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Flow Filling a Curved Pipe
A small scale experiment was designed to study the propagation of the front of 
a viscous fluid filling a curved pipe. Several Newtonian fluids with different 
viscosities and a non-Newtonian fluid have been used. The experiments show 
that there exists a minimum speed for completely filling the pipe, which 
depends on the parameters of the experiment (di-ameter d and radius of 
curvature R of the pipe, kinematic viscosity n of the fluid). Appropriate 
dimensionless numbers are introduced to characterize the flow and optimal 
filling conditions. 

Introduction

Prestressed concrete is commonly used in construction. To pre-
vent the prestressed strands from any corrosion, a cement solution
is generally injected in pipes of complex geometry. The pipe has
to be completely filled in order to avoid weak zones in the struc-
ture. The aim of the present study is to observe experimentally the
propagation of the front of a viscous fluid injected in a curved
pipe, in order to understand the reasons for the appearance of
unfilled zones. The solution used in construction is composed of
cement, water, liquefier, and retarder. It is a non-Newtonian fluid
with air bubbles and particles in suspension. As a first step, we
mainly focus in this paper on the filling by Newtonian fluids.

Permanent flows in pipes have been widely studied @1#, particu-
larly in the case of curved pipes @2–4# and in engineering appli-
cations @5,6#. However, pipe flows involving a propagating front
or interface remain poorly understood. The problem of an air-
water interface propagating in straight inclined pipes has been
addressed only recently @7,8#. As stated above, in industrial appli-
cations such as construction, the fluid is often mixed with air
bubbles and the flow ought to be treated as a slug flow ~see for
example @9,10# for recent work on slug flows in pipes!. But the
emphasis of the present work is in the propagation of the interface
which clearly separates the gas from the liquid.

The front propagation of a perfect fluid in a horizontal pipe was
studied by Benjamin @11#. See also the review by Simpson @12# on
gravity currents for related studies and Asavenant and Vanden-
Broeck @13#. Benjamin analyzed the front in terms of a ‘‘cavity
flow’’ displacing a fluid beneath it. The two-dimensional geom-
etry is shown in Fig. 1~a! ~Benjamin also considered the case of a
circular cross-section!. Note that Benjamin studied only the case
where the free surface detaches with an angle of 60 degrees. By
applying conservation of mass, momentum, and energy, he found
that there is a unique solution, characterized by

U

Agd
5

1

2
,

u

Agh
5A2 ,

h

d
5

1

2
,

where the meaning of the various symbols is shown in Fig. 1. In
other words, the cavity fills half of the box. An experiment was
suggested by Benjamin to realize closely this flow. Liquid initially
fills a long rectangular box closed at both ends and fixed horizon-
tally. One end is then opened, and under the action of gravity the
liquid flows out freely from this end. It can be expected that, after

the transient effects of starting have disappeared, the air-filled
cavity replacing the volume of the ejected fluid will progress
steadily along the box. Observed in a frame of reference travelling
with the front of the cavity, the motion of the liquid will appear to
be steady, as shown in Fig. 1~a!. If the effects of viscosity and
surface tension are neglected, the velocity of the cavity relative to
a stationary observer will be U, and, since h5d/2, the liquid will
discharge from the open end with the same velocity. In addition to
the solution studied by Benjamin, there is also a one-parameter
family of solutions in which the free surface detaches from the
box tangentially @14#. Such a solution is plotted in Fig. 1~b!. At

the exit of the box, the Froude number u(gh)21/2 for these solu-
tions is between 1 and A2. The limit A2 corresponds to Ben-
jamin’s solution, while the limit 1 corresponds to the vanishing of
the cavity. Using conservation of mass, momentum and energy,
one finds the relation

u
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h
. (1)

Unfortunately, simple arguments based on conservation of mass,
momentum and energy do not give as much information in the
case of a curved channel.

