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Abstract

A k –� model is used to describe the steady state of �ne-grained sediments maintained in suspension by 

purely di�usive turbulence, as generated in oscillating grid turbulence experiments. The behaviour is shown 

to depend both on the bulk Rouse number Rou0 and the product of the bulk Rouse number and the bulk 

Richardson number Ri0 Rou0, built on oscillating grid parameters. For Rou0 ¡ 0:01, concentrated suspensions 

are observed with a homogeneous particle concentration in the suspension layer. An interface, called lutocline, 

separates the suspension layer f rom the clear water at a distance zm f rom the grid. The depth of the suspension 

layer is f ound to vary as zm=z0 ˙ (Ri0 Rou0)
−1=4. For Ri0 Rou0�1 the decay of turbulence is a�ected by the 

particle concentration only in a region very close to the interf ace. In this case the ux Richardson number 

approaches the value of 1 near the interf ace. The lutocline is seen to vanish f or large values of Rou0. For 

Rou0 ¿ 0:01 the mean sediment concentration and turbulence decay simultaneously with increasing distance 

f rom the grid, and no sharp interf ace is observed.
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1. Introduction

In many natural ows, the production of turbulence is due to the shear of the mean ow and

is localised mainly at the bottom of the uid layer. It is well known that turbulence can maintain

high concentrations of particles in a steady-state suspension, independent of the way turbulence

is produced. In particular, E and Hop�nger (1987) and Huppert et al. (1995) have shown that a

steady two-layer system is formed in oscillating grid turbulence experiments, with a sharp interface

separating a lower layer having an approximately constant sediment concentration and an upper layer

containing almost no sediment. In such experiments, the turbulence produced by the grid oscillation

is transported inside the tank by the sole e�ect of turbulence di�usion.

The former studies by E and Hop�nger (1987) and Huppert et al. (1995) were concerned with

non-cohesive particles. The present work originated from oscillating grid turbulence experiments

(Gratiot, 2000; Mory et al., 2002) performed using natural cohesive sediments experiments made of

mud. Concentrated benthic suspensions (CBS) were also observed with a sharp interface. In the case

of muddy sediments, very signi�cant variations in the depth of the suspension layer were observed

depending on the concentration in the suspension. These are the result of large variations in the

settling velocity of muddy sediments. Experiments with cohesive sediment are particularly di�cult

to interpret because of the complexity of measuring the settling velocity of mud ocs. A striking

property observed in cohesive sediment suspensions (Mory et al., 2002) was that the ux Richardson

number, de�ned as the ratio of the buoyancy ux to the available turbulence, increases towards a

value close to one in the vicinity of the lutocline. Although such estimates have also been obtained

from numerical simulations of purely di�usive turbulence in stable strati�ed uid (Briggs et al.,

1998), it is generally considered that most of the mechanical energy input is dissipated viscously

in strati�ed ows (Hop�nger and Linden, 1982) and, in particular, the ux Richardson number is

below 0.25 in turbulent mean-shear ows (Ivey and Imberger, 1991).

In this paper, we investigate the conditions of occurrence of particle suspension layers in an

oscillating grid tank experiment using a steady k–� model. This model is still the simplest and

cheapest for engineering applications, although more elaborate models such as Reynolds stress models

(Straatman et al., 1998) and direct numerical simulation (Briggs et al., 1998) have also been used

recently for di�usive turbulence. There was a long debate in the past as to whether it is appropriate

to use a k–� model to describe zero-mean-shear turbulence, because this model was conceived in the

framework of turbulence with mean-shear and the well-known constants of the steady k–� model were

determined from experiments with turbulent mean-shear ows. This debate is connected to another

very long one about the decay laws for turbulent kinetic energy in oscillating grid experiments

(Hop�nger and Toly, 1976; Nokes, 1988; DeSilva and Fernando, 1994; Huppert et al., 1995; among

others). Our purpose is not to add another stone in these debates. The k–� model was used before by

Sonin (1983) and Matsunaga et al. (1999) to describe purely di�usive turbulence. When expressing

the decay law in oscillating grid turbulence in the form of a power law (i.e. k ˙ zn), one observes

that the exponent n predicted by the k–� model in clear water (with no particles) is di�erent from

the values given by various authors in light of experimental results. However, Matsunaga et al.

(1999) have shown that the results of the k–� model in clear water compares well with oscillating

grid turbulence experiments, at least in the range of experimental conditions available, and that the

usual constants of the k–� model are acceptable for modelling of oscillating grid turbulence. This is

discussed in more detail in Section 2.2 of this paper.
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The purpose of the present paper is to investigate how a particle suspension modi�es the decay

of turbulence as compared with the decay in clear water, and to understand how this will produce

lutocline formation. The k–� model and the computation procedure are presented in Section 2,

with an emphasis on its application to oscillating grid experiments. Sections 3 and 4 are devoted

to the results of numerical computations. Although this work was initially motivated by muddy

concentrated benthic suspensions, and cases of computations were chosen from the experimental

conditions published in Gratiot (2000) and Mory et al. (2002), our results are not speci�cally

interpreted in terms of cohesive sediments. The range of application of the present study is much

concerned with �ne-grained sediments, including cohesive sediments. For the present modelling,

however, cohesive and non-cohesive sediments are considered in the same way, because the sediment

properties enter only through the settling velocity of sediments. The application of the results of this

study will only be more di�cult for cohesive sediments as the settling velocity of sediment may

vary due to occulation e�ects. Modelling of occulation e�ects depending on the turbulence level

is beyond the scope of the present study. Section 5 compares the results of our computations with a

wide range of grid oscillation particle suspensions experiments, in particular those of E and Hop�nger

(1987) and Huppert et al. (1995), which deal with non-cohesive particles.

