds

u =
M∑
p=1

up. (1)

In this paper, we focus on the case where the scattering obstacles Bp are circular cylinders

of radius ap centered at the points Op = (xp, yp) of a given orthonormal system of coordinates

(
−→
Ox,
−→
Oy).

O
p

bp
α

Op

αpq

bpq

Oq

x

y

aq

Figure 1: A view of two typical cylinders.

We set for all p = 1, . . . ,M (see Figure 1):

bp =
−−→
OOp bp = |bp| αp = Angle(Ox,bp)

and for all q = 1, . . . ,M , with q 6= p:

bpq =
−−−→
OqOp bpq = |bpq| αpq = Angle(Ox,bpq).

Any point M of the plane will be described by its cartesian coordinates (x, y) or by its polar

coordinates:

r =
−−→
OM r = |r| θ = Angle(Ox, r).

We will also use in the sequel the local polar coordinates of the pointM in the orthonormal system

of coordinates associated to the scatterer p:

rp =
−−−→
OpM rp = |rp| θp = Angle(Ox, rp).
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Let us introduce for all m ∈ Z the following cylindrical wavefunctions, which are particular solutions

of Helmholtz equations for r > 0: {
ψm(r) = H(1)

m (kr)eimθ,
ψ̂m(r) = Jm(kr)eimθ,

(2)

where Jn is the nth order Bessel function and H(1)
n is the nth order Hankel function of the first kind.

Note that for all m ∈ Z, the function ψm satisfies the outgoing Sommerfeld radiation condition.

We also define for all m ∈ Z the local cylindrical wavefunctions associated with the scatterer p, for

p = 1, . . . ,M , by setting:{
ψpm(r) = ψm(rp) = H(1)

m (krp)eimθp ,
ψ̂pm(r) = ψ̂m(rp) = Jm(krp)eimθp ,

∀ m ∈ Z. (3)

Since each field up is an outgoing solution of a single scattering problem outside a disk, it admits

the following modal decomposition in the local cylindrical outgoing wavefunctions:

up(r) =
∑
m∈Z

cpmψ
p
m(r), ∀ p = 1, . . . ,M, ∀rp > ap. (4)

where the complex coefficients (cpm)m∈Z are determined by imposing the boundary condition on the

boundary of the scatterer p:

Λup = −Λuinc −
M∑

q=1,q 6=p
Λuq on ∂Bp. (5)

In order to explicit this equation, we have to express the incident field uinc and the fictitious

scattered fields uq, for q 6= p, in the local system of coordinates of the scatterer p. For the incident

plane wave of direction β = (cosβ, sinβ) we recall that (cf. [19, p. 125])

uinc(r) =
∑
m∈Z

dpmψ̂
p
m(r) (6)

where dpm = eikβ·bp eim(π
2
−β). Concerning the fields uq, we make use of the separation theorem (see

for instance [19, Theorem 2.12]).

Theorem 2. Let 1 ≤ p, q ≤M , with p 6= q. Then, we have the following relations:

ψqm(r) =


∑
n∈Z

Smn(bpq)ψ̂pn(r) for rp < bpq,∑
n∈Z

Ŝmn(bpq)ψpn(r) for rp > bpq,
∀ m ∈ Z, (7)

where we have set

Smn(bpq) = ψm−n(bpq), Ŝmn(bpq) = ψ̂m−n(bpq). (8)
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The infinite matrices Sp,q = (Smn(bpq))m,n∈Z and Ŝp,q =
(
Ŝmn(bpq)

)
m,n∈Z

are called separation

(or transfer) matrices.

Using relations (1), (4), (5) and the first equation in (7), straightforward computations show

that the unknown Fourier coefficients solve the following equations

cpm +
Jm(kap)

H
(1)
m (kap)

M∑
q=1,q 6=p

∑
n∈Z

Snm(bpq)cqn = − Jm(kap)

H
(1)
m (kap)

dpm, ∀ m ∈ Z, ∀p = 1, . . . ,M. (9)

in the sound-soft case and

cpm +
J ′m(kap)

H
(1)′
m (kap)

M∑
q=1,q 6=p

∑
n∈Z

Snm(bpq)cqn = − J ′m(kap)

H
(1)′
m (kap)

dpm, ∀ m ∈ Z, ∀p = 1, . . . ,M. (10)

in the sound-hard case (note that H(1)
n (kap) and H

(1)′
n (kap) never vanish for real wavenumbers).

