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Tailored mixing inside individual droplets could be useful to ensure that reactions within micro-
scopic discrete fluid volumes, which are used as microreactors in “digital microfluidic” applications,
take place in a controlled fashion. In this article we consider a translating spherical liquid drop to
which we impose a time periodic rigid-body rotation. Such a rotation not only induces mixing via
chaotic advection, which operates through the stretching and folding of material lines, but also offers
the possibility of tuning the mixing by controlling the location and size of the mixing region. Tuned
mixing is achieved by judiciously adjusting the amplitude and frequency of the rotation, which are
determined by using a resonance condition and following the evolution of adiabatic invariants. As
the size of the mixing region is increased, complete mixing within the drop is obtained.

PACS numbers: 47.51.+a, 47.61.Ne, 47.52.+j

I. INTRODUCTION

Droplets have been proposed as an alternative to stan-
dard fluid-stream microfluidics for lab-on-a-chip appli-
cations. This microfluidics approach, also referred to
as “digital” because it uses “discrete” fluid volumes
(droplets) rather than continuous streams, holds great
promise due to the possibility of using single droplets as
microreactors [1]. Efficient mixing, however, is needed
for reactions to occur, but remains difficult to achieve
because the Reynolds number (Re) is usually very small
and so the flow is laminar. This issue has recently at-
tracted much attention in the literature. For flows in
microchannels, while there are many strategies based on
altering the channel geometry, the use of forcing alone
(see, e.g., [2, 3, 4, 5, 6]) has also proved to be efficient,
especially in the case of low Re [7]. The combination of
both geometry alteration and forcing has been explored
as well [7, 8, 9, 10]. For droplet-based microfluidics,
the forcing alone is the preferred strategy as the defor-
mation of the droplet is difficult to control. In almost
all cases, the enhancement of mixing in miniature ge-
ometries is based on chaotic advection, the stirring phe-
nomenon that stretches and folds fluid elements thus in-
creasing the interfacial area between the two fluids to be
mixed. Chaotic advection inside a liquid drop subjected
to a forcing (at low Re) has been studied extensively
[11, 12, 13, 14, 15, 16, 17] and was obtained experimen-
tally by means of oscillatory flows [18, 19]. In this letter,
we focus on unsteady – yet periodic – forcing.
From a dynamical systems viewpoint, the introduction
of a time-dependent perturbation or forcing breaks the
invariants (related to the symmetries of the unperturbed
system), thus introducing resonances between the nat-
ural frequencies of the unperturbed problem and the
frequency(-ies) of the forcing. Although such resonances
create chaotic regions where mixing occurs, in general,

chaotic and regular regions co-exist and unexpected reg-
ular sizable pockets persist.
In many situations where it is indeed possible to create
chaos, controlling the mixing region(s) remains a chal-
lenge. Such a control, however, should be possible since a
chaotic system is sensitive to changes in parameter values
(as it is to changes in initial conditions). These changes
should generically modify the resonances, and thus the
location and size of the chaotic regions.
Our general approach along these lines is to consider a
bounded three-dimensional (3D) flow, which is the super-
position of an integrable flow v0 with at least one invari-
ant and a small time-dependent perturbation εv1(x, t),
0 ≤ ε≪ 1. If v0 has only one invariant, the phase space
contains two-dimensional tori. In this case, the perturbed
flow, ẋ = v0(x)+ εv1(x, t), has poor mixing properties if
the amplitude of the perturbation ε is small, since two-
dimensional (2D) tori act as barriers to chaotic diffusion
(e.g., [20]). If, on the other hand, v0 has two invari-
ants, trajectories of this integrable flow are all periodic.
Most of these periodic orbits are expected to be broken
by a generic perturbation v1 with an arbitrarily small
amplitude ε. Efficient mixing properties might then be
obtained with such perturbed flows. In this work, we
consider an axisymmetric integrable flow possessing two
invariants, thus possibly offering efficient mixing proper-
ties after being perturbed.
While many previous works [11, 12, 21, 22] have shown
the existence of chaotic behavior in 3D bounded steady
flows, we turn our attention to unsteady flows; the added
unsteadiness targets the control of the chaotic behavior
through resonance phenomena [17, 23, 24]. Specifically,
we seek to create a mixing zone of tunable size which re-
mains localized within a well-defined region of the drop.
This should also provide a rationale for the route to com-
plete mixing as the perturbation increases.
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II. MODEL