2. A steady k–� model for particle suspensions

2.1. Formulation

We consider the case of non-cohesive particles which are maintained in suspension in a stirring

tank by an oscillating grid. The con�guration is sketched in Fig. 1. The vertical axis is oriented

upwards, z=0 is the grid mean position. The grid oscillation generates a turbulent ow. We assume

here that there is no mean ow inside the tank. For constant stirring conditions, a steady-state parti-

cle suspension is established which may take the forms of two di�erent typical vertical distributions

of concentration. In the �rst case, sketched in Fig. 1a, which is basically obtained when the particle

settling velocity is su�ciently large, the particle settling ux is large and cannot be balanced by the

turbulent buoyancy ux, unless the mean concentration decreases gradually with increasing distance

from the grid. In the second case (Fig. 1b), which is obtained for particles having a small settling

velocity, the particle settling ux is much smaller than in the �rst case. Because the turbulent di�u-

sivity is high, the equilibrium of the settling ux with the turbulent buoyancy ux is obtained in the

suspension with the mean concentration in the suspension decreasing very slowly with increasing

distance from the grid. This suspension is established up to the lutocline position, denoted zm, which

is constant in time. The lutocline is the interface in a two-layer system where the lower layer is

the particle suspension and the upper layer is clear water containing no particles. For �ne-grained

sediments (Fig. 1b), it will appear later that the averaged concentration in the suspension is almost

homogeneous in the lower layer except in the vicinity of the lutocline, where the particle concen-

tration suddenly drops. The equilibrium of the suspension layer is characterised by a relationship

between zm, C0 (the mean concentration at z = 0), the particle settling velocity ws and the grid

oscillation parameters (frequency f, stroke S, mesh M).

We assume in our model that all averaged quantities vary only with the position along the vertical

axis and that they are homogeneous in a plane perpendicular to the vertical axis. The equilibrium
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Fig. 1. Sketch of the grid experiment. The oscillating grid maintains a steady sediment suspension: forming a lutocline at

the position zm (b) or not (a). Circular arrows represent turbulence and the density of dots represents the concentration.

in the suspension layer is given by the mass balance equation

0 =
d

dz
[wsC − w′c′]; (1)

where C(z) is the mean concentration at elevation z, and w′ and c′ are the uctuations of vertical

velocity and sediment concentration. The averaged upward turbulent solid particle ux is modelled

as

w′c′ = −�t

dC

dz
: (2)

The eddy di�usivity �t(z) is

�t =
�t

�c

: (3)

The eddy viscosity �t(z) is related to the turbulent kinetic energy k(z) and the rate of dissipation of

the turbulent kinetic energy �(z) as

�t = c�

k2

�
: (4)

The vertical distributions of k(z) and �(z) are determined from the classical k–� equations (e.g.

Rodi, 1984; Winterwerp, 2002). The steady-state equations without mean ow are written below.

The equation of conservation of the turbulent kinetic energy k is

0 =
d

dz

[(

� +
�t

�k

)

dk

dz

]

− � +
�s − �w

�s�w

g�t

dC

dz
: (5)

The equation of conservation of the dissipation rate � of turbulent kinetic energy has a similar form

0 =
d

dz

[(

� +
�t

��

)

d�

dz

]

− c2

�2

k
+ (1 − c3)

�

k

�s − �w

�s�w

g�t

dC

dz
; (6)

where g is the acceleration of gravity, �s = 2:65 kg=l and �w = 1 kg=l are taken as the particle and

water densities, respectively. We use the usual values for the k–� model constants as

�k = 1; �� = 1:3; c� = 0:09 and c2 = 1:92: (7)
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The values of the constants appearing in (3) and (6) to account for buoyancy e�ects are not as

usual. We take

�c = 0:7 and c3 = 0: (8)

Winterwerp (2002) suggested that c3 = 1 for a stable strati�cation. We instead show in Appendix A

that the buoyancy term in (6) cannot be zero for a solution to exist in the vicinity of the lutocline

in the framework of the standard model for fully developed turbulence. We therefore simply take

c3 = 0. Note that the numerical results are not very sensitive to the values of �c and c3 and their

choice do not preclude the generality of the conclusions of the present paper. This was shown by

additional computations not presented in this paper for clarity.

Eqs. (1)–(6) can be reduced to a set of three equations, which is more tractable. The three

quantities C(z), k(z) and �(z) are the solutions of

0 = wsC +
c�

�c

k2

�

dC

dz
; (9)

0 = D − � − B =
d

dz

[(

� +
c�

�k

k2

�

)

dk

dz

]

− � − GwsC; (10)

0 =
d

dz

[(

� +
c�

��

k2

�

)

d�

dz

]

− c2

�2

k
− (1 − c3)

�

k
GwsC (11)

with G=g(�s −�w)=�s�w. Eq. (9) expresses the momentum balance: the upward turbulent buoyancy

ux balances the downward settling ux of particles. The spatial distribution of the turbulent kinetic

energy is the result of three di�erent e�ects. We identify in (10) the di�usion of the turbulent

kinetic energy (D), the dissipation (�) and the buoyancy e�ect (B). A similar analysis holds for the

distribution of the turbulent kinetic energy dissipation rate (Eq. (11)).