The infinite linear systems (9) and (10) can be written in the more compact vector form:

Cp + Dp
M∑

q=1,q 6=p
(Sp,q)T Cq = Bp ∀ p = 1, . . . ,M, (11)

where

• Cp = (cpn)n∈Z is the infinite vector containing the coefficients of the cylindrical decomposition

(4) of up,

• (Sp,q)T denotes the transpose of the separation matrix Sp,q between the obstacles Bp and Bq

defined by

Sp,q = (Sp,qmn)m∈Z,n∈Z Sp,qmn = ψm−n(bpq),

• Dp = (Dp
mn)mn∈Z is the diagonal infinite matrix, with diagonal terms

Dp
m,m =


Jn(kap)

H
(1)
n (kap)

for sound-soft obstacles,

J ′n(kap)

H
(1)′
n (kap)

for sound-hard obstacles,
(12)

• Bp = −Dpdp, where dp = (dpm)m∈Z is the infinite vector containing the coefficients of the

cylindrical decomposition (6) of the incident wave.

The M infinite linear systems (11) can equivalently be written in the abstract form

AC = B (13)
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where

A =


I D1

(
S1,2

)T
. . . D1

(
S1,M

)T
D2
(
S2,1

)T I . . . D2
(
S2,M

)T
...

. . .

DM
(
SM,1

)T DM
(
SM,2

)T
. . . I

 , (14)

C =


C1

C2

...
CM

 B =


B1

B2

...
BM


and where I denotes the identity operator on `2(C).

Let us emphasize that many physical quantities of interest can be deduced from the solution of

(13). The scattered field u can be obtained in the neighborhood of Bp (namely, for rp < min
1≤q≤M
q 6=p

bpq)

by the relation

u(r) =
∑
m∈Z

cpmψ
p
m(r) +

∑
m∈Z

 M∑
q=1,q 6=p

∑
n∈Z

Snm(bpq)cqn

 ψ̂pm(r). (15)

Using rp = r − bp cos(θ − αp) +O(1/r), the scattering amplitude a(θ) defined by

u(r) =
eikr√
r
a(θ) +O

(
1
r

)
, as r → +∞.

is obtained by

a(θ) = e−iπ/4
√

2
πk

p=M∑
p=1

e−ibpk cos(θ−αp)

(∑
n∈Z

ein(θ−π
2
)cpn

)
. (16)

For the Dirichlet multiple scattering problem, one can be interested in computing the normal

derivative
∂u(r)
∂rp

on the boundary of the scatterer p. This can be achieved by taking the normal

derivative of (15). Following [17], let us notice that the resulting formula can be simplified (to

eliminate the double sum) using (13) and the Wronskian relation for Bessel functions. The final

expression reads

∂nUp = −∂nUinc +
2i
πap

J−pCp, p = 1, ...,M, (17)

where ∂nUp (respectively ∂nUinc) is the infinite dimensional vector containing the Fourier coeffi-

cients of the normal derivative of the scattered (respectively incident) field on ∂Bp and J−p is the

infinite diagonal matrix with diagonal terms 1/J
′
m(kap). A similar formula for the trace can be

derived in the case of Neumann boundary conditions. Note that equation (17) is particularly well

adapted for the numerical computations since it only involves diagonal matrices.
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3 Finite dimensional approximation

Obviously, the infinite linear system (11) (or (13)) must be truncated to be solved numerically. In

particular, only a finite number of modes can be used to describe the solution up. Let 2Np+1 be the

corresponding number of modes used for the scatterer p, i.e. assume that we keep only the modes

ψpm such that −Np ≤ m ≤ Np. Note that we have chosen a possibly different number of modes for

each scatterer, in order to take into account geometrical configurations where the obstacles have

different radii. With this notation, (11) should be truncated to the finite system

Cp +Dp
M∑

q=1,q 6=p
(Sp,q)T Cq = Bp ∀ p = 1, . . . ,M, (18)

where

• Cp = (cpn)n=−Np,...,Np is the finite vector containing approximations of the first 2Np + 1 modal

coefficients of the cylindrical decomposition (6) of up, that we still denote cpn for the sake of

clarity.