A. Flow equation and assumptions

We consider a spherical Newtonian drop immersed in
an incompressible Newtonian flow in the case where the
linear external field is characterized by translational ve-
locity and vorticity vectors, similarly to [12]. As in the
latter reference, we assume that the local Re is much
smaller than one and that the interfacial tension is suffi-
ciently large for the drop to remain spherical.
The internal velocity field is obtained by solving the
Stokes flow problem for both the internal and external
flows satisfying the continuity of velocity and tangential
stress conditions across the drop surface. In addition,
we introduce unsteadiness in the problem by making the
vorticity time dependent. In a Cartesian coordinate sys-
tem translating with the center-of-mass velocity of the
drop, and with the z axis in the direction of the transla-
tion, the paths of passive marker particles are given by
the solution of the non-autonomous dynamical system:

u = ẋ = zx− a(t)ωzy,

v = ẏ = zy + a(t) (ωzx− ωxz) , (1)

w = ż = (1 − 2x2 − 2y2 − z2) + a(t)ωxy,

where all lengths and velocities have been non-
dimensionalized by the drop radius and the magnitude
of the translational velocity. Here, the vorticity is de-
fined by ω = (ωx, ωy, ωz) = (1/

√
2, 0, 1/

√
2), the uni-

tary vector corresponding to the axis of rotation, and
a(t) = ε/2 (1 + cosωt), characterized by the frequency
ω and the amplitude ε. In this letter, we consider only
small amplitudes, i.e. for 0 ≤ ε ≪ 1. Note that the for-
mer equations are identical to those in [12] except that
the constant vorticity vector has been replaced by a(t)ω.
This can be done by either assuming unsteady vorticity
in the external flow field, or by applying a time depen-
dent body force. In practice, this could be realized, e.g.,
by creating a time dependent swirl motion in the external
flow or by applying an electric field that exerts a torque
on the drop (e.g.,[25] it or work on electrorotation). This
flow is the superposition of a Hill’s vortex and an un-
steady rigid body rotation, and the surface of the drop,
r2 = x2 + y2 + z2 = 1, is invariant under flow (1).

B. Integrable case

We now discuss some features of the unperturbed ax-
isymmetric (2D) flow (ε = 0). The flow possesses two
independent integrals of motion, e.g., the streamfunction
ψ and the azimuthal angle φ:

ψ = 1/2ρ2
(

1 − r2
)

, φ = arctan y/x, (2)

where ρ2 = x2 + y2 and ψ ∈ [0, 1/8]. The streamlines
of the unperturbed system are lines of constant ψ and φ,

FIG. 1: Streamlines inside the drop (without rotation) and
their frequencies Ω (ψ) as given by Eq. (3).

denoted by Γψ,φ, and defined as (1−2ρ2)2 +(2ρz)2 = 1−
8ψ (see Fig. 1). Almost all streamlines are closed curves
surrounding a circle of degenerate elliptic fixed points
(ρ = 1/

√
2, z = 0). In addition, there are two hyperbolic

fixed points located at the poles of the sphere which are
connected by heteroclinic orbits. The frequency of the
motion on Γψ,φ is given by

2π

Ω(ψ)
=

∫ π/2

−π/2

√
2 dα

√

1 + γ(ψ) sinα
=

2
√

2√
1 + γ

K

(
√

2γ

1 + γ

)

,

(3)
where γ(ψ) =

√
1 − 8ψ and K is the complete elliptic

function of the first kind. The frequency Ω is bounded
by two limits, Ω(0) = 0 and Ω(1/8) =

√
2 (see Fig. 1).