Introducing the local Rouse number

Rou(z) =
ws

√

k(z)
(12)

and the local Richardson number

Ri(z) =
G

√

k(z)C(z)

�(z)
; (13)

we observe from (10) that the buoyancy e�ect is negligible for the decay of the turbulent kinetic

energy when Ri(z)Rou(z)�1. The decay of the turbulent kinetic energy is almost the same as in

clear water. A dimensional analysis of (10) shows that the characteristic lengthscale of the decay of

the turbulent kinetic energy is the integral lengthscale

Zk ≈
k3=2

�
= l: (14)

In a similar way, a dimensional analysis of (9) shows that the mean concentration varies vertically

over a distance of the order of

ZC ≈
k1=2

ws

l =
l

Rou
; (15)

which is much larger than Zk when Rou(z)�1. In this case, we will observe that the concentration

is nearly homogeneous in the lower part of the suspension layer where Rou(z)Ri(z)�1, and that
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the decay of turbulence is almost the same as in clear water. The quantity Ri(z)Rou(z) increases

with increasing distance from the grid. When it becomes of the order of 1, the decay of turbulence

becomes much more rapid. A sudden decrease in the concentration occurs while the Rouse number

increases rapidly. The lutocline settles down.

2.2. The solution in the lower part of the suspension layer in terms of grid oscillation parameters

We determine here the distribution of sediment concentration C(z), turbulent kinetic energy k(z)

and dissipation rate �(z) in the lower part of the suspension layer 0¡z ¡z1. The position z1 is

currently undetermined but we assume that Ri(z)Rou(z)�1 for 0¡z ¡z1.

We refer in the present section to a paper by Matsunaga et al. (1999). Using the same k–� model

as we do, they determined the distributions of k(z) and �(z) produced in a grid oscillation experiment

in clear water. On the one hand, Matsunaga et al.’s paper contains a useful discussion on the validity

of the k–� model for modelling of purely di�usive turbulence. On the other, their solution establishes

the dependence of the distribution of k(z) and �(z) with the grid oscillation parameters (grid mesh

M , frequency f and stroke S of grid oscillation). We shall observe that the solution in the lower

part of the suspension layer is almost the same as in clear water.

The validity of the k–� model to describe the transportation of turbulence by the sole e�ect of

di�usion is questionable. This model was conceived by considering ows in which the distribution

of turbulence inside the domain is governed by the production of turbulence from the mean shear

ow and its constants were determined from experimental results obtained for such ows. The case

of turbulence produced in an oscillating grid experiment is rather di�erent. When the geometrical

properties of the grid are suitably chosen, the mean ow is very weak in the tank, except in a

very limited region close to the grid. Turbulence is transported from the grid by the single e�ect of

di�usion. The ability of a k–� model to describe the decay of turbulence with increasing distance

from the grid was considered before by Sonin (1983). We observe that the solution obtained by

Matsunaga et al. is basically the same as Sonin’s. Both authors showed that the k–� model predicts

decay laws for the turbulent kinetic energy and its dissipation rate in the form of power laws.

The power-law exponents they obtained are the same. In addition, Matsunaga et al. compared their

solutions with a set of various laboratory experiments, and related their numerical solutions to the

parameters of grid oscillation. The exponents of the decay laws predicted by the k–� model for

the turbulent kinetic energy and the dissipation rate are −4:98 and −8:46, respectively, whereas

the exponents suggested by several authors (Hop�nger and Toly, 1976; Ura et al., 1987; DeSilva

and Fernando, 1994) from their experiments were −2 and −4, respectively. This is a signi�cant

di�erence from the mathematical point of view, but Matsunaga et al. showed that, on the basis of

available experimental data, the results of the k–� model with its widely accepted model constants

are also applicable to oscillating grid turbulence.

It is not the purpose of the present paper to address again the decay of turbulence produced by

an oscillating grid. Our aim is to investigate the conditions of existence of a lutocline separating

a suspension layer and a clear water layer using the k–� model. Considering that Matsunaga et al.

provided clear proof that the k–� model is able to address oscillating grid turbulence, at least for the

conditions of available experimental data, the k–� model with its usual constant is used here. We

additionally refer to the quanti�cation of the turbulent kinetic energy k0 and dissipation rate �0 at

the mean level position determined by Matsunaga et al. in terms of the grid oscillation parameters
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M , S and f. For Re = fS2=�¿ 5500 they obtained

k0 = 0:6f2S2(S=M)1=4 and �0 = 0:45f3S2S=M: (16)

We only consider this case here. Using (16) the local Rouse number

Rou0 =
ws

√
k0

(17)

and the local Richardson number

Ri0 =
G

√
k0C0

�0

(18)

at the level of the grid mid position can be expressed as bulk parameters of the experiment which

compare the properties of the suspension to the grid oscillation parameters.