It is nevertheless important to keep in mind that the Froude
number prevails to determine the size of the cavity and thus the
ability to fill the pipe. This point will be discussed in the section
where we consider various dimensionless numbers. Before that,
we first describe the manner in which the experiments have been
conducted. Then we present and discuss the experimental results.

Experimental Setup

The experimental setup is shown in Fig. 2. Gravity acts down-
wards. A transparent PVC pipe ~‘‘Tubclair’’! of inner diameter d
is curved with a radius R. Different diameters and radii were
considered: 0.6<d<2 cm; 5<R<30 cm. The special case of a
horizontal straight pipe was also investigated. The fluid was in-
jected with a centrifugal pump at a constant mean flow velocity
~noted U).

Several fluids were considered in order to investigate the effects
of density r , surface tension s , and mainly kinematic viscosity n
~see Table 1!. A series of runs has been performed with a non-
Newtonian fluid ~gel!. Its viscosity has been measured with a
plane-plane viscosimeter ~see Fig. 3!.

We assume that capillary effects are negligible, so that d@Lc

where Lc5s1/2(rg)21/2 is the capillary length (s573 gs22 for

water and s521 gs22 for silicone!. In the case of water Lc

50.26 cm and this assumption might be a shortcoming for small
diameters. We nevertheless performed a few runs with water con-
taminated with wetting agents in order to diminish Lc: the behav-
ior and the results were the same within measurements errors.
Moreover, the results presented in this paper are limited to d>1
cm.
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Observations

For a very low flow rate ~a typical mean flow velocity is U
;0.1 cm/s! and a sufficiently large pipe section ~so that d@Lc)
the interface is more or less horizontal in the upflow part of the
pipe. The flow is dominated by gravity. In the downflow part of
the pipe the liquid is creeping down the pipe.

If U is slightly increased, the interface becomes more or less
perpendicular to the pipe when rising. At the top, the interface
deforms as shown in Fig. 2. The intersection between the interface
and the upper part of the pipe ~point C in Fig. 2! is a stagnation
point.

If U is increased, the point C moves ~interface in dotted line in
Fig. 2!. As soon as U is decreased back to zero, the pipe is emp-
tying and the interface moves back to the top.

We consider that the pipe is completely filled when the point C
has reached the point B ~Fig. 2!. We define Uc as the critical
speed beyond which the interface moves until the pipe is com-
pletely filled. The speed v is the mean velocity of the point C
moving from A to B ~Fig. 2!: if U is larger than Uc , then v is
greater than zero.

For the special case of the non-Newtonian fluid gel, the viscos-
ity is smaller where the shear stress is larger, that is near the
boundaries. Away from the boundaries, the behavior of the fluid is
similar to a solid core pushed by the flow. In other words, the
characteristic time of deformation of the interface is very long.

Measurements

The mean flow velocity U was obtained by measuring the flow
rate in the steady-state regime, i.e., when the pipe was completely
filled. The flow rate and v were estimated by measuring the filling
time of a graded beaker and the travelling time of point C from A
to B ~Fig. 2! with a stopwatch. We may consider that these simple
techniques do not lead to any bias error. By repeating the same
run ~at least five times! for different flow rates, we have estimated
that the precision limit and thus the uncertainty was always better
than 10 percent on U and v .

We measured v as a function of U for different experiments
using various fluids, pipes, and curvatures ~see Table 1!. In Fig. 4,
v is plotted versus U for several runs in four different configura-
tions. The line v5U delimits the region where physical solutions
exist: v cannot be larger than U. In all our experiments v appar-
ently varies linearly with U. We may thus determine the critical
velocity Uc ~for v50), the slope a5dv/dU and the interfacial
velocity v(U50), by rms fitting a straight line into the data for
each fluid, pipe diameter and radius of curvature.

