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A k -model is used to describe the steady state of ne-grained sediments maintained in suspension by purely diusive turbulence, as generated in oscillating grid turbulence experiments. The behaviour is shown to depend both on the bulk Rouse number Rou 0 and the product of the bulk Rouse number and the bulk Richardson number Ri 0 Rou 0 , built on oscillating grid parameters. For Rou 0 ¡ 0:01, concentrated suspensions are observed with a homogeneous particle concentration in the suspension layer. An interf ace, called lutocline, separates the suspension layer f rom the clear water at a distance z m f rom the grid. The depth of the suspension layer is f ound to vary as z m =z 0 ˙ (Ri 0 Rou 0 ) -1=4 . For Ri 0 Rou 0 1 the decay of turbulence is aected by the particle concentration only in a region very close to the interf ace. In this case the ux Richardson number approaches the value of 1 near the interf ace. The lutocline is seen to vanish f or large values of Rou 0 . For Rou 0 ¿ 0:01 the mean sediment concentration and turbulence decay simultaneously with increasing distance f rom the grid, and no sharp interf ace is observed.

Introduction

In many natural ows, the production of turbulence is due to the shear of the mean ow and is localised mainly at the bottom of the uid layer. It is well known that turbulence can maintain high concentrations of particles in a steady-state suspension, independent of the way turbulence is produced. In particular, E and [START_REF] Hopnger | Stratication by solid particle suspensions[END_REF] and [START_REF] Huppert | Sedimentation and entrainment in dense layers of suspended particles stirred by an oscillating grid[END_REF] have shown that a steady two-layer system is formed in oscillating grid turbulence experiments, with a sharp interface separating a lower layer having an approximately constant sediment concentration and an upper layer containing almost no sediment. In such experiments, the turbulence produced by the grid oscillation is transported inside the tank by the sole eect of turbulence diusion.

The former studies by E and [START_REF] Hopnger | Stratication by solid particle suspensions[END_REF] and [START_REF] Huppert | Sedimentation and entrainment in dense layers of suspended particles stirred by an oscillating grid[END_REF] were concerned with non-cohesive particles. The present work originated from oscillating grid turbulence experiments [START_REF] Gratiot | Etude exp erimentale de la formation des couches de cr eme de vase turbulentes[END_REF][START_REF] Mory | CBS layers in a diusive turbulence grid oscillation experiments[END_REF] performed using natural cohesive sediments experiments made of mud. Concentrated benthic suspensions (CBS) were also observed with a sharp interface. In the case of muddy sediments, very signicant variations in the depth of the suspension layer were observed depending on the concentration in the suspension. These are the result of large variations in the settling velocity of muddy sediments. Experiments with cohesive sediment are particularly dicult to interpret because of the complexity of measuring the settling velocity of mud ocs. A striking property observed in cohesive sediment suspensions [START_REF] Mory | CBS layers in a diusive turbulence grid oscillation experiments[END_REF] was that the ux Richardson number, dened as the ratio of the buoyancy ux to the available turbulence, increases towards a value close to one in the vicinity of the lutocline. Although such estimates have also been obtained from numerical simulations of purely diusive turbulence in stable stratied uid [START_REF] Briggs | Turbulent mixing in a shear-free stably stratied two-layer uid[END_REF], it is generally considered that most of the mechanical energy input is dissipated viscously in stratied ows [START_REF] Hopnger | Thermoclines in zero-mean-shear turbulence[END_REF] and, in particular, the ux Richardson number is below 0.25 in turbulent mean-shear ows [START_REF] Ivey | On the nature of turbulence in a stratied uid. Part 1: the energetics of mixing[END_REF].

In this paper, we investigate the conditions of occurrence of particle suspension layers in an oscillating grid tank experiment using a steady k -model. This model is still the simplest and cheapest for engineering applications, although more elaborate models such as Reynolds stress models [START_REF] Straatman | Examination of diusion modeling using zero-mean-shear turbulence[END_REF] and direct numerical simulation [START_REF] Briggs | Turbulent mixing in a shear-free stably stratied two-layer uid[END_REF] have also been used recently for diusive turbulence. There was a long debate in the past as to whether it is appropriate to use a k -model to describe zero-mean-shear turbulence, because this model was conceived in the framework of turbulence with mean-shear and the well-known constants of the steady k -model were determined from experiments with turbulent mean-shear ows. This debate is connected to another very long one about the decay laws for turbulent kinetic energy in oscillating grid experiments [START_REF] Hopnger | Spatially decaying turbulence and its relation to mixing across density interfaces[END_REF][START_REF] Nokes | On the entrainment rate across a density interface[END_REF][START_REF] Desilva | Oscillating grids as a source of nearly isotropic turbulence[END_REF][START_REF] Huppert | Sedimentation and entrainment in dense layers of suspended particles stirred by an oscillating grid[END_REF]among others). Our purpose is not to add another stone in these debates. The k -model was used before by [START_REF] Sonin | A calibration of the model for the diusion of turbulence[END_REF] and [START_REF] Matsunaga | Quantitative properties of oscillating-grid turbulence in a homogeneous uid[END_REF] to describe purely diusive turbulence. When expressing the decay law in oscillating grid turbulence in the form of a power law (i.e. k ˙zn ), one observes that the exponent n predicted by the k -model in clear water (with no particles) is dierent from the values given by various authors in light of experimental results. However, [START_REF] Matsunaga | Quantitative properties of oscillating-grid turbulence in a homogeneous uid[END_REF] have shown that the results of the k -model in clear water compares well with oscillating grid turbulence experiments, at least in the range of experimental conditions available, and that the usual constants of the k -model are acceptable for modelling of oscillating grid turbulence. This is discussed in more detail in Section 2.2 of this paper.