Following Matsunaga et al. (1999), it is straightforward to show that the decay of turbulence is

modi�ed in a negligible way in the lower part of the suspension layer as compared to the solution

in clear water when Rou0 Ri0�1. Introducing the following dimensionless quantities:

ẑ =
z

z0

with z0 =
k

3=2
0

�0

; k̂ =
k

k0

; �̂ =
�

�0

; �̂t =
�t�0

k2
0

and Ĉ = C=C0; (19)

and using a new independent variable

d�̂

dẑ
=

�k

�̂t

for 0¡ẑ ¡∞; with �̂(ẑ = 0) =

√

6�k

c�

; (20)

Eqs. (9)–(11) of the k–� model can be rewritten in a dimensionless form as

dĈ

d�̂
= −

�c

�k

Rou0Ĉ; (21)

d2k̂

d�̂2
=

c�

�k

[

k̂2 + Ri0 Rou0

k̂2

�̂
Ĉ

]

; (22)

d2�̂

d�̂2
=

c���

�2
k

[

c2�̂k̂ + (1 − c3)Ri0 Rou0k̂Ĉ
]

: (23)

The kinematic viscosity is neglected in (22) and (23) as compared to the eddy viscosity because this

set of equations will only be considered in the lower part of the suspension layer. In clear water,

Ĉ = 0 and Eqs. (22) and (23) reduce to a simple set of equations, whose solution was given by

Matsunaga et al. (1999) to be

kcw(z) = k0

(

1 +
s

6

√

6�k

c�

z

z0

)−2=s

; (24)

�cw(z) = �0

(

1 +
s

6

√

6�k

c�

z

z0

)−(3+s)=s

(25)
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with

s = −
7

2
+

√

1

4
+

6c2��

�k

: (26)

The numerical procedure used to solve the system of Eqs. (21) and (22), and in particular the values

of the boundary conditions, is described in the next section.

2.3. Numerical method and boundary conditions

A speci�c procedure must be used to determine the solution in the suspension layer because the

position zm of the lutocline is not known. The position zm must be determined as part of the solution.

The solution of the system of Eqs. (21)–(23) in the domain 0¡z ¡z1, and of the system of Eqs.

(9)–(11) in the domain z1 ¡z ¡zm has to verify the following boundary conditions:

C(z = 0) = C0; k(z = 0) = k0 and �(z = 0) = �0; (27)

C(zm) = 0; k(zm) = 0 and �(zm) = 0: (28)

In order to �nd the solution and simultaneously determine zm systems (9)–(11) and (21)–(23) is

solved using a shooting technique to determine the lutocline position. The equations are digitised

by a Runge–Kutta �nite di�erence scheme. The integration is performed by starting from the lower

boundary toward the lutocline for the boundary conditions (27) and by assuming empirical values

for the derivatives [dk=dz]0 =dk=dz(z =0) and [d�=dz]0 =d�=dz(z =0). For any choice of boundary

conditions, the computation is stopped at a position z if one of the values C(z), k(z) or �(z) becomes

negative or zero, whereas the other two remain positive. Using a ‘trial and error’ technique, new

values are given for the derivatives of k and � at z=0, and a subsequent integration of the equations

is performed. The procedure is repeated until the values of the derivatives [dk=dz]0 and [d�=dz]0 have

been found, for which integration provides a solution where C(z), k(z) or �(z) vanish simultaneously

within a grid mesh at z = zm. The solution obtained is valid if k, � and C decrease monotonically in

the interval 0¡z ¡zm. A subsequent check of the validity of the solution is made by considering

the ux of the turbulent kinetic energy at level z,

F(z) = −

(

� +
�t

�k

)

dk

dz
: (29)

Integration of the k equation (5) over the vertical gives

F(z) = F(0) −

∫ z

0

� dz − Gws

∫ z

0

C dz: (30)

The consistent solution is obtained if the ux F(z) tends numerically to zero at z = zm.

Close to the grid the decay of turbulence is modi�ed by the particle suspension only to a very

limited extent as shown by Eqs. (22) and (23). For the cases computed in this study the bulk Rouse

number Rou0 and the bulk Richardson number Ri0 ranged between 10−4 and 10−1, and between 10−2

and 102, respectively. The quantity Rou0 Ri0 varied from 10−4 to 10−1. The derivatives [dk=dz]0 and

[d�=dz]0 at the grid mid position z = 0 were almost the same as in clear water. Writing
[

dk

dz

]

0

=

[

dkcw

dz

]

0

(1 + �k) and

[

d�

dz

]

0

=

[

d�cw

dz

]

0

(1 + ��); (31)
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Fig. 2. Computed values of �k (◦) and �� ( ) for the numerical solutions.

the results of the di�erent cases computed showed that �k ≈ Rou0 Ri0 and �� ≈ Rou0 Ri0=c2. Fig. 2

shows the dependence of �k and �� with Rou0 Ri0 obtained from our computations when the position

zm of the lutocline was found, where the concentration, turbulent kinetic energy and dissipation rate

all vanish. Slightly di�erent values of �k and �� lead to non-valid solutions (for instance, C, k or

� are not decreasing in all the suspension with increasing distance from the grid, or one of the

latter quantities becomes negative). The values of �k and �� are adjusted just to ensure the upper

boundary condition (28) at z = zm. The quantities �k and �� must be very small because, for the

conditions investigated, the turbulence in the vicinity of the grid is hardly modi�ed by the presence

of particles as compared to the decay of turbulence in clear water. Because of this, we have no

simple understanding of the dependence of �k and �� with Rou0 Ri0 displayed in Fig. 2.

3. The distributions of particle concentration and turbulence in the suspension layer

Fig. 3 shows the computed vertical variations in concentration, turbulent kinetic energy and dis-

sipation rate in the suspension layer for seven particular cases, which are representative of di�erent

behaviours. For all cases plotted, the grid oscillation parameters are the same. Di�erent sediment con-

centrations C0 and di�erent settling velocities ws distinguish the three conditions. Three di�erent bulk

Rouse numbers and three di�erent bulk Richardson numbers are considered, namely Rou0 = 10−3,

10−2, 10−1 and Ri0 = 10−1, 1, 10. The di�erent combinations of values of Rou0 and Ri0 makes the

quantity Ri0 Rou0 vary from 10−3 to 10−1. The vertical variations in the local Richardson number

Ri(z), the local Rouse number Rou(z) and the local values of Ri(z)Rou(z) are also shown in the

lower part of Fig. 3 in order to help the interpretation. The di�erent cases plotted in Fig. 3 clearly

show the e�ect of the bulk Rouse number on the particles and turbulence distributions inside the

suspension. The vertical concentration pro�les change considerably with the Rouse number Rou0.