On every streamline Γψ,φ, we introduce a uniform
phase χ mod(2π) such that χ = 0 on the x − y plane

(with ρ ≤ 1/
√

2) and χ̇ = Ω (ψ). The unperturbed sys-
tem, which can be rewritten in terms of (ψ, φ, χ) as

ψ̇ = 0, φ̇ = 0, χ̇ = Ω(ψ),

belongs to the class of action-action-angle flows.

C. Perturbed case

In the perturbed case 0 < ε≪ 1, the time evolution of
the two invariants of the unperturbed system is given by

ψ̇ = −2a(t)ωxψ sinφG (ψ, χ) ,

φ̇ = a(t)ωz − a(t)ωx cosφG (ψ, χ) , (4)

where G(ψ, χ) = z/ρ is 2π periodic in χ and has zero
average in χ. The time evolution equation for χ is

χ̇ = Ω(ψ) + a(t)H(ψ, φ, χ),

where H is 2π periodic in χ. The dynamics possesses two
time scales, a fast one (of order one) associated with χ,
and a slow one (of order 1/ε) associated with ψ and φ.
If Ω and ω are incommensurate, then the averaging over
Ω and over ω can be performed independently. In this
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case, the time-periodic terms in Eq. (4) average out, and

the averaged system reduces to ψ̇ = 0, φ̇ = −ε/2. Thus
in the averaged system the value of ψ is conserved as it
was in the unperturbed system; in other words, ψ is an
invariant of the averaged system. Each trajectory of the
averaged system evolves on two-dimensional nested tori
Tψ. In the perturbed system, ψ is an adiabatic invariant
and the motion follows adiabatically the tori Tψ.

III. METHODS AND RESULTS

A. Mixing generation via resonance phenomena

We now turn to the generation of a 3D chaotic mixing
region inside the drop, for which we seek to control both
the location and the size. The strategy used for this
purpose is to bring a chosen family of unperturbed tori
Tψ into resonance with the perturbation a(t) by adjusting
the frequency ω to satisfy the resonance condition

nΩ(ψ) − ω = 0, (5)

for some n ∈ N (see Fig. 1). For any fixed ω we denote
by

{

T (n)(ω) |n ∈ N
}

the set of resonant tori Tψ satisfy-
ing (5). Hereafter, we denote the chaotic mixing region
generated around T (1)(ω) by CMR.

B. Control of the mixing

Figures 2 and 3 present Liouvillian sections of the per-
turbed system, which consist of 2D projections of time-
periodic 3D flows by a combination of a stroboscopic map
and a Poincaré section (here, the y = 0 plane). Figure 2
shows that a perturbation a(t) creates a 3D CMR around
T (1)(ω) and its location is controlled by varying ω accord-
ing to Eq. (5). In what follows, we analyze the location
and the size of the CMR as ω and ε vary.

For small values of ω, all resonances are located near
the pole-to-pole heteroclinic connections (at ψ = 0, near
the z axis and near the boundaries of the drop, see
Fig. 2a). As ω is increased, the CMR penetrates deeper

into the drop (Fig. 2b). In the interval 0 < ω <
√

2, the
CMR is the largest chaotic region (compared to chaotic
regions corresponding to higher order resonances), with
all the other chaotic regions localized close to the z axis
and near the drop boundaries (around the heteroclinic or-
bits); this is due to the shape of Ω (ψ). As ω is increased
further, the CMR moves toward the location of the ellip-
tic fixed points of the unperturbed system, closely follow-
ing the location of the resonant torus T (1)(ω) (Fig. 2c).

As the value of ω approaches
√

2, the CMR shrinks to
the circle of elliptic fixed points (Fig. 5).

Whereas the frequency ω of the rigid body rotation is
mostly responsible for the location of the CMR, it is its
amplitude ε which mostly determines its size. Figure 3
shows that the size of the chaotic mixing regions created

FIG. 2: Liouvillian sections for the amplitude ε = 0.03 and
the frequencies ω = 0.55, 0.93, 1.28, 1.41 (a-d). The (red)

dashed line inside the CMR is the torus T (1).