The purpose of the present paper is to investigate how a particle suspension modies the decay of turbulence as compared with the decay in clear water, and to understand how this will produce lutocline formation. The k -model and the computation procedure are presented in Section 2, with an emphasis on its application to oscillating grid experiments. Sections 3 and 4 are devoted to the results of numerical computations. Although this work was initially motivated by muddy concentrated benthic suspensions, and cases of computations were chosen from the experimental conditions published in [START_REF] Gratiot | Etude exp erimentale de la formation des couches de cr eme de vase turbulentes[END_REF] and [START_REF] Mory | CBS layers in a diusive turbulence grid oscillation experiments[END_REF], our results are not specically interpreted in terms of cohesive sediments. The range of application of the present study is much concerned with ne-grained sediments, including cohesive sediments. For the present modelling, however, cohesive and non-cohesive sediments are considered in the same way, because the sediment properties enter only through the settling velocity of sediments. The application of the results of this study will only be more dicult for cohesive sediments as the settling velocity of sediment may vary due to occulation eects. Modelling of occulation eects depending on the turbulence level is beyond the scope of the present study. Section 5 compares the results of our computations with a wide range of grid oscillation particle suspensions experiments, in particular those of [START_REF] Hopnger | Stratication by solid particle suspensions[END_REF] and [START_REF] Huppert | Sedimentation and entrainment in dense layers of suspended particles stirred by an oscillating grid[END_REF], which deal with non-cohesive particles.

A steady k-model for particle suspensions

Formulation

We consider the case of non-cohesive particles which are maintained in suspension in a stirring tank by an oscillating grid. The conguration is sketched in Fig. 1. The vertical axis is oriented upwards, z = 0 is the grid mean position. The grid oscillation generates a turbulent ow. We assume here that there is no mean ow inside the tank. For constant stirring conditions, a steady-state particle suspension is established which may take the forms of two dierent typical vertical distributions of concentration. In the rst case, sketched in Fig. 1a, which is basically obtained when the particle settling velocity is suciently large, the particle settling ux is large and cannot be balanced by the turbulent buoyancy ux, unless the mean concentration decreases gradually with increasing distance from the grid. In the second case (Fig. 1b), which is obtained for particles having a small settling velocity, the particle settling ux is much smaller than in the rst case. Because the turbulent diusivity is high, the equilibrium of the settling ux with the turbulent buoyancy ux is obtained in the suspension with the mean concentration in the suspension decreasing very slowly with increasing distance from the grid. This suspension is established up to the lutocline position, denoted z m , which is constant in time. The lutocline is the interface in a two-layer system where the lower layer is the particle suspension and the upper layer is clear water containing no particles. For ne-grained sediments (Fig. 1b), it will appear later that the averaged concentration in the suspension is almost homogeneous in the lower layer except in the vicinity of the lutocline, where the particle concentration suddenly drops. The equilibrium of the suspension layer is characterised by a relationship between z m , C 0 (the mean concentration at z = 0), the particle settling velocity w s and the grid oscillation parameters (frequency f, stroke S, mesh M ).

We assume in our model that all averaged quantities vary only with the position along the vertical axis and that they are homogeneous in a plane perpendicular to the vertical axis. The equilibrium in the suspension layer is given by the mass balance equation

0= d d z [w s C -w ′ c ′ ]; (1) 
where C(z) is the mean concentration at elevation z, and w ′ and c ′ are the uctuations of vertical velocity and sediment concentration. The averaged upward turbulent solid particle ux is modelled as

w ′ c ′ = -t dC d z : (2) 
The eddy diusivity t (z)i s

t = t c : (3) 
The eddy viscosity t (z) is related to the turbulent kinetic energy k(z) and the rate of dissipation of the turbulent kinetic energy (z)a s

t = c k 2 : (4)
The vertical distributions of k(z) and (z) are determined from the classical k -equations (e.g. [START_REF] Rodi | Turbulence models and their applications in hydraulics-a state-of-the-art review[END_REF][START_REF] Winterwerp | On the occulation and settling velocity of estuarine mud[END_REF]. The steady-state equations without mean ow are written below.

The equation of conservation of the turbulent kinetic energy k is

0= d d z + t k d k d z -+ s -w s w g t dC d z : (5) 
The equation of conservation of the dissipation rate of turbulent kinetic energy has a similar form

0= d d z + t d d z -c 2 2 k +(1-c 3 ) k s -w s w g t dC d z ; ( 6 
)
where g is the acceleration of gravity, s =2:65 kg=l and w =1kg=l are taken as the particle and water densities, respectively. We use the usual values for the k -model constants as k =1; =1:3;c =0:09 and c 2 =1:92:

The values of the constants appearing in (3) and ( 6) to account for buoyancy eects are not as usual. We take c =0:7 and c 3 =0: (8) [START_REF] Winterwerp | On the occulation and settling velocity of estuarine mud[END_REF] suggested that c 3 = 1 for a stable stratication. We instead show in Appendix A that the buoyancy term in (6) cannot be zero for a solution to exist in the vicinity of the lutocline in the framework of the standard model for fully developed turbulence. We therefore simply take c 3 = 0. Note that the numerical results are not very sensitive to the values of c and c 3 and their choice do not preclude the generality of the conclusions of the present paper. This was shown by additional computations not presented in this paper for clarity.