• Sp,q is the (2Np + 1) × (2Nq + 1) finite dimensional separation matrix taking into account

only the interactions between the first modes of the obstacles Bp and Bq:

Sp,q = (Sp,qmn)−Np≤m≤Np,−Nq≤n≤Nq Sp,qmn = ψm−n(bpq),

• Dp = (Dpmn)−Np≤m≤Np,−Nq≤n≤Nq is the diagonal finite matrix, with diagonal terms

Dpm,m =


Jm(kap)

H
(1)
m (kap)

for sound-soft obstacles,

J ′m(kap)

H
(1)′
m (kap)

for sound-hard obstacles,

• Bp = −Dpdp, where dp = (dpm)−Np≤m≤Np is the finite vector containing the 2Np + 1 first

coefficients of the cylindrical decomposition (4) of the incident wave.

The M coupled finite dimensional systems (18) can equivalently be written as

AC = B (19)

where A ∈ CN,N is the full complex square matrix of size N =
M∑
p=1

(2Np + 1) defined by

A =


I1 D1

(
S1,2

)T
. . . D1

(
S1,M

)T
D2
(
S2,1

)T I2 . . . D2
(
S2,M

)T
...

. . .

DM
(
SM,1

)T DM
(
SM,2

)T
. . . IM

 (20)
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where Ip denotes the identity matrix of C2Np+1 and

C =


C1

C2

...
CM

 B =


B1

B2

...
BM


are to complex-valued vector fields from CN .

The number of modes Np to retain in the approximation must be fixed to get an accurate

solution. On one hand, Np must be large enough to capture both the propagating and grazing

parts of the solution (typically, Np ≥ kap). On the other hand, taking too many modes for

approximating the solution makes the matrix A ill-conditioned. Therefore, a numerical stagnation

occurs when using an iterative algorithm for solving (19) (see Section 4.3.1). This phenomenon is

due to the fact that high order spatial modes |m| correspond to the evanescent part of the field and

therefore, computing their Fourier coefficients is definitively out of reach using an iterative solver

(with a fixed tolerance). For our simulations, we will use the following empirical formula

Np =

[
kap +

(
1

2
√

2
ln(2
√

2πkapε−1)
) 2

3

(kap)1/3 + 1

]
, (21)

where [x] denotes the integer part of a real number x, and ε is the desired error bound on the

Fourier coefficients. The above formula has been proposed in the literature in the contexts of

single scattering [12] and multipole methods [9]. Nevertheless, according to our numerical results

(see Section 4.3.1), it turns out that it can also be successfully used in the framework of multiple

scattering investigated in this paper.

Let us give here a formal derivation of the above formula in the case of simple scattering

(see the proof given in [12] for more details). First of all, the convergence of the Fourier series∑
m∈Z c

p
mH

(1)
m (kap)eimθp in L2(0, 2π) implies that for |m| large enough, we have

|cpm| ≤
1

|H(1)
m (kap)|

.

Taking in the above relation: |m| = kap(1 + ζ), with ζ << 1, and using the asymptotics of Hankel

functions for large arguments and large orders, one obtains that

|cpm| ≤

√
2
√

2πkap
2

exp
(
−
√

2 kap ζ3/2
)

9



Therefore, we can ensure an error bound of ε on the unknown Fourier coefficients by imposing the

right-hand side of the above relation to be less than ε. This gives

ζ =
(

1
2
√

2
ln(2
√

2πkapε−1)
) 2

3

(kap)−2/3

and thus an order of truncation Np = kap(1 + ζ) which is exactly formula (21).

4 Implementation and validation of a fast preconditioned iterative
numerical method

We want to solve the linear system (19) for realistic complex configurations, including numerous

obstacles M and high frequencies kap. Therefore, according to (21), the number of modes 2Np + 1

needed to approximate the solution up with a reasonable precision must then be large. This implies

that a huge memory storage is a priori required and large computational times are needed to build

the dense matrix A. Moreover, we are led to solve a large scale complex-valued linear system

with size N × N , with N =
M∑
p=1

(2Np + 1). Using a direct linear solver would yield a prohibitive

computational time, especially for high frequencies. Our solution consists in developing a strategy

based on an iterative solver leading to problems related to fast evaluations of dense matrix-vector

products as well as convergence questions. We carefully analyze these delicate problems in the

present section after presenting the different geometrical test configurations.