Let us first consider the slope a of the four straight lines in Fig.
4. The analysis presented in the Introduction considered a perfect
fluid. It was assumed that the flow is identical in a reference frame
moving with the front. In this framework, the filling of a pipe is
similar to the emptying of the pipe. This would imply that a is
equal to one: adding dU to the mean entrance flow velocity would
add the same value to the front propagation velocity. It is there-
fore not surprising that the slopes of the straight lines in Fig. 4
related to water are close to one. When the fluid is far from perfect

Fig. 1 Steady two-dimensional flow past a cavity. „a… Solution
with the free surface leaving the wall with a 60 degree angle.
„b… Solution with the free surface leaving the wall tangentially.
The point C denotes the detachment point.

Fig. 2 Diagram of the flow and notation. The interface is
shown at two different times in solid and dotted lines.

Table 1 Fluids used in the experiments.

Density Viscosity Symbol
Fluid r ~g/cm3) n ~cm2/s! R55 cm R530 cm R5`

Water 1 0.01 d s (

Water ~40 %!
1 glycerol ~60 %!

1.16 0.086 . , ,•

Silicone V50 1 0.5 c x

Silicone V100 1 1 n

Silicone V300 1 3 v

Gel 1.03 ~See Fig. 3! h

Fig. 3 Dynamic viscosity h of the gel versus the shear stress

ġ. Its density is rÄ1.03 gÕcm3. We note that this fluid is very
viscous in the conditions of our experiments „we can estimate

roughly that ġÈ2UÕd is less than 10 sÀ1…. Measurements have
been performed with a plane-plane viscosimeter at Ecole des
Mines de Paris „CEMEF, Sophia Antipolis….
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but still Newtonian ~case of the silicone oil V100 in Fig. 4!, a is
clearly smaller than one: when the viscosity is large, the deforma-
tion of the front strongly depends on U. For a low viscosity, the
deformation of the interface takes place on a very short time scale
and the propagation of the front apparently does not depend on the
reference frame. In the other limit, that is for a very large viscos-
ity, the deformation of the front takes place on a very long time
scale and the slope is again close to one ~this is the case of the
non-Newtonian fluid!.
The velocity v(0) corresponds to the draining of the pipe. The

measurements have been performed by bringing U to zero after
filling the pipe: the flow is then from right to left in Fig. 2. It is
important to emphasize that v(0) is very small in the case of the
non-Newtonian fluid. We have estimated that the draining veloc-
ity is about 1 cm per week. The deformation of the front is visible
only when the fluid is sheared and Uc is therefore also close to
zero for the gel. The agreement in v(0) between the measured
values and the values deduced from the fitted straight lines in Fig.
4 is rather good except in the case of water for R530 cm. The
discrepancy is probably due to measurement errors but also to
wetting effects. The contact between the fluid and the PVC is
indeed not the same when filling or emptying the pipe. It was not
our purpose to investigate wetting effects and we did not test other
materials for the pipe. We therefore have to consider that wetting
effects may induce a bias error over Uc of about 10 percent in the
worst case, i.e., an uncertainty of 20 percent in the water case.
The critical speed Uc ~mean entrance velocity for which v

50) is plotted against the pipe diameter d in Fig. 5. Uc clearly
tends to increase with d. Considering gravitational effects, the
larger is d, the more efficient are gravity effects to deform the
interface. It is thus not surprising that inertial effects have to be
increased to compensate for it. Gravity effects could also reason-
ably depend on the radius of curvature. The interface deforms
more rapidly when the pipe is curved: for a same diameter, Uc is
therefore smaller when R5` . Otherwise, if R is large but not
infinite, the travelling time of the front in the pipe is large and the
mean entrance velocity has to be large for the front to propagate.
In other words, for a very small radius, the front has not enough
time to deform before the exit of the pipe. This would explain the
fact that Uc is larger for R530 cm than for R55 cm.