Eqs. ( 1)-( 6) can be reduced to a set of three equations, which is more tractable. The three quantities C(z), k(z) and (z) are the solutions of

0=w s C + c c k 2 dC d z ; (9) 0=D --B = d d z + c k k 2 d k d z --Gw s C; (10) 0= d d z + c k 2 d d z -c 2 2 k -(1 -c 3 ) k Gw s C (11) 
with G = g( sw )= s w . Eq. ( 9) expresses the momentum balance: the upward turbulent buoyancy ux balances the downward settling ux of particles. The spatial distribution of the turbulent kinetic energy is the result of three dierent eects. We identify in (10) the diusion of the turbulent kinetic energy (D), the dissipation () and the buoyancy eect (B). A similar analysis holds for the distribution of the turbulent kinetic energy dissipation rate (Eq. ( 11)).

Introducing the local Rouse number

Rou(z)= w s k(z) (12) 
and the local Richardson number

Ri(z)= G k(z)C(z) (z) ; (13) 
we observe from (10) that the buoyancy eect is negligible for the decay of the turbulent kinetic energy when Ri(z)Rou(z)1. The decay of the turbulent kinetic energy is almost the same as in clear water. A dimensional analysis of (10) shows that the characteristic lengthscale of the decay of the turbulent kinetic energy is the integral lengthscale

Z k ≈ k 3=2 = l: (14) 
In a similar way, a dimensional analysis of (9) shows that the mean concentration varies vertically over a distance of the order of

Z C ≈ k 1=2 w s l = l Rou ; (15) 
which is much larger than Z k when Rou(z)1. In this case, we will observe that the concentration is nearly homogeneous in the lower part of the suspension layer where Rou(z)Ri(z)1, and that the decay of turbulence is almost the same as in clear water. The quantity Ri(z)Rou(z) increases with increasing distance from the grid. When it becomes of the order of 1, the decay of turbulence becomes much more rapid. A sudden decrease in the concentration occurs while the Rouse number increases rapidly. The lutocline settles down.

2.2. The solution in the lower part of the suspension layer in terms of grid oscillation parameters

We determine here the distribution of sediment concentration C(z), turbulent kinetic energy k(z) and dissipation rate (z) in the lower part of the suspension layer 0 ¡z¡z 1 . The position z 1 is currently undetermined but we assume that Ri(z)Rou(z)1 for 0 ¡z¡z 1 .

We refer in the present section to a paper by [START_REF] Matsunaga | Quantitative properties of oscillating-grid turbulence in a homogeneous uid[END_REF]. Using the same k -model as we do, they determined the distributions of k(z) and (z) produced in a grid oscillation experiment in clear water. On the one hand, Matsunaga et al.'s paper contains a useful discussion on the validity of the k -model for modelling of purely diusive turbulence. On the other, their solution establishes the dependence of the distribution of k(z) and (z) with the grid oscillation parameters (grid mesh M , frequency f and stroke S of grid oscillation). We shall observe that the solution in the lower part of the suspension layer is almost the same as in clear water.

The validity of the k -model to describe the transportation of turbulence by the sole eect of diusion is questionable. This model was conceived by considering ows in which the distribution of turbulence inside the domain is governed by the production of turbulence from the mean shear ow and its constants were determined from experimental results obtained for such ows. The case of turbulence produced in an oscillating grid experiment is rather dierent. When the geometrical properties of the grid are suitably chosen, the mean ow is very weak in the tank, except in a very limited region close to the grid. Turbulence is transported from the grid by the single eect of diusion. The ability of a k -model to describe the decay of turbulence with increasing distance from the grid was considered before by [START_REF] Sonin | A calibration of the model for the diusion of turbulence[END_REF]. We observe that the solution obtained by Matsunaga et al. is basically the same as Sonin's. Both authors showed that the k -model predicts decay laws for the turbulent kinetic energy and its dissipation rate in the form of power laws. The power-law exponents they obtained are the same. In addition, Matsunaga et al. compared their solutions with a set of various laboratory experiments, and related their numerical solutions to the parameters of grid oscillation. The exponents of the decay laws predicted by the k -model for the turbulent kinetic energy and the dissipation rate are -4:98 and -8:46, respectively, whereas the exponents suggested by several authors [START_REF] Hopnger | Spatially decaying turbulence and its relation to mixing across density interfaces[END_REF][START_REF] Ura | Entrainment due to oscillating-grid turbulence in two-layered uid[END_REF][START_REF] Desilva | Oscillating grids as a source of nearly isotropic turbulence[END_REF] from their experiments were -2 and -4, respectively. This is a signicant dierence from the mathematical point of view, but Matsunaga et al. showed that, on the basis of available experimental data, the results of the k -model with its widely accepted model constants are also applicable to oscillating grid turbulence.

It is not the purpose of the present paper to address again the decay of turbulence produced by an oscillating grid. Our aim is to investigate the conditions of existence of a lutocline separating a suspension layer and a clear water layer using the k -model. Considering that Matsunaga et al. provided clear proof that the k -model is able to address oscillating grid turbulence, at least for the conditions of available experimental data, the k -model with its usual constant is used here. We additionally refer to the quantication of the turbulent kinetic energy k 0 and dissipation rate 0 at the mean level position determined by Matsunaga et al. in terms of the grid oscillation parameters M , S and f. For Re = fS 2 = ¿ 5500 they obtained k 0 =0:6f 2 S 2 (S=M ) 1=4 and 0 =0:45f 3 S 2 S=M:

(16)

We only consider this case here. Using ( 16) the local Rouse number

Rou 0 = w s √ k 0 (17)
and the local Richardson number

Ri 0 = G √ k 0 C 0 0 ( 18 
)
at the level of the grid mid position can be expressed as bulk parameters of the experiment which compare the properties of the suspension to the grid oscillation parameters. Following [START_REF] Matsunaga | Quantitative properties of oscillating-grid turbulence in a homogeneous uid[END_REF], it is straightforward to show that the decay of turbulence is modied in a negligible way in the lower part of the suspension layer as compared to the solution in clear water when Rou 0 Ri 0 1. Introducing the following dimensionless quantities:

ẑ = z z 0 with z 0 = k 3=2 0 0 ; k = k k 0 ; = 0 ; t = t 0 k 2 0 and Ĉ = C=C 0 ; (19) 
and using a new independent variable

d dẑ = k t for 0 ¡ ẑ¡∞; with (ẑ =0)= 6 k c ; (20) 
Eqs. ( 9)-( 11)o ft h ek -model can be rewritten in a dimensionless form as

d Ĉ d = - c k Rou 0 Ĉ; (21) d 2 k d 2 = c k k2 + Ri 0 Rou 0 k2 Ĉ ; (22) d 2 d 2 = c 2 k c 2 k +(1-c 3 )Ri 0 Rou 0 k Ĉ : (23) 
The kinematic viscosity is neglected in ( 22) and ( 23) as compared to the eddy viscosity because this set of equations will only be considered in the lower part of the suspension layer. In clear water, Ĉ = 0 and Eqs. ( 22) and ( 23) reduce to a simple set of equations, whose solution was given by [START_REF] Matsunaga | Quantitative properties of oscillating-grid turbulence in a homogeneous uid[END_REF] to be

k cw (z)=k 0 1+ s 6 6 k c z z 0 -2=s ; (24) cw (z)= 0 1+ s 6 6 k c z z 0 -(3+s)=s (25) 
with

s = - 7 2 + 1 4 + 6c 2 k : (26) 
The numerical procedure used to solve the system of Eqs. ( 21) and ( 22), and in particular the values of the boundary conditions, is described in the next section.

Numerical method and boundary conditions

A specic procedure must be used to determine the solution in the suspension layer because the position z m of the lutocline is not known. The position z m must be determined as part of the solution. The solution of the system of Eqs. ( 21)-( 23) in the domain 0 ¡z¡z 1 , and of the system of Eqs. ( 9)-( 11) in the domain z 1 ¡z¡z m has to verify the following boundary conditions:

C(z =0)=C 0 ;k (z =0)=k 0 and (z =0)= 0 ; (27) C(z m )=0;k (z m )=0 and (z m )=0: (28) 
In order to nd the solution and simultaneously determine z m systems ( 9)-( 11) and ( 21)-( 23)i s solved using a shooting technique to determine the lutocline position. The equations are digitised by a Runge-Kutta nite dierence scheme. The integration is performed by starting from the lower boundary toward the lutocline for the boundary conditions ( 27) and by assuming empirical values for the derivatives [d k=d z] 0 =dk=d z(z = 0) and [d=d z] 0 =d=d z(z = 0). For any choice of boundary conditions, the computation is stopped at a position z if one of the values C(z), k(z)o r(z) becomes negative or zero, whereas the other two remain positive. Using a 'trial and error' technique, new values are given for the derivatives of k and at z = 0, and a subsequent integration of the equations is performed. The procedure is repeated until the values of the derivatives [d k=d z] 0 and [d=d z] 0 have been found, for which integration provides a solution where C(z), k(z)o r(z) vanish simultaneously within a grid mesh at z = z m . The solution obtained is valid if k, and C decrease monotonically in the interval 0 ¡z¡z m . A subsequent check of the validity of the solution is made by considering the ux of the turbulent kinetic energy at level z,

F(z)=-+ t k d k d z : (29) 
Integration of the k equation ( 5) over the vertical gives

F(z)=F(0) - z 0 d z -Gw s z 0 C d z: (30) 
The consistent solution is obtained if the ux F(z) tends numerically to zero at z = z m . Close to the grid the decay of turbulence is modied by the particle suspension only to a very limited extent as shown by Eqs. ( 22) and ( 23). For the cases computed in this study the bulk Rouse number Rou 0 and the bulk Richardson number Ri 0 ranged between 10 -4 and 10 -1 , and between 10 -2 and 10 2 , respectively. The quantity Rou 0 Ri 0 varied from 10 -4 to 10 -1 . The derivatives [d k=d z] the results of the dierent cases computed showed that k ≈ Rou 0 Ri 0 and ≈ Rou 0 Ri 0 =c 2 . Fig. 2 shows the dependence of k and with Rou 0 Ri 0 obtained from our computations when the position z m of the lutocline was found, where the concentration, turbulent kinetic energy and dissipation rate all vanish. Slightly dierent values of k and lead to non-valid solutions (for instance, C, k or are not decreasing in all the suspension with increasing distance from the grid, or one of the latter quantities becomes negative). The values of k and are adjusted just to ensure the upper boundary condition (28)a tz = z m . The quantities k and must be very small because, for the conditions investigated, the turbulence in the vicinity of the grid is hardly modied by the presence of particles as compared to the decay of turbulence in clear water. Because of this, we have no simple understanding of the dependence of k and with Rou 0 Ri 0 displayed in Fig. 2.

The distributions of particle concentration and turbulence in the suspension layer

Fig. 3 shows the computed vertical variations in concentration, turbulent kinetic energy and dissipation rate in the suspension layer for seven particular cases, which are representative of dierent behaviours. For all cases plotted, the grid oscillation parameters are the same. Dierent sediment concentrations C 0 and dierent settling velocities w s distinguish the three conditions. Three dierent bulk Rouse numbers and three dierent bulk Richardson numbers are considered, namely Rou 0 =10 -3 , 10 -2 ,1 0 -1 and Ri 0 =10 -1 , 1, 10. The dierent combinations of values of Rou 0 and Ri 0 makes the quantity Ri 0 Rou 0 vary from 10 -3 to 10 -1 . The vertical variations in the local Richardson number Ri(z), the local Rouse number Rou(z) and the local values of Ri(z) Rou(z) are also shown in the lower part of Fig. 3 in order to help the interpretation. The dierent cases plotted in Fig. 3 clearly show the eect of the bulk Rouse number on the particles and turbulence distributions inside the suspension. The vertical concentration proles change considerably with the Rouse number Rou 0 .