4.1 Geometrical configurations

In the numerical computations, we consider three kinds of geometrical configurations:

• The single-row configuration: this structure is composed of Mx (= M) equally spaced ob-

stacles aligned along the x-axis, the distance between two successive scatterers being denoted

bx = b12 (see Figure 2). Moreover, the row is centered at x = 0.

b x

δ

Figure 2: Regular line with M = Mx disks.

• The centered uniform square/rectangular lattice: we consider here a rectangular lat-

tice composed from M = Mx ×My circular cylinders (the structure is called square lattice

10



if Mx = My). For brevity, we restrict our experiments to a rectangular lattice which is

composed of My uniformly spaced single-rows with respect to by = b1(Mx+1), each row being

composed from Mx equally spaced disks according to bx = b12 (see Figure 3). Moreover, the

array is centered at the origin.

b x

b y

Figure 3: Regular rectangular lattice with M = Mx ×My disks.

• The triangular lattice: this structure is composed of two parallel horizontal single-rows.

The first one contains Mx ≥ 2 equally spaced disks and the second one Mx−1. The horizontal

distance between two objects is bx. Next, the first row is repeated vertically My times with

a uniform distance by = b1(2Mx), while the second one is reproduced My ± 1 times with again

a separation distance by (see Figure 4).

b x

b y

Figure 4: Triangular lattice with Mx disks on the first row, (Mx − 1) disks on the second one and
a total number of My odd rows.
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4.2 Storage

Although being full, the matrix A has a particular structure. Indeed, each one of its off-diagonal

blocks is obtained (see (20)) by multiplying the diagonal matrix Dp ∈ C2Np+1,2Np+1 by the matrix

(Sp,q)T ∈ C2Np+1,2Nq+1 which has a Toeplitz structure [10] since

Sp,qmn = ψm−n(bpq).

Consequently, using the notations from [10], the storage of (Sp,q)T can be optimized using a com-

pressed version based on the root vector

σp,q = (Sp,qNq ,−Np, ...,S
p,q
−Nq+1,−Np ,S

p,q
−Nq ,−Np , ...,S

p,q
−Nq ,Np)

T. (22)

To take advantage in our future algorithms of the special structure of each off-diagonal block of A,

we store both the Toeplitz matrix (Sp,q)T (through the root-vector (22)) and the diagonal matrix

Dp. According to our notations, the compressed storage needs 2(2Np + Nq + 1) entries instead

of the (2Np + 1)(2Nq + 2) complex coefficients required for the full version. For A, this must be

repeated for the M(M − 1) off-diagonal blocks by summing over p and q. This results in a global

storage equal to 3N(M − 1) entries which must be compared to the N2 − NM cost of the full

storage. Furthermore, the computational time involved in the construction of the global matrix is

also reduced according to the memory storage. In the case where we have ap = a for any p, the

vector root version of A leads to a memory storage and a CPU time of the order of O(6kaM2)

while it is O(4k2a2M2) for the full version. This is a crucial point for solving a multiple scattering

problem for a large wavenumber. To show the improvement induced by the compressed storage

version using (22) over the full version, we represent on Figure 5 the logarithm of the CPU time1

scaled by the computational memory requirement with respect to the wave number kap needed

for building the global matrix A. We consider a single-row configuration for M = 2, ap = 1, for

p = 1, 2, and bx = 3. As expected, the CPU time for the compressed version is linear according to

kap while it is quadratic for the full version.

4.3 Iterative solution

Since we only have access now to the compressed Toeplitz format (22) of the matrix A, the linear

system (19) can only be solved through an iterative linear solver. We consider both the GMRES,
1All the computations were performed on a Power Mac G4 1.67GHz with 1 Go DDR SDRM. The algorithms are

developed under Matlab.
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Figure 5: Behaviour of the CPU time according to the wavenumber kap for building the matrix A
in the case of the scattering by two circular cylinders fixing Np by formula (21).

possibly with a restart parameter η (then denoted by GMRES(η)), and the BICGStab algorithms.

