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Fractional Gaussian noise, functional MRI and Alzheimer’s disease
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YGREYC CNRS UMR 6072, Caen, France
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Fractional Gaussian noise (fGn) provides a parsimonious model for
stationary increments of a self-similar process parameterised by the
Hurst exponent, H, and variance, o2 Fractional Gaussian noise with
H < 0.5 demonstrates negatively autocorrelated or antipersistent
behaviour; fGn with H > 0.5 demonstrates 1/f, long memory or
persistent behaviour; and the special case of fGn with H = 0.5
corresponds to classical Gaussian white noise. We comparatively
evaluate four possible estimators of fGn parameters, one method
implemented in the time domain and three in the wavelet domain. We
show that a wavelet-based maximum likelihood (ML) estimator yields
the most efficient estimates of H and o2 in simulated fGn with 0 < H <
1. Applying this estimator to fMRI data acquired in the “resting” state
from healthy young and older volunteers, we show empirically that f{Gn
provides an accommodating model for diverse species of fMRI noise,
assuming adequate preprocessing to correct effects of head movement,
and that voxels with H > 0.5 tend to be concentrated in cortex whereas
voxels with H < 0.5 are more frequently located in ventricles and sulcal
CSF. The wavelet-ML estimator can be generalised to estimate the
parameter vector 3 for general linear modelling (GLM) of a
physiological response to experimental stimulation and we demonstrate
nominal type I error control in multiple testing of 3, divided by its
standard error, in simulated and biological data under the null
hypothesis 3 = 0. We illustrate these methods principally by showing
that there are significant differences between patients with early
Alzheimer’s disease (AD) and age-matched comparison subjects in the
persistence of fGn in the medial and lateral temporal lobes, insula,
dorsal cingulate/medial premotor cortex, and left pre- and postcentral
gyrus: patients with AD had greater persistence of resting fMRI noise
(larger H) in these regions. Comparable abnormalities in the AD
patients were also identified by a permutation test of local differences in
the first-order autoregression AR(1) coefficient, which was significantly
more positive in patients. However, we found that the Hurst exponent
provided a more sensitive metric than the AR(1) coefficient to detect
these differences, perhaps because neurophysiological changes in early
AD are naturally better described in terms of abnormal salience