For the lowest values of the Rouse number (Rou0 = 10−3 and 10−2) the main observation is that a

lutocline is obtained and the concentration is almost uniform in the suspension layer. For the largest

Rouse number (Rou0 = 10−1) the concentration decreases regularly inside the suspension layer with

increasing distance from the grid and no clear lutocline is observed in the concentration pro�le.
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Fig. 3. Variations in (a) the dimensionless concentration C(z), (b) turbulent kinetic energy k(z) and (c) dissipation rate

�(z) with distance z from the grid mean position for di�erent properties of particles. The vertical variations in (d) the local

Richardson number Ri(z) (Eq. (13)), (e) local Rouse number Rou(z) (Eq. (12)) and (f) local values of Ri(z)Rou(z) are

shown in addition. The same grid oscillation conditions are used for all curves plotted: f=3 Hz, S =4:5 cm, M =7:5 cm,

so that k0 = 96 cm2 s−2, �0 = 148 cm2 s−3 and z0 = 6:4 cm. Seven di�erent cases with particles are plotted, where the

type of lines indicates the di�erent values of Rou0 while the thickness indicates the di�erent values of Ri0: Rou0 = 10−3

(dashed–dotted lines), 10−2 (solid lines), 10−1 (dashed lines), and Ri0 = 10−1 (doubly thick lines), 1 (thin lines), 10

(thick lines). The vertical variations in kcw and �cw in clear water are also shown in b and c (dotted line).

The bulk Rouse number Rou0 therefore appears to be the parameter that determines the shape of

the concentration pro�le and the conditions for which a homogeneous concentrated suspension is

obtained.
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Fig. 4. Vertical pro�le of the eddy viscosity divided by the kinematic viscosity for the conditions and symbols of Fig. 3.

The vertical variations in kcw and �cw in clear water are also shown in Fig. 3 (dotted line). Because

Ri0 Rou0�1 for all cases shown in Fig. 3, we observe that the decay of turbulence is not much

a�ected by the presence of particles in the lower part of the suspension layer (ẑ = z=z0 ¡ẑ1 = 0:5),

as discussed in Section 2.2. The variations in k and kcw and the variations in � and �cw are almost

superimposed in the suspension layer, respectively, except in the vicinity of the lutocline.

The vertical pro�les of the eddy viscosity �t are plotted in Fig. 4 for the seven cases shown

in Fig. 3. This quantity decreases rapidly when the lutocline is approached. Winterwerp (1999)

discussed that low Reynolds damping functions are needed when �t ¡ 50�. For the cases considered

here, �t ¿ 50� as far as position z located less than 1 cm below the lutocline. At this level, the rapid

decrease in k and � associated with the occurrence of the lutocline is already settled. Using low

Reynolds damping functions (e.g. Patel et al., 1985) would presumably not signi�cantly modify the

position of the lutocline. Additionally, a k–� model assumes that turbulence is isotropic, and this

might also be a shortcoming for modelling the region very close to the lutocline. Anyhow, we do

not pretend to describe the interface in all its complexity but rather the conditions leading to its

formation. Because the k–� model shows that concentration and turbulence decrease very suddenly

in the vicinity of the lutocline, a more relevant and sophisticated model for describing low Reynolds

number and anisotropic turbulence should be able to sustain signi�cantly higher level of turbulence

to predict a position of the lutocline signi�cantly di�erent from that given by the k–� model.

For the same conditions as those of Figs. 3 and 4, the vertical pro�le of the turbulent kinetic

energy ux F(z) (Eq. (29)) is �nally displayed in Fig. 5. We verify that this quantity vanishes at
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Fig. 5. Vertical pro�le of the dimensionless ux of turbulent kinetic energy for the conditions and symbols of Fig. 3.

the lutocline when such an interface is observed. As discussed in Section 2.3, computing F(z) is a

check of numerical convergence. We considered that numerical convergence was obtained when the

energy ux at level zm was less than 10−5 of the ux F0 at the grid mean position.

For the cases considered in Figs. 3–5, the lutocline is a very sudden transition between the suspen-

sion layer and the clear water layer, and the concentration is almost uniform inside the suspension

layer when the Rouse number Rou0 is su�ciently small. The local ux Richardson number, de�ned

as the ratio of the buoyancy e�ects to the available turbulent energy in (10),

Rf =
B

D
=

GwsC(z)

d=dz[(� + (c�=�k)(k2=�))dk=dz]
; (32)

provides an alternative estimate of the e�ect of buoyancy on the decay of turbulence. Because

D = B + �, the ux Richardson number also takes the simple form as

Rf =
B

D
=

GwsC(z)

�(z) + GwsC(z)
; (33)

or is alternatively expressed in terms of the local Rouse number and of the local Richardson number

as

Rf =
B

D
=

Rou(z)Ri(z)

1 + Rou(z)Ri(z)
: (34)
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Fig. 6. Vertical variations in the ux Richardson number for the conditions and symbols of Fig. 3.