The tolerance error of the iterative solver is set to tol and the number of iterations to get this

tolerance is denoted by niter. Let us recall that the main CPU cost of the GMRES is due to

one Matrix-Vector Product (MVP) per iteration. Moreover, a large amount of memory can be

necessary to store the Krylov basis if too many iterations are needed to reach the tolerance. We

will see that it leads us to consider a restart parameter if the number of obstacles is large and the

frequency high. Two MVPs are required for each iteration of the BICGStab. This finally gives

the total cost which is related to each algorithm. We first study numerically the influence of the

order of truncation Np on the convergence of the iterative solver. In particular, this validates the

choice of Np given by formula (21). Next, we explain how to reduce the computational cost of

a global MVP using a fast algorithm for each Toeplitz subblock. We investigate numerically the

13



dependence of the rate of convergence of the iterative solver with respect to the geometrical and

physical parameters. Finally, we propose and study a geometrically-based preconditioner.

From now on, we consider an angle of incidence β = 0 and we restrict the presentation to

the Dirichlet case (which appears to be harder to solve than the Neumann problem in terms of

iterations).

4.3.1 Influence of the order of truncation Np on the convergence

As noticed in Section 3, the order of truncation Np must be fixed carefully e.g. through formula

(21): Np must be large enough to compute accurately the solution, but not too large to avoid the

stagnation of the iterative solver. To make this statement precise, let us consider a uniform square

lattice with Mx = My = 2 (M = 4) and bx = by = 3 for a radius ap = 1, 1 ≤ p ≤M , and k = 100.

The linear system (19) is solved by the GMRES with tol = 10−8. For a given value of tol and all

along the paper, we fix ε = tol in formula (21). This gives here Np = 120 (represented by a red

dot on Figures 6 and 8). We report niter versus Np on Figure 6. One can observe three distinct

zones. First, from Np = 1 to Np < kap + 2, niter increases. This means that the computation

of a correct solution requires more harmonics. This is obtained in the second stable zone (for

kap + 2 ≤ Np ≤ 138). However, if we include too many harmonics (third zone), typically Np ≥ 139

in our example, then we obtain a break down of the GMRES as it can be remarked on Figures

6-8. Indeed, stagnation occurs e.g. for Np = 150 while it does not for Np = 120. In particular,

the relative error corresponding to the stagnation at Np = 150 is equal to 10−2 while it is tol for

Np = 120.

4.3.2 Fast MVPs for Toeplitz matrices

The direct computation of a MVP y = Ax can be computed by blocks. Let us set: x = (x1, ...,xM ),

with xp ∈ C2Np+1, and y = (y1, ...,yM ), with yp ∈ C2Np+1. Then, we directly have from the

structure of A given by (20)
y` = x` +Dp

∑
1≤p 6=`≤M

z`,

z` = (S`,p)Txp,
(23)

with 1 ≤ ` ≤ M . The main cost of the above evaluation is linked to the computation of z`

which is quadratic according to (2Np + 1). Moreover, this must be repeated for each sub-block

and each component of y`. This is very expensive when the frequency is large since the size of

14
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Figure 6: Number of iterations with respect to Np.

(S`,p)T is (2N` + 1) × (2Np + 1). Another way of computing a Toeplitz MVP for a matrix of

size n × n is to use the fast algorithm explained in ([10, pp. 95-96]) for MVPs involving Toeplitz

matrices. The idea consists in building an associated circulant matrix using the Toeplitz matrix

and next applying an FFT-based MVP algorithm for circulant matrices. This algorithm is coded

using Matlab FFT function. The resulting total cost in terms of real operations for computing y` is

composed from: one complex-valued Toeplitz MVP in 15n log2(n)+n operations (see [6] page 193),

with n = 2Np + 2N` + 2, summing up next on 1 ≤ p 6= ` ≤ M , the computation of the diagonal

matrix Dp which is 6N` + 3, and finally adding x`. Again, summing up on ` = 1, ...,M gives the

total cost. If ap = a, then, this requires asymptotically O(60(M − 1)2ka log2(4ka)) operations

compared to O(4(M − 1)2ka2) for a direct MVP. An example is given on Figure 9 showing the

CPU time reduction with respect to ka (with a = ap, 1 ≤ p ≤ M) using the fast MVP algorithm
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Figure 7: Evolution of the residuals with respect to niter for Np = 120 and Np = 150.

compared to the direct algorithm in the single-row configuration with M = 30 and bx = 3.