For the lowest values of the Rouse number (Rou 0 =10 -3 and 10 -2 ) the main observation is that a lutocline is obtained and the concentration is almost uniform in the suspension layer. For the largest Rouse number (Rou 0 =10 -1 ) the concentration decreases regularly inside the suspension layer with increasing distance from the grid and no clear lutocline is observed in the concentration prole. 13)), (e) local Rouse number Rou(z) (Eq. ( 12)) and (f) local values of Ri(z) Rou(z) are shown in addition. The same grid oscillation conditions are used for all curves plotted: f = 3 Hz, S =4:5c m ,M =7:5c m , so that k 0 =96cm 2 s -2 , 0 = 148 cm 2 s -3 and z0 =6:4 cm. Seven dierent cases with particles are plotted, where the type of lines indicates the dierent values of Rou0 while the thickness indicates the dierent values of Ri0: Rou0 =10 -3 (dashed-dotted lines), 10 -2 (solid lines), 10 -1 (dashed lines), and Ri0 =10 -1 (doubly thick lines), 1 (thin lines), 10 (thick lines). The vertical variations in kcw and cw in clear water are also shown in b and c (dotted line).

The bulk Rouse number Rou 0 therefore appears to be the parameter that determines the shape of the concentration prole and the conditions for which a homogeneous concentrated suspension is obtained. The vertical variations in k cw and cw in clear water are also shown in Fig. 3 (dotted line). Because Ri 0 Rou 0 1 for all cases shown in Fig. 3, we observe that the decay of turbulence is not much aected by the presence of particles in the lower part of the suspension layer ( ẑ = z=z 0 ¡ ẑ1 =0:5), as discussed in Section 2.2. The variations in k and k cw and the variations in and cw are almost superimposed in the suspension layer, respectively, except in the vicinity of the lutocline.

The vertical proles of the eddy viscosity t are plotted in Fig. 4 for the seven cases shown in Fig. 3. This quantity decreases rapidly when the lutocline is approached. [START_REF] Winterwerp | On the dynamics of high-concentrated mud suspensions[END_REF] discussed that low Reynolds damping functions are needed when t ¡ 50. For the cases considered here, t ¿ 50 as far as position z located less than 1 cm below the lutocline. At this level, the rapid decrease in k and associated with the occurrence of the lutocline is already settled. Using low Reynolds damping functions (e.g. [START_REF] Patel | Turbulence models for near-wall and low Reynolds number ows: a review[END_REF] would presumably not signicantly modify the position of the lutocline. Additionally, a k -model assumes that turbulence is isotropic, and this might also be a shortcoming for modelling the region very close to the lutocline. Anyhow, we do not pretend to describe the interface in all its complexity but rather the conditions leading to its formation. Because the k -model shows that concentration and turbulence decrease very suddenly in the vicinity of the lutocline, a more relevant and sophisticated model for describing low Reynolds number and anisotropic turbulence should be able to sustain signicantly higher level of turbulence to predict a position of the lutocline signicantly dierent from that given by the k -model.

For the same conditions as those of Figs. 3 and4, the vertical prole of the turbulent kinetic energy ux F(z) (Eq. ( 29)) is nally displayed in Fig. 5. We verify that this quantity vanishes at the lutocline when such an interface is observed. As discussed in Section 2.3, computing F(z)i sa check of numerical convergence. We considered that numerical convergence was obtained when the energy ux at level z m was less than 10 -5 of the ux F 0 at the grid mean position.

For the cases considered in Figs. 345, the lutocline is a very sudden transition between the suspension layer and the clear water layer, and the concentration is almost uniform inside the suspension layer when the Rouse number Rou 0 is suciently small. The local ux Richardson number, dened as the ratio of the buoyancy eects to the available turbulent energy in (10),

Rf = B D = Gw s C(z) d=d z[( +(c = k )(k 2 =))d k=d z] ; (32) 
provides an alternative estimate of the eect of buoyancy on the decay of turbulence. Because D = B + , the ux Richardson number also takes the simple form as

Rf = B D = Gw s C(z) (z)+Gw s C(z) ; (33) 
or is alternatively expressed in terms of the local Rouse number and of the local Richardson number as For the seven conditions already considered, Fig. 6 shows the vertical variations in the ux Richardson number. Depending on the conditions, dierent behaviours can be noticed. We clearly observe that the ux Richardson number peaks to one at a position very close to the lutocline for all cases where one is observed, implying that the turbulent kinetic energy dissipation rate becomes very low and the particle suspension suddenly drops to zero. On the other hand, the proles of the ux Richardson number for computations with the bulk Rouse number Rou 0 =10 -1 , which do not show the occurrence of a lutocline, display a smoother behaviour. As discussed in Section 1, the observation that the ux Richardson number may approach the maximum value of 1 in grid turbulence experiments is a striking property, which diers strongly from observations in turbulence with mean shear ows. Larger values of the ux Richardson number imply that the dissipation rate is smaller as compared to the buoyancy term. As the energy is transmitted by diusive turbulence at larger scales far from the grid, we expect that the dissipation rate is reduced for a same level of the turbulent energy, whereas mixing is more ecient.