FIG. 3: Liouvillian sections for the frequency ω = 1.376 and
the amplitudes ε = 0.01, 0.05, 0.10, 0.20 (a-d).

by the n = 1 resonance and by higher order resonances
(mostly the n = 2 resonance) increases as the ampli-
tude of the perturbation increases. Around ε ≈ 0.20, the
chaotic regions around the heteroclinic orbits and the
CMR join together to cover the entire drop volume.

Recall that in the averaged system the adiabatic in-
variant ψ is constant. In the exact system, however,
along a given trajectory starting at ψ = ψ0 it varies be-
tween ψ− (ψ0;ω, ε) and ψ+ (ψ0;ω, ε). The width ∆ψ =
ψ+ (ψ0;ω, ε)− ψ− (ψ0;ω, ε) is small away from the reso-
nance, and increases significantly closer to the resonance.
The projection of three characteristic trajectories onto
the (ψ, φ)-plane (called the slow plane in dynamical sys-
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FIG. 4: Projection of three characteristic trajectories on the
slow phase plane, with φ0 = 0 and ψ0 = 0.010, 0.073, 0.125.
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FIG. 5: Size of the chaotic mixing region; Upper panel: Nor-
malized ∆ψ vs. ω for the amplitudes ε = 0.01, 0.05, 0.10, 0.20
(a-d); Lower panel: Normalized ∆ψ vs. ε for ω =
0.55, 0.93, 1.28, 1.41 (a-d).

tems) is presented in Fig. 4. The narrow regions on the
sides are off-resonance trajectories that stay quite close
to the corresponding tori Tψ. In between, the middle

trajectory deviates much further from its Tψ = T (1)(ω)
and fills the entire CMR. The quantity ∆ψ is probably
the most convenient quantity to estimate the size of the
CMR (around T (1)(ω) for ω <

√
2). The volume between

the tori Tψ−(ω) and Tψ+(ω) gives the CMR size in 3D.
The dependence of the size of the CMR (in terms of ∆ψ)
on ε and ω is illustrated in Fig. 5. The curves (a)-(d) in
the upper and lower panels correspond to the Figs. 2a-d
and 3a-d, respectively. For a given ω value (i.e. for a
given T (1)(ω)), the size can be controlled by adjusting
the value of ε; for example in the range of frequencies
1.181 ≤ ω ≤ 1.357, the entire droplet exhibits chaotic
mixing for ε ≥ 0.175. For each smaller value of ε the
size reaches a maximum for a certain value ωm (ε) of
the frequency. On the one hand, this property can be
used as an optimization technique to obtain the maxi-

mal CMR size one can reach for a given amplitude ε of
the rotation. On the other hand, ∆ψ versus ε increases
quite monotonically for all values of ω. The derivation
of the maxima locations and estimates of ∆ψ as func-
tions of the parameters and the order of resonance, will
be addressed elsewhere. The structure of the CMR in
our case is rather different from that obtained in other
problems that possess resonance-induced chaotic advec-
tion. Namely, here the size of the CMR vanishes as ε
goes to 0 and the CMR is localized near the resonance.
In contrast, in the flow considered in, e.g., [17], the mix-
ing is caused by resonances, but the CMR occupies a
volume on the scale of the whole system. The difference
comes from the fact that the averaged change of the fre-
quency of the fast system vanishes in the current system,
thus preventing the trajectories starting away from the
resonance from approaching it. This property makes the
kind of flows investigated here useful as it may be ad-
vantageous to localize the mixing in certain parts of the
system only.

IV. CONCLUSION

In summary, we have shown that by applying a judi-
cious oscillatory rotation to a translating drop (an inte-
grable system), one can create a chaotic mixing zone with
a prescribed location and size. The appropriate values of
the parameters of the perturbation (here, a rotation of a
given frequency and amplitude) are determined by quan-
titative features of the integrable case. For any amplitude
of the rotation, the frequency optimizing the CMR size
has been obtained. Such an optimization could be useful
in guiding the design of practical mixing devices aiming
at the best possible mixing rate within individual drops.
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