4.3.3 Numerical study of the convergence rate

Iterative solver. As already mentioned, the linear system (19) must be solved iteratively using

either the BICGStab or the GMRES [22]. From a large set of numerical simulations, the GMRES

provides the fastest convergence rate (see Figure 10). However, a more important memory storage is

required which can significantly limit the possibility of prospecting high-frequencies for example. We

present on Figure 10 the behaviour in terms of MVPs of the GMRES, BICGStab and GMRES(50)

according to ka in the single-row configuration. We can see that the GMRES breaks down at

ka = 140 due to memory limitations. This is not the case of BICGStab and GMRES(50) which

keep on working. Moreover, it appears that the restarted GMRES generally leads to similar or

better convergence results than the BICGStab. For these reasons, we choose the GMRES(50) in
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the sequel. Another way of improving the convergence rate consists in preconditioning the linear

system. This solution is analyzed in Section 4.3.4 where we build a geometrical preconditioner.

Single-row configuration. Figure 10 shows the dependence of the number of MVPs according

to the wavenumber ka. As seen, for this complex configuration, the number of MVPs increases

with ka. For a fixed wavenumber, we also observe a dependence with respect to the number of

obstacles M and the distance δ between two obstacles: δ = bx−a. We remark on Figure 11 that the

number of MVPs increases linearly with M . Moreover, the slope of the line is more important as δ

tends toward zero, meaning that we have two closer successive scatterers. This is observed again on

Figure 12 where the number of MVPs is given according to δ in logarithmic scale for ka = 100 and

M = 10. We see that the number of MVPs strongly decreases as the separation distance δ tends

to infinity, i.e. δ � λ. This corresponds to a weaker coupling between the obstacles in the multiple

17



0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

ka

C
P

U
 ti

m
e

 

 

direct algorithm

fast algorithm

Figure 9: Comparison of the CPU time for computing one MVP using the direct and fast algorithms.
We take: ka = 100, bx = 3 for the single-row configuration (Dirichlet problem).

scattering phenomenon. For small values of δ, δ � λ, the number of MVPs strongly increases,

because the linear system becomes ill-conditioned. Finally, we observe an intermediate resonance

region for δ ≈ λ where we have a few peaks in the number of MVPs. A physical interpretation of

this phenomenon is the following. In this regime, an approximate model consists in considering that

two close circular scatterers, for ka � 1, behave like two parallel planes separated by a distance

δ. Then resonances occur for such a configuration when kδ = nπ ∈ N∗. This is confirmed for

n = 1, 2, 3, 4, on Figure 12, corresponding respectively to δ = 3. 10−2, 6. 10−2, 1.2 10−1, 2.4 10−1.

This generally creates a deterioration of the condition number at these frequencies, due to small

eigenvalues in the matrix of the system. A similar problem also arises in the context of integral

equations [11, 12, 3, 4].

Rectangular and triangular lattice configurations. We now analyze the rectangular lattice
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Figure 10: Number of MVPs with respect to the wavenumber ka: single-row configuration with
75 obstacles and bx = 3. We use different iterative solvers: GMRES, GMRES(50) and BiCGStab.
The tolerance is tol = 10−10 (Dirichlet problem).

configuration. A first test-case is given on Figure 13. We consider a rectangular lattice with Mx = 8

and increase the size of layers according to My = 2, 4, 8. We fix bx = 8 and by = 13. The number

of MVPs required by the GMRES(50) is represented as a function of ka. We observe a stabilization

with the frequency but the number of MVPs is larger with My, and thus, with M . This is consistent

with the previous observations in the single-row case. This situation is, in some sense, not extreme

because the distance between the obstacles is sufficiently large.