Rf = B D = Rou(z)Ri(z) 1+Rou(z)Ri(z) : (34) 

The depth of particle suspension layers

Determining the depth of the particle suspension layer as a function of the bulk Rouse number Rou 0 and the bulk Richardson number Ri 0 is of practical signicance by providing a simple and direct quantication of experimental observations. Fig. 3 has already highlighted dierent behaviours depending on the value of Rou 0 . On the one hand, when Rou 0 is small, the particle concentration cannot decrease below a minimum distance from the grid, where turbulence level has suciently decreased due to dissipation and buoyancy eects. The buoyancy eect suddenly enhances the decay of turbulence and a lutocline is formed (as sketched in Fig. 1b). On the other hand, when Rou 0 is suciently large, the concentration inside the suspension decreases simultaneously with the decay of turbulence. The buoyancy eect is limited by the decrease in concentration, and no lutocline is formed (Fig. 1a). Some consequences are visible on Fig. 3 and are interpreted in terms of the depth of the suspension layer. When Rou 0 is suciently small (Rou 0 =10 -3 and 10 -2 in Fig. 3) and a lutocline is observed, the depth of the suspension layer decreases with increasing values of Rou 0 Ri 0 as the decay of turbulence is enhanced by the buoyancy eect. However, when Rou 0 is suciently large (Rou 0 =10 -1 in Fig. 3), the particle concentration decreases regularly with increasing distance from the grid. The turbulence can maintain particles in suspension at a higher distance from the grid as compared to the depth of the suspension layer obtained for the same value Rou 0 Ri 0 but for a smaller Rou 0 .

The dierent behaviours obtained from our numerical computations are summarised in Fig. 7, which presents the depth of the suspension layer as a function of Rou 0 Ri 0 . Two dierent data sets are identied. The focus in this paper is on computation conditions with Rou 0 6 0:01. A lutocline is clearly identied and the results of the computations shown in Fig. 7 indicate a regular decrease in z m =z 0 with increasing values of Rou 0 Ri 0 . The computational results are compared with the experimental results in Section 5. For Rou 0 ¿ 0:01, on the other hand, higher values are obtained for the quantity z m =z 0 . The lutocline position is not well dened in this case, because there is no sharp transition of density. It was determined, as explained in Section 2.3, as the rst position where the concentration becomes zero or negative. This mathematical denition lacks a physical basis and the values of z m =z 0 shown in Fig. 7 for Rou 0 ¿ 0:01 are somewhat indicative. Only a few computations were performed for Rou 0 ¿ 0:01; their purpose was to identify the dierence with the case Rou 0 ¡ 0:01.

Comparison with experiments

Our numerical study was motivated by observations made in recent oscillating grid experiments with mud suspensions [START_REF] Gratiot | Etude exp erimentale de la formation des couches de cr eme de vase turbulentes[END_REF][START_REF] Mory | CBS layers in a diusive turbulence grid oscillation experiments[END_REF]. A variety of suspension layers were observed, for the same grid oscillation conditions, depending on the concentration level inside the suspension. Signicant variations in the depth of the particle suspension layer were measured. Cohesive sediment suspensions are particularly dicult to characterize in the laboratory because measurement of the particle settling velocity is tedious, as it varies with the concentration. The determination of an averaged settling velocity certainly does not fully account for the deposition of ocs having dierent size and buoyancy properties. Because of the uncertainty of settling velocity measurements, the results of our k -model are not compared directly with the experimental results presented by [START_REF] Mory | CBS layers in a diusive turbulence grid oscillation experiments[END_REF], as this quantitative comparison does not allow clear conclusions to be drawn. However, the range of conditions for which numerical computations were performed has been dened in view of the latter experiments, considering large variations in the concentration and settling velocity. A striking result of mud suspension experiments carried out by [START_REF] Mory | CBS layers in a diusive turbulence grid oscillation experiments[END_REF] was the observation that in the vicinity of the lutocline the ux Richardson number reaches a value close to one. This was an unexpected result as it diers signicantly from previous experiments on suspensions in mean-shear turbulent ows. [START_REF] Ivey | On the nature of turbulence in a stratied uid. Part 1: the energetics of mixing[END_REF] pointed out that the ux Richardson number is always below 0.25. Actually, our numerical computations give some support to the argument that grid turbulence can generate particle suspensions where the ux Richardson number is close to one.