For the seven conditions already considered, Fig. 6 shows the vertical variations in the ux Richard-

son number. Depending on the conditions, di�erent behaviours can be noticed. We clearly observe

that the ux Richardson number peaks to one at a position very close to the lutocline for all cases

where one is observed, implying that the turbulent kinetic energy dissipation rate becomes very

low and the particle suspension suddenly drops to zero. On the other hand, the pro�les of the ux

Richardson number for computations with the bulk Rouse number Rou0 = 10−1, which do not show

the occurrence of a lutocline, display a smoother behaviour. As discussed in Section 1, the obser-

vation that the ux Richardson number may approach the maximum value of 1 in grid turbulence

experiments is a striking property, which di�ers strongly from observations in turbulence with mean

shear ows. Larger values of the ux Richardson number imply that the dissipation rate is smaller as

compared to the buoyancy term. As the energy is transmitted by di�usive turbulence at larger scales

far from the grid, we expect that the dissipation rate is reduced for a same level of the turbulent

energy, whereas mixing is more e�cient.

4. The depth of particle suspension layers

Determining the depth of the particle suspension layer as a function of the bulk Rouse number

Rou0 and the bulk Richardson number Ri0 is of practical signi�cance by providing a simple and

direct quanti�cation of experimental observations. Fig. 3 has already highlighted di�erent behaviours
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Fig. 7. Dimensionless position of the lutocline zm=z0 as a function of Rou0 Ri0. △: computations for Rou0 ¿ 0:01; ▽:

computations for Rou0 ¡ 0:01.

depending on the value of Rou0. On the one hand, when Rou0 is small, the particle concentration

cannot decrease below a minimum distance from the grid, where turbulence level has su�ciently

decreased due to dissipation and buoyancy e�ects. The buoyancy e�ect suddenly enhances the decay

of turbulence and a lutocline is formed (as sketched in Fig. 1b). On the other hand, when Rou0 is

su�ciently large, the concentration inside the suspension decreases simultaneously with the decay

of turbulence. The buoyancy e�ect is limited by the decrease in concentration, and no lutocline is

formed (Fig. 1a). Some consequences are visible on Fig. 3 and are interpreted in terms of the depth

of the suspension layer. When Rou0 is su�ciently small (Rou0 = 10−3 and 10−2 in Fig. 3) and a

lutocline is observed, the depth of the suspension layer decreases with increasing values of Rou0 Ri0
as the decay of turbulence is enhanced by the buoyancy e�ect. However, when Rou0 is su�ciently

large (Rou0 =10−1 in Fig. 3), the particle concentration decreases regularly with increasing distance

from the grid. The turbulence can maintain particles in suspension at a higher distance from the grid

as compared to the depth of the suspension layer obtained for the same value Rou0 Ri0 but for a

smaller Rou0.

The di�erent behaviours obtained from our numerical computations are summarised in Fig. 7,

which presents the depth of the suspension layer as a function of Rou0 Ri0. Two di�erent data sets

are identi�ed. The focus in this paper is on computation conditions with Rou06 0:01. A lutocline

is clearly identi�ed and the results of the computations shown in Fig. 7 indicate a regular decrease

in zm=z0 with increasing values of Rou0 Ri0. The computational results are compared with the ex-

perimental results in Section 5. For Rou0 ¿ 0:01, on the other hand, higher values are obtained for

the quantity zm=z0. The lutocline position is not well de�ned in this case, because there is no sharp

transition of density. It was determined, as explained in Section 2.3, as the �rst position where the

concentration becomes zero or negative. This mathematical de�nition lacks a physical basis and the

values of zm=z0 shown in Fig. 7 for Rou0 ¿ 0:01 are somewhat indicative. Only a few computa-

tions were performed for Rou0 ¿ 0:01; their purpose was to identify the di�erence with the case

Rou0 ¡ 0:01.
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5. Comparison with experiments

Our numerical study was motivated by observations made in recent oscillating grid experiments

with mud suspensions (Gratiot, 2000; Mory et al., 2002). A variety of suspension layers were ob-

served, for the same grid oscillation conditions, depending on the concentration level inside the sus-

pension. Signi�cant variations in the depth of the particle suspension layer were measured. Cohesive

sediment suspensions are particularly di�cult to characterize in the laboratory because measurement

of the particle settling velocity is tedious, as it varies with the concentration. The determination of an

averaged settling velocity certainly does not fully account for the deposition of ocs having di�er-

ent size and buoyancy properties. Because of the uncertainty of settling velocity measurements, the

results of our k–� model are not compared directly with the experimental results presented by Mory

et al. (2002), as this quantitative comparison does not allow clear conclusions to be drawn. However,

the range of conditions for which numerical computations were performed has been de�ned in view

of the latter experiments, considering large variations in the concentration and settling velocity. A

striking result of mud suspension experiments carried out by Mory et al. (2002) was the observation

that in the vicinity of the lutocline the ux Richardson number reaches a value close to one. This

was an unexpected result as it di�ers signi�cantly from previous experiments on suspensions in

mean-shear turbulent ows. Ivey and Imberger (1991) pointed out that the ux Richardson number

is always below 0.25. Actually, our numerical computations give some support to the argument that

grid turbulence can generate particle suspensions where the ux Richardson number is close to one.

Experiments with non-cohesive particle suspensions in an oscillating grid tank have been carried

out by E and Hop�nger (1987) and Huppert et al. (1995). It is more straightforward to compare

their results with our computations as the settling velocity of the particles is more easily determined

than in the case of cohesive sediments. Moreover, E and Hop�nger (1987); Gratiot (2000) and Mory

et al. (2002) used the same grid tank set-up. The position of the lutocline obtained in the experiments

of E and Hop�nger, and in those of Huppert et al. is compared in Fig. 8 with our numerical results

presented in Fig. 7. In Figs. 8a and b, the values of the dimensionless ratio zm=z0 are plotted as

a function of Ri0 and of Rou0, respectively. The two �gures do not provide any insight into the

dependence of zm=z0 on Ri0 and Rou0, but they indicate the range of conditions considered by the

di�erent authors. The experiments by E and Hop�nger had a high Rou0, and Rou0 Ri0 was also

rather large. For such conditions our model predicts that the decay of turbulence is rapidly enhanced

by the buoyancy, and there is no well-de�ned lutocline. The concentration decreases regularly with

increasing distance from the grid (see the dashed lines in Fig. 3). Fig. 8c shows the variations in

zm=z0 with Rou0 Ri0. E and Hop�nger’s data are clearly above the other data. Figs. 8a and b indicate

that Huppert et al. investigated a wider range of conditions that coincide with our computation cases,

except when Rou0 Ri0 is of the order of one. The data of Huppert et al. show a similar dependence

of zm=z0 on Rou0 Ri0 to that obtained in our computations. Examining the data in more detail, we

�nd that Huppert et al.’s experimental data for Ri0 Rou0 ¡ 2 × 10−3 overlap satisfactorily the results

of our computations with Rou0 ¿ 0:01, whereas the data for Ri0 Rou0 ¿ 2 × 10−3 presents a better

agreement with our computations with Rou0 ¡ 0:01, although Fig. 8b shows that Huppert et al.’s

results with Ri0 Rou0 ¡ 2 × 10−3 correspond to experiments with Rou0 ¡ 0:01.

Fig. 8 shows that both our computations with Rou0 ¡ 0:01 and the experimental results predict

a variation in the depth of the suspension layer with Rou0 Ri0 of the form zm=z0 ˙ (Rou0 Ri0)
−1=4.

This result seems to indicate a general behaviour. Huppert et al. proposed a simple analytical model
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Fig. 8. Comparison of the dimensionless position of the lutocline obtained from k–� computations with the experimental

data by E and Hop�nger (1987) (◦) and by Huppert et al. (1995). Huppert et al.’s results were obtained for di�erent

particle diameters (+: � = 0:055 mm; ×: � = 0:058 mm; ·: � = 0:108 mm; ∗: � = 0:176 mm). △: computations for

Rou0 ¿ 0:01; ▽: computations for Rou0 ¡ 0:01.

which establishes that zm=z0 ˙ (Rou0 Ri0)
−n, where the exponent n is 1

4
or 0.21, depending on the

turbulence decay law adopted. Huppert et al.’s model solves the turbulent kinetic energy equation,

assuming that the integral lengthscale varies linearly with distance from the grid (as in clear water)

and that the concentration is homogeneous inside the suspension layer. This model does not consider

the e�ect of the Rouse number, but it is partly equivalent to our numerical model when Rou0 ¡ 0:01.

Huppert et al. made additional assumptions, which actually do not appear to be required. A modi�ed

analytical model, inspired by Huppert et al.’s model, is presented in Appendix B, which shows that

the dependency zm=z0 ˙ (Rou0 Ri0)
−1=4 is quite general. This analytical model di�ers basically from

the numerical model by the fact that the analytical model assumes that the integral lengthscale is

not modi�ed in the suspension as compared to clear water. The comparison demonstrates that this

crude assumption has no e�ect on the �nal result. The more signi�cant limitation of Huppert et al.’s

model is that it can only address the case of suspensions with very low Rouse numbers.

6. Conclusion

In the comparison of our model with studies carried out by other authors, we have left aside

the work by Noh and Fernando (1991), who derived two equations for modelling sediment suspen-
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sions at low concentrations in di�usive turbulence. They computed unsteady solutions in the range

0:003¡Rou0 ¡ 0:1 and Ri0 ¡ 0:01. This low Ri0 regime does not correspond to standard experi-

mental conditions such as those considered in the present paper. Noh and Fernando’s model consists

of one equation for C similar to (9) and one equation for k. The dissipation rate is de�ned using the

integral lengthscale l, which is assumed to vary linearly with increasing distance from the grid. This

model is very similar to the model of Huppert et al. (1995) and its modi�ed version presented in

Appendix B, but in Noh and Fernando’s model the integral lengthscale is limited by the buoyancy

lengthscale lb =
√

k=N (where N is the Brunt–V�ais�al�a frequency), which decreases rapidly to zero

at a certain level that de�nes the interface.

Our numerical computations highlight the respective e�ects of the bulk Rouse number Rou0 and

the bulk Richardson number Ri0 through the quantity Rou0 Ri0. On the one hand, concentrated

suspensions with a homogeneous mean concentration are observed when Rou0 is below 0.01. When

Rou0Ri0 is small, the decay of turbulence is a�ected by the particle suspension only within a very

short distance from the lutocline. The transition leading to the lutocline formation is very sudden

and the ux Richardson number is close to 1 in the vicinity of the interface. This con�rms the

observations by Gratiot (2000) and Mory et al. (2002). On the other hand, a simultaneous decay of

sediment concentration and turbulence is observed when Rou0 is greater than 0.01.

The present paper focuses on concentrated sediment suspensions. For Rou0 ¡ 0:01, the depth of

the suspension layer decreases with increasing values of Rou0 Ri0. A dependency in the form zm=z0 ˙

(Rou0 Ri0)
−1=4 was obtained from our computation. An interesting observation is that this dependence

is the same as that predicted by the analytical model proposed by Huppert et al. (1995), and also

obtained using its modi�ed version (Appendix B), when the decay laws suggested by Hop�nger and

Toly (1976) are used. The dependence of the analytical model is in the form zm=z0 ˙ (Rou0 Ri0)
−0:21

for the decay laws proposed by Huppert et al. (1995). We observe that the di�erence is small and

in agreement with the conclusion of Matsunaga et al. (1999), which points out that the di�erent

models and decay laws for oscillating grid turbulence are not signi�cantly di�erent for the range of

parameters usually considered.
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Appendix A. On the buoyancy term in the �-equation

We consider the suspension case, i.e. the system of Eqs. (9)–(11). If a lutocline exists at z=zm, let

us assume that the solution very close to the lutocline (for Z = zm − z very small) has the following

form:

k = aZp; � = bZq and C = cZ r : (A.1)
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The exponents p, q and r are real positive values because the three quantities k, � and C should

vanish at the lutocline. Introducing (A.1) into (9), it may be deduced that

q = 2p − 1: (A.2)

Introducing (A.1) into (10) with (A.2), then gives

�ap(p − 1)Zp−2 +
c�

�k

a3p2

b
Zp−1 − bZ2p−1 − GwscZ

r = 0: (A.3)

We note that, for very small Z , the �rst term dominates the second one (p − 2¡p − 1), implying

that the kinematic viscosity is stronger than the eddy viscosity very close to the lutocline. Close to

the interface, the eddy viscosity model (4) should be corrected due to low Reynolds number e�ects.

However, when using the standard model for fully developed turbulence the viscous di�usive term

(�rst term) dominates the turbulent dissipation (third term) when p¿ − 1. We thus necessarily

require the buoyancy term to balance the viscous di�usive term and

r = p − 2: (A.4)

One may check that introducing (A.1) into (11) gives the same result. This leads to an interesting

remark: if c3 is set equal to one in (11) (i.e. considering no buoyancy term in the � equation), there

is no physical solution close to the lutocline (k and � diverge). The exponents p, q and r are not

determined at this stage but the k–� equations indicate that buoyancy e�ects dominate just below

the interface.

Appendix B. Buoyancy ux model applied to suspensions of particles

Huppert et al. (1995) proposed a model predicting the depth of a suspension layer of particles in

a grid turbulence experiment as a function of the particle properties and grid oscillation parameters.

A modi�ed version of this model is described below, which is more general as it does not require

some of the assumptions made by Huppert et al.. This modi�ed model and Huppert et al.’s model

share the following properties:

(i) The particle concentration inside the suspension layer is assumed to be homogeneous.

(ii) The integral lengthscale in the suspension layer varies linearly with increasing distance from

the grid, i.e. l = qz.

(iii) The turbulent kinetic energy equation is written as Eq. (12) in Huppert et al.’s paper,

r
d(u3)

dz
= −

u3

qz
−

g

�0

w′�′: (B.1)

The notations used in this appendix are those of Huppert et al. in order to highlight the similarities

and di�erences between the two models. u denotes the turbulent rms velocity (k=u2). The buoyancy

term and the dissipation term in the turbulent kinetic energy equation (B.1) and in the turbulent

kinetic energy equation of the k–� model (Eq. (5)) are the same (� = u3=qz). Only the di�usion

terms in Eqs. (B.1) and (5) slightly di�er.

The main di�erence between our analytical model and Huppert et al.’s model is that we do not

assume that the buoyancy ux decreases linearly from the grid to the edge of the layer as stated by
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Huppert et al. (Eq. (13)). Because of the mass balance equation (Eq. (1) in the present paper) the

buoyancy ux has to be homogeneous when the particle concentration is homogeneous. Using the

mass balance equation, (B.1) is therefore rewritten as

r
d(u3)

dz
= −

u3

qz
− B0 with B0 =

g

�0

�p − �0

�p

wsC: (B.2)

Searching for a solution of the form u3 = �z + F(z), we simply �nd that the solution of (B.2) is

u3(z) = B0

q

rq − 1
z +

(

u3
0 − B0

q

rq − 1
z0

)

(z0

z

)1=rq

(B.3)

when the turbulent velocity at z = z0 is taken to be u(z0) = u0. This integration of (B.2) does not

require any assumption of the form z=z0�1 as used by Huppert et al. The position of the interface

is given by the location where the turbulent velocity vanishes, and therefore

D

z0

=

(

1 +
1 − rq

q

u3
0

B0z0

)rq=(1+rq)

: (B.4)

This law takes di�erent forms depending on the value of the quantity rq. For rq = 1
3
, as taken by

Hop�nger and Toly (1976), we deduce

D

z0

=

(

1 + 2r
u3

0

B0z0

)1=4

; (B.5)

whereas the value rq = 1=3:84, suggested by Huppert et al. leads to

D

z0

=

(

1 + 2:84r
u3

0

B0z0

)0:21

: (B.6)

We �nd the same power laws as those found by Huppert et al. The only quantitative di�erence is

the proportionality coe�cient. For conditions producing a suspension layer in which the particle con-

centration is homogeneous, it is reasonable that u3
0=B0z0�1, so that a simple power law dependence

of D=z0 versus the grid parameters and particle properties is obtained.
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