A more difficult problem is considered on Figure 14 where we represent the number of GMRES(50)

iterations of an 5 ×My lattice, for different values of My, according to ka (for bx = by = 3). We

observe that the number of MVPs is again slightly dependent of ka but strongly varies with the

number of layers, characterized by My. Moreover, some peaks appear at some frequencies, and
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Figure 11: Number of MVPs with respect to the number of obstacles M : single-row configuration
with ka = 100 and two different values of bx. The GMRES(50) solver is used fixing tol = 10−8

(Dirichlet problem).

in particular at ka ≈ 20. This is more clearly visible on Figure 15 where we increase the lattice

size according to M = M2
x at ka = 50. We notice that the number of MVPs increases strongly

with Mx. In particular, on this example, it can be shown that, on the first values, the number of

MVPs behaves like 3M3.3 and not quadratically with M . Another way of considering particular

frequencies where peaks occur consists in modifying δ. Some numerical computations, not reported

here, confirm this property.

Concerning the triangular lattice, similar conclusions can be drawn. However, it appears that

this situation is less dramatic in terms of MVPs compared to the rectangular lattice case.
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Figure 12: Number of MVPs with respect to the distance δ between two obstacles. We fix: ka = 100,
M = 10 obstacles. The solution is obtained with GMRES(50) for tol = 10−8 (Dirichlet problem).

4.3.4 A geometrically-based preconditioner

Since many iterations may be necessary in some situations, one way to improve the rate of conver-

gence is to precondition the linear system. In our context, wa cannot directly apply an algebraic

strategy like the incomplete LU or SPAI preconditioners [22, 10] which would require to recon-

struct the full version of the matrix A. An alternative direction is to build a geometrically-based

preconditioner. We propose here a simple procedure in two steps.

First, let us introduce the notation: A = I + F , where I = diag((Ij)1≤j≤M ) is the identity

diagonal block of A and F = A − I is its complement off-diagonal part. Using the first-order

approximation of the Neumann series of A−1 gives

A−1 ≈ I − F = P. (24)
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Figure 13: Number of MVPs with respect to the wavenumber ka for the rectangular lattice con-
figuration with bx = 8 and by = 13. We fix Mx = 8 and My = 2, 4, 8. The solution is obtained
without and with the preconditioned GMRES(50) for tol = 10−8 (Dirichlet problem).

In fact, there is no reason to assume that F satisfies ρ(F) < 1, where ρ(F) stands for the spectral

radius of F . However, relation (24) must be viewed as a formal way of building an approximation

of the inverse of A and so has also a subjacent limitation range. It could be possible to choose

more terms in the approximation. However, extensive numerical computations show that this is

not a good strategy. It can even lead to the divergence of the method.

Since P is still a matrix taking all the interactions between the obstacles, it is interesting to

reduce its application cost by considering only the closest interactions. This can be done through

a second approximation by introducing a parameter d > 0 representing a maximal coupling inter-

action distance. Then, the preconditioner, denoted by Pd, only considers the interactions between

obstacles with indices 1 ≤ p, q ≤ M satisfying: bpq < d. We must notice that the construction of
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Figure 14: Number of MVPs with respect to the wavenumber ka: rectangular lattice configurations
with Mx = 5, My = 2, ..., 6. We consider bx = by = 3 and solve the linear system using the
GMRES(50) solver for tol = 10−8 (Dirichlet problem).

Pd is implicit from A and does not require any extra cost. From intensive numerical experiments,

it appears that d = bx is an optimal choice for the single-row configuration while d = max(bx, by) is

the best choice for both the regular rectangular and triangular lattices. Taking a smaller or larger

value yields a slower convergence or sometimes divergence. With this choice, the application of the

preconditioner requires a negligeable additional cost compared to the unpreconditioned version of

the solver.

To show the improvement induced by the proposed preconditioner, we present on Figure 16

the number of MVPs for a single-row configuration with M = 75 obstacles. We observe the

improvement in terms of convergence rate if we compare these results to the ones obtained on
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√
M (setting My = Mx): rectangular lattice

configuration with ka = 50 and bx = by = 3. The GMRES(50) solver is used fixing tol = 10−8

(Dirichlet problem).