Experiments with non-cohesive particle suspensions in an oscillating grid tank have been carried out by [START_REF] Hopnger | Stratication by solid particle suspensions[END_REF] and [START_REF] Huppert | Sedimentation and entrainment in dense layers of suspended particles stirred by an oscillating grid[END_REF]. It is more straightforward to compare their results with our computations as the settling velocity of the particles is more easily determined than in the case of cohesive sediments. Moreover, E and Hopnger (1987); [START_REF] Gratiot | Etude exp erimentale de la formation des couches de cr eme de vase turbulentes[END_REF] and [START_REF] Mory | CBS layers in a diusive turbulence grid oscillation experiments[END_REF] used the same grid tank set-up. The position of the lutocline obtained in the experiments of E and Hopnger, and in those of Huppert et al. is compared in Fig. 8 with our numerical results presented in Fig. 7. In Figs. 8a andb, the values of the dimensionless ratio z m =z 0 are plotted as a function of Ri 0 and of Rou 0 , respectively. The two gures do not provide any insight into the dependence of z m =z 0 on Ri 0 and Rou 0 , but they indicate the range of conditions considered by the dierent authors. The experiments by E and Hopnger had a high Rou 0 , and Rou 0 Ri 0 was also rather large. For such conditions our model predicts that the decay of turbulence is rapidly enhanced by the buoyancy, and there is no well-dened lutocline. The concentration decreases regularly with increasing distance from the grid (see the dashed lines in Fig. 3). Fig. 8c shows the variations in z m =z 0 with Rou 0 Ri 0 . E and Hopnger's data are clearly above the other data. Figs. 8a andb indicate that Huppert et al. investigated a wider range of conditions that coincide with our computation cases, except when Rou 0 Ri 0 is of the order of one. The data of Huppert et al. show a similar dependence of z m =z 0 on Rou 0 Ri 0 to that obtained in our computations. Examining the data in more detail, we nd that Huppert et al.'s experimental data for Ri 0 Rou 0 ¡ 2 × 10 -3 overlap satisfactorily the results of our computations with Rou 0 ¿ 0:01, whereas the data for Ri 0 Rou 0 ¿ 2 × 10 -3 presents a better agreement with our computations with Rou 0 ¡ 0:01, although Fig. 8b shows that Huppert et al.'s results with Ri 0 Rou 0 ¡ 2 × 10 -3 correspond to experiments with Rou 0 ¡ 0:01. Fig. 8 shows that both our computations with Rou 0 ¡ 0:01 and the experimental results predict a variation in the depth of the suspension layer with Rou 0 Ri 0 of the form z m =z 0 ˙(Rou 0 Ri 0 ) -1=4 . This result seems to indicate a general behaviour. Huppert et al. proposed a simple analytical model which establishes that z m =z 0 ˙(Rou 0 Ri 0 ) -n , where the exponent n is 1 4 or 0.21, depending on the turbulence decay law adopted. Huppert et al.'s model solves the turbulent kinetic energy equation, assuming that the integral lengthscale varies linearly with distance from the grid (as in clear water) and that the concentration is homogeneous inside the suspension layer. This model does not consider the eect of the Rouse number, but it is partly equivalent to our numerical model when Rou 0 ¡ 0:01. Huppert et al. made additional assumptions, which actually do not appear to be required. A modied analytical model, inspired by Huppert et al.'s model, is presented in Appendix B, which shows that the dependency z m =z 0 ˙(Rou 0 Ri 0 ) -1=4 is quite general. This analytical model diers basically from the numerical model by the fact that the analytical model assumes that the integral lengthscale is not modied in the suspension as compared to clear water. The comparison demonstrates that this crude assumption has no eect on the nal result. The more signicant limitation of Huppert et al.'s model is that it can only address the case of suspensions with very low Rouse numbers.

Conclusion

In the comparison of our model with studies carried out by other authors, we have left aside the work by [START_REF] Noh | Dispersion of suspended particles in turbulent ow[END_REF], who derived two equations for modelling sediment suspen-sions at low concentrations in diusive turbulence. They computed unsteady solutions in the range 0:003 ¡ Rou 0 ¡ 0:1 and Ri 0 ¡ 0:01. This low Ri 0 regime does not correspond to standard experimental conditions such as those considered in the present paper. Noh and Fernando's model consists of one equation for C similar to (9) and one equation for k. The dissipation rate is dened using the integral lengthscale l, which is assumed to vary linearly with increasing distance from the grid. This model is very similar to the model of [START_REF] Huppert | Sedimentation and entrainment in dense layers of suspended particles stirred by an oscillating grid[END_REF] and its modied version presented in Appendix B, but in Noh and Fernando's model the integral lengthscale is limited by the buoyancy lengthscale l b = √ k=N (where N is the Brunt-V ais al a frequency), which decreases rapidly to zero at a certain level that denes the interface.

Our numerical computations highlight the respective eects of the bulk Rouse number Rou 0 and the bulk Richardson number Ri 0 through the quantity Rou 0 Ri 0 . On the one hand, concentrated suspensions with a homogeneous mean concentration are observed when Rou 0 is below 0.01. When Rou 0 Ri 0 is small, the decay of turbulence is aected by the particle suspension only within a very short distance from the lutocline. The transition leading to the lutocline formation is very sudden and the ux Richardson number is close to 1 in the vicinity of the interface. This conrms the observations by [START_REF] Gratiot | Etude exp erimentale de la formation des couches de cr eme de vase turbulentes[END_REF] and [START_REF] Mory | CBS layers in a diusive turbulence grid oscillation experiments[END_REF]. On the other hand, a simultaneous decay of sediment concentration and turbulence is observed when Rou 0 is greater than 0.01.

The present paper focuses on concentrated sediment suspensions. For Rou 0 ¡ 0:01, the depth of the suspension layer decreases with increasing values of Rou 0 Ri 0 . A dependency in the form z m =z 0 (Rou 0 Ri 0 ) -1=4 was obtained from our computation. An interesting observation is that this dependence is the same as that predicted by the analytical model proposed by [START_REF] Huppert | Sedimentation and entrainment in dense layers of suspended particles stirred by an oscillating grid[END_REF], and also obtained using its modied version (Appendix B), when the decay laws suggested by [START_REF] Hopnger | Spatially decaying turbulence and its relation to mixing across density interfaces[END_REF] are used. The dependence of the analytical model is in the form z m =z 0 ˙(Rou 0 Ri 0 ) -0:21 for the decay laws proposed by [START_REF] Huppert | Sedimentation and entrainment in dense layers of suspended particles stirred by an oscillating grid[END_REF]. We observe that the dierence is small and in agreement with the conclusion of [START_REF] Matsunaga | Quantitative properties of oscillating-grid turbulence in a homogeneous uid[END_REF], which points out that the dierent models and decay laws for oscillating grid turbulence are not signicantly dierent for the range of parameters usually considered.

Fig. 1 .

 1 Fig. 1. Sketch of the grid experiment. The oscillating grid maintains a steady sediment suspension: forming a lutocline at the position zm (b) or not (a). Circular arrows represent turbulence and the density of dots represents the concentration.

Fig. 2 .

 2 Fig. 2. Computed values of k (•) and ( ) for the numerical solutions.

Fig. 3 .