In addition, above n51 cm2/s, viscous effects tend to maintain
the shape of the interface and thus decrease Uc . This is noticeable

for the silicone V100 and clearly visible for the silicone V300.
Again the case of the gel requires specific comments. Uc is very
close to zero because the front deforms only when the fluid is
sheared as mentioned above. The graphical estimation of Uc gives
a nonzero value only for d51.5 cm. This configuration will allow
us to estimate dimensionless numbers for the gel in the next
section.
The data in Figs 4 and 5 are available in tabular form in Table

2.

Interpretation in Terms of Dimensionless Numbers

We may consider various dimensionless numbers that could
characterize the flow in our special configuration. Note that in our
experiments both the Bond number (Bo5d2rg/s) and the Weber
number (We5rdU2/s) are very large: capillary effects are a lot
weaker than inertial and gravitational effects.

Considering inertial and viscous effects in the framework of a
curved pipe, we introduce a modified Reynolds number Re, which
partly takes into account centrifugal effects, and is in fact the
classical Reynolds number plus the Dean number @15#:

Re5

Ud

n
S 11Ad

R
D . (2)

To balance inertial and gravity effects, we build a modified
Froude number Fr, such as:

Fr5
U

Agd
S 11Ad

R
D . (3)

The modification of the classical dimensionless numbers may be
understood by considering that there is a need to add centrifugal
effects to maintain the fluid against the concave side of the pipe.
Note that ~2! and ~3! tend toward the classical Reynolds and
Froude numbers in the limiting case of a straight pipe, i.e., when
R tends toward infinity.

Let us finally define K, which measures the balance between
gravity and viscosity:

K5

Fr

Re 5

n

Agd3
. (4)

Fig. 4 Speed of the front propagation v versus the mean en-
trance velocity U „dÄ1.5 cm; see list of symbols in Table 1….
The straight lines are fitted curves by quadratic means.

Fig. 5 Critical speed versus the pipe diameter „see list of
symbols in Table 1…

Transactions of the ASME
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Note that K does not depend on the mean flow velocity U. Re and

Fr are computed for U5Uc and plotted against K in Figs. 6 and 7.

We may consider two kinds of estimation of the dimensionless

numbers for the gel. First we may use the graphical estimation of

Uc from Fig. 4 for d51.5 cm: Uc;1.2 cm/s, leading to n;200

cm2/s from Fig. 3 ~assuming that ġ;2Uc /d). This allows us to

plot the squares in Figs. 6 and 7. Second, we may estimate from

our measurement that Uc;v(0) is nonzero but very small ~six

orders of magnitude less than the other values of velocity!. In that

case, the squares would be far off the bottom right-hand corners of

Figs. 6 and 7. In any case, the gel is possibly following the trend

of Newtonian fluids with very large viscosity.

In Fig. 6, the data can be separated into two regions corre-

sponding to partially ~below the data! and completely ~above the

data! filled pipes. In a situation where the flow is characterized by

a point belonging to the border line between the two regions, the

filling would be effective over an infinite time, using an infinite

amount of fluid. In the frame of a linear approximation, the data

follow approximatively the (21) slope, showing that Fr(U

5Uc) is constant from Eq. ~4!.
Another way to represent the same results is given in Fig. 7.

One sees that Fr is of the same order of magnitude for all experi-

ments while K varies over four orders of magnitude, but Fr is not

rigorously constant. In the range of diameters we investigated, we

can say roughly that Fr characterizes the ability to fill the pipes

Table 2 Measured values

Fluid

Radius
of curvature

R ~cm!

Pipe
diameter
d ~cm!

Speed
of front
v ~cm/s!

Mean entrance
velocity
U ~cm/s!

c Silicone V50 5 1.0 28.6 0.0
- 5 1.0 0.6 10.2
- 5 1.0 3.2 14.1
- 5 1.0 11.8 28.7
- 5 1.0 18.9 36.6
- 5 1.2 210.7 0.0
- 5 1.2 4.4 19.8
- 5 1.2 6.7 22.8
- 5 1.2 12.2 31.4

x - 30 1.0 28.8 0.0
- 30 1.0 1.0 13.0
- 30 1.0 4.9 18.9
- 30 1.0 8.9 23.6
- 30 1.0 19.5 35.6
- 30 1.0 22.1 38.4
- 30 1.2 210.8 0.0
- 30 1.2 1.4 19.1
- 30 1.2 4.5 24.0
- 30 1.2 8.9 31.0
- 30 1.2 16.9 43.6
- 30 1.5 213.6 0.0
- 30 1.5 2.2 24.2
- 30 1.5 7.3 34.2
- 30 1.5 16.4 49.2
- 30 1.5 22.5 57.0
- 30 2.0 218.0 0.0
- 30 2.0 2.0 34.6
- 30 2.0 3.4 38.4
- 30 2.0 4.8 41.6
- 30 2.0 6.4 46.3
- 30 2.0 11.2 62.4

D silcone V100 30 1.2 28.5 0.0
- 30 1.2 2.3 14.7
- 30 1.2 2.3 14.7
- 30 1.2 3.9 17.1
- 30 1.2 5.0 18.0
- 30 1.5 211.0 0.0
- 30 1.5 1.3 19.6
- 30 1.5 6.8 29.4
- 30 1.5 10.3 35.3
- 30 1.5 11.8 38.5

v Silicone V300 30 1.5 26.2 0.0
- 30 1.5 0.9 10.5

d water 5 1.0 29.5 0.0
- 5 1.0 3.0 12.4
- 5 1.0 7.2 15.5
- 5 1.0 10.8 18.1
- 5 1.2 210.3 0.0
- 5 1.2 0.7 13.7
- 5 1.2 1.4 14.0
- 5 1.2 7.0 19.1
- 5 1.5 211.9 0.0

s - 30 1.0 29.8 0.0
- 30 1.0 3.2 14.8
- 30 1.0 9.6 19.4
- 30 1.0 13.5 23.1
- 30 1.0 41.3 47.1
- 30 1.2 212.0 0.0
- 0 1.2 0.5 16.9
- 30 1.2 4.6 19.5
- 30 1.2 5.6 22.5
- 30 1.2 9.2 23.2
- 30 1.2 14.1 29.0
- 30 1.2 28.0 42.3
- 30 1.2 28.8 44.9
- 30 1.2 52.7 66.6
- 30 1.5 215.0 0.0
- 30 1.5 9.9 28.9
- 30 1.5 15.0 33.1
- 30 1.5 14.9 33.1
- 30 1.5 22.5 41.1
- 30 1.5 32.6 49.2
- 30 1.5 55.2 72.2

: - ` 1.5 212.0 0.0
- ` 1.5 0.0 9.4
- ` 1.5 0.0 13.3
- ` 1.5 7.1 17.8
- ` 1.5 9.2 20.6
- ` 1.5 13.0 25.2

Table 2 „Continued…

Fluid

Radius
of curvature

R ~cm!

Pipe
diameter
d ~cm!

Speed
of front
v ~cm/s!

Mean entrance
velocity
U ~cm/s!

- ` 1.5 14.1 25.2
- ` 1.5 18.3 29.8
- ` 1.5 20.0 29.8
- ` 1.5 29.0 41.8
- ` 1.5 30.0 41.8

. water ~40%!
1 glyc. ~60%!

5 1.2 1.6 16.7

- 5 1.2 4.8 20.2
- 5 1.2 12.6 27.5

, - 30 1.2 6.1 26.7
- 30 1.2 15.0 38.8
- 30 1.2 14.9 38.8
- 30 1.2 29.5 63.2
- 30 1.2 51.6 95.7

30 2.0 5.7 39.3
- 30 2.0 3.3 42.4
- 30 2.0 10.2 56.8
- 30 2.0 15.2 64.2
- ` 2.0 0.0 6.9

,• ` 2.0 0.0 8.2
- ` 2.0 16.4 24.8
- ` 2.0 22.7 32.1
- ` 2.0 34.9 47.1
- ` 2.0 45.3 69.2
- ` 2.0 57.0 80.4

h gel 30 1.2 0.0 0.0
- 30 1.2 1.8 2.0
- 30 1.2 20.3 23.1
- 30 1.2 22.3 27.8
- 30 1.5 0.0 0.0
- 30 1.5 6.2 9.3
- 30 1.5 6.5 9.6
- 30 1.5 11.1 15.1
- 30 1.5 13.7 18.5
- 30 1.5 42.3 46.0
- 30 2.0 0.0 0.0
- 30 2.0 38.7 49.6
- 30 2.0 35.9 53.6
- 30 2.0 31.0 55.6
- 30 2.0 44.1 64.0
- 30 2.0 55.9 88.9
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~Fr51 corresponds to the theoretical limit ~1! where the flow de-
taches tangentially at the exit of a horizontal box, as suggested
above in the introduction!. Setting a flow rate leading to Fr>1
would certainly fill any straight pipe.

A careful examination of Fig. 7 leads to several remarks. For
Newtonian fluids, the dotted symbols, which correspond to
straight pipes, lie below the points corresponding to curved pipes.
The latter are gathered with no obvious dependence on the radius
of curvature R. Therefore the modified Froude number, which
takes into account centrifugal effects, can predict the effective
filling of the curved pipes, but is of less interest in the limit of
straight pipes. Each group of points corresponds to a different
fluid, i.e., viscosity. The tendency for Fr(U5Uc) to increase with

d is clearly visible in each group of points. For K>1022, Fr(U
5Uc) is apparently decreasing with K and the flow would even-
tually tend to follow a non Newtonian behavior.

In almost all our experiments, Re is larger than 10 ~see Fig. 6!
indicating that viscous effects are smaller than inertial ones.
Meanwhile, the data on Fr indicate that both inertial and gravita-
tional effects are comparable.

Conclusion

In order to understand the failure in filling curved pipes, we
performed a series of experiments using various fluids. We mea-
sured the velocity of propagation of the front v and we deduced
from its linear dependence with the mean flow velocity U a criti-
cal value Uc , below which there is no longer a complete filling of
the pipe. This critical velocity Uc is increasing with d for each
fluid.

Results are presented in a synthetic way as relations between
dimensionless numbers. We have shown, in the scope of our
work, that a modified Froude number determines the ability of the
flow to fill a curved pipe. In all our experiments and for Newton-
ian fluids of different viscosities, the filling was complete for Fr
>0.660.2.

We also performed experiments with a non-Newtonian fluid
whose rheological behavior is similar to the one of cement sus-
pensions. The front deforms very slowly when the shear is weak
because this increases the viscosity of the fluid. In that case, the
complete filling may be obtained for Fr very small. Following
@16,17#, a more extensive study would be needed in order to un-
derstand the detail of the non-Newtonian effects.

For industrial applications we advise considering pipes of small
diameters and injecting the solution at a relatively low flow rate in
order to increase its effective viscosity. However, a future study of
interest will be to repeat the present experiments in the context of
slug flows.
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Nomenclature

d 5 diameter of pipe
R 5 radius of curvature
g 5 acceleration of gravity
n 5 kinematic viscosity
r 5 density
U 5 mean entrance velocity
u 5 mean exit velocity
v 5 velocity of the upper point of

the front
Uc5U(v50) 5 critical mean velocity

h 5 height of the exit flow

Fr5U(11(d/R)1/2)/(gd)1/2
5 modified Froude number

Re5Ud(11(d/R)1/2)/n 5 modified Reynolds number
K 5 Fr/Re
s 5 surface tension

Lc5s1/2(rg)21/2
5 capillary length

Bo5d2rg/s 5 Bond number

We5rdU2/s 5 Weber number
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