Figure 10. The preconditioner always improves the convergence even for very close scatterers. The

situation is more delicate when considering the rectangular or triangular lattices. We report on

Figure 13 the results obtained for different layers My = 2, 4, 8, setting Mx = 8. The distance

between the obstacles is bx = 8 and by = 13 (and so d = 13). We see an interesting gain in terms

of reduction of iterations. However, it appears that for situations where the scatterers are close

(bx − 2a ≈ by − 2a ≤ a = min{ap}1≤p≤M ), the preconditioner is not efficient and can even lead to

a deterioration of the convergence. This means that, for this kind of configuration, more efforts

must be done for building a suitable preconditioner.

We conclude this Section by analyzing the performance of our numerical method for an un-

24



0 20 40 60 80 100 120 140 160 180 200
20

30

40

50

60

70

80

90

100

110

ka

M
V

P

 

 

Preconditioned GMRES
Preconditioned GMRES(50)

Figure 16: Number of MVPs with respect to the wavenumber ka for the single-row configura-
tion with M = 75 and bx = 3. The solution is obtained with the preconditioned GMRES and
GMRES(50) for tol = 10−10 (Dirichlet problem).

structured geometrical configuration. We consider 60 unit circular cylinders (see Figure 17) which

are supposed to be distant enough. More precisely, we assume that bmin := inf
1≤p<q≤M

bpq ≥ 3.

Figure 18 shows the convergence rate of our algortihm without preconditioner and with the

preconditioner Pd for d = 1.5 bmin. Once again, we note a faster convergence for the preconditioned

algorithm.

5 Conclusion and future work

In this paper, we investigated the numerical simulation of high frequency multiple scattering by

circular cylinders. The main difficulty that arises in this context is due to the fact that the complex

dense linear system to be solved is very large and ill-conditioned. This is in particular true when
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the number of scatterers is large and/or for high frequencies. Taking advantage of the particular

block Toeplitz structure of the matrix of the linear system, we proposed an adapted storage of the

system and an iterative algorithm of resolution, based on a fast MVP computation. We realized a

thorough numerical study of the convergence rate with respect to different geometrical parameters

of the problem (the reduced wavenumber, the distance between the scatterers, the number of

scatterers). Finally, we proposed and tested the efficiency of a geometrically-based preconditioner,

obtained by taking into account close interactions.

Considering the results obtained in this paper, we plan in the future to tackle the following

questions.

• Series truncation : The heuristic formulae (21) defining the number of harmonics to be

taken into account to obtain an accurate approximation needs to be proved rigorously.
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Figure 18: Number of MVPs with respect to the wavenumber ka for a unstructured configuration
(with and without preconditioner).

• Preconditioner : The efficiency of the preconditioner we proposed seems from our numerical

experiments to be limited in some situations (very close scatterers for instance). This is due

to the fact that the interactions become stronger in this case.

• Extensions : A natural continuation of our work is to investigate other scatterers with

simple shapes, the three dimensional Helmholtz equation and Maxwell’s equations.
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[20] J.-C. Nédélec, Acoustic and electromagnetic equations, Applied Mathematical Sciences (144),

Springer-Verlag, 2001.

[21] R.V. Row, Theoretical and experimental study of electromagnetic scattering by two-dimensional

conducting cylinders, J. Appl. Phys. 26 (6), (1955), pp. 666-675.

[22] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Pub. Co., Boston, 1996.

[23] L. Tsang, J.A. Kong, K.H. Ding and C.O. Ao, Scattering of Electromagnetic Waves, Numerical

Simulation, Wiley Series in Remote Sensing, J.A. Kong, Series Editor, 2001.

[24] O. Yilmaz, An iterative procedure for the diffraction problem of water waves by multiple cylin-

ders, Ocean Engng. 31 (24), (2004), pp. 1437-1446.

[25] O. Yilmaz and A. Incecik, Analytical solutions of the diffraction problem of a group of truncated

vertical cylinders, Ocean Engng. 25 (6), (1998), pp. 385-394.

[26] O. Yilmaz, A. Incecik and N. Barltrop, Wave enhancement due to blockage in semi-submersible

and TLP structures, Ocean Engng. 28 (2001), pp. 471-490.

29
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