 3 Fig. 3. Variations in (a) the dimensionless concentration C(z), (b) turbulent kinetic energy k(z) and (c) dissipation rate (z) with distance z from the grid mean position for dierent properties of particles. The vertical variations in (d) the local Richardson number Ri(z) (Eq. (13)), (e) local Rouse number Rou(z) (Eq. (12)) and (f) local values of Ri(z) Rou(z) are shown in addition. The same grid oscillation conditions are used for all curves plotted: f = 3 Hz, S =4:5c m ,M =7:5c m , so that k 0 =96cm 2 s -2 , 0 = 148 cm 2 s -3 and z0 =6:4 cm. Seven dierent cases with particles are plotted, where the type of lines indicates the dierent values of Rou0 while the thickness indicates the dierent values of Ri0: Rou0 =10 -3 (dashed-dotted lines), 10 -2 (solid lines), 10 -1 (dashed lines), and Ri0 =10 -1 (doubly thick lines), 1 (thin lines), 10 (thick lines). The vertical variations in kcw and cw in clear water are also shown in b and c (dotted line).

Fig. 4 .

 4 Fig. 4. Vertical prole of the eddy viscosity divided by the kinematic viscosity for the conditions and symbols of Fig. 3.

Fig. 5 .

 5 Fig. 5. Vertical prole of the dimensionless ux of turbulent kinetic energy for the conditions and symbols of Fig. 3.

Fig. 6 .

 6 Fig. 6. Vertical variations in the ux Richardson number for the conditions and symbols of Fig. 3.

Fig. 7 .

 7 Fig. 7. Dimensionless position of the lutocline zm=z0 as a function of Rou0 Ri0. △: computations for Rou0 ¿ 0:01; ▽: computations for Rou0 ¡ 0:01.

Fig. 8 .

 8 Fig. 8. Comparison of the dimensionless position of the lutocline obtained from k -computations with the experimental data by E and Hopnger (1987) (•) and by Huppert et al. (1995). Huppert et al.'s results were obtained for dierent particle diameters (+: =0 :055 mm; ×: =0 :058 mm; •: =0 :108 mm; * : =0 :176 mm). △: computations for Rou 0 ¿ 0:01; ▽: computations for Rou0 ¡ 0:01.
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Appendix A. On the buoyancy term in the -equation

We consider the suspension case, i.e. the system of Eqs. ( 9)-( 11). If a lutocline exists at z =z m , let us assume that the solution very close to the lutocline (for Z = z m -z very small) has the following form: k = aZ p ; = bZ q and C = cZ r :

(A.1)

The exponents p, q and r are real positive values because the three quantities k, and C should vanish at the lutocline. Introducing (A.1) into ( 9), it may be deduced that

Introducing (A.1) into ( 10) with (A.2), then gives

We note that, for very small Z, the rst term dominates the second one (p -2 ¡p-1), implying that the kinematic viscosity is stronger than the eddy viscosity very close to the lutocline. Close to the interface, the eddy viscosity model ( 4) should be corrected due to low Reynolds number eects. However, when using the standard model for fully developed turbulence the viscous diusive term (rst term) dominates the turbulent dissipation (third term) when p¿ -1. We thus necessarily require the buoyancy term to balance the viscous diusive term and

One may check that introducing (A.1) into ( 11) gives the same result. This leads to an interesting remark: if c 3 is set equal to one in (11) (i.e. considering no buoyancy term in the equation), there is no physical solution close to the lutocline (k and diverge). The exponents p, q and r are not determined at this stage but the k -equations indicate that buoyancy eects dominate just below the interface.

Appendix B. Buoyancy ux model applied to suspensions of particles [START_REF] Huppert | Sedimentation and entrainment in dense layers of suspended particles stirred by an oscillating grid[END_REF] proposed a model predicting the depth of a suspension layer of particles in a grid turbulence experiment as a function of the particle properties and grid oscillation parameters. A modied version of this model is described below, which is more general as it does not require some of the assumptions made by Huppert et al.. This modied model and Huppert et al.'s model share the following properties: (i) The particle concentration inside the suspension layer is assumed to be homogeneous. (ii) The integral lengthscale in the suspension layer varies linearly with increasing distance from the grid, i.e. l = qz. (iii) The turbulent kinetic energy equation is written as Eq. ( 12) in Huppert et al.'s paper,

The notations used in this appendix are those of Huppert et al. in order to highlight the similarities and dierences between the two models. u denotes the turbulent rms velocity (k =u 2 ). The buoyancy term and the dissipation term in the turbulent kinetic energy equation (B.1) and in the turbulent kinetic energy equation of the k -model (Eq. ( 5)) are the same ( = u 3 =qz). Only the diusion terms in Eqs. (B.1) and ( 5) slightly dier.

The main dierence between our analytical model and Huppert et al.'s model is that we do not assume that the buoyancy ux decreases linearly from the grid to the edge of the layer as stated by Huppert et al. (Eq. (13)). Because of the mass balance equation (Eq. (1) in the present paper) the buoyancy ux has to be homogeneous when the particle concentration is homogeneous. Using the mass balance equation, (B.1) is therefore rewritten as

Searching for a solution of the form u 3 = z + F(z), we simply nd that the solution of (B.2)i s

when the turbulent velocity at z = z 0 is taken to be u(z 0 )=u 0 . This integration of (B.2) does not require any assumption of the form z=z 0 1 as used by Huppert et al. The position of the interface is given by the location where the turbulent velocity vanishes, and therefore We nd the same power laws as those found by Huppert et al. The only quantitative dierence is the proportionality coecient. For conditions producing a suspension layer in which the particle concentration is homogeneous, it is reasonable that u 3 0 =B 0 z 0 1, so that a simple power law dependence of D=z 0 versus the grid parameters and particle properties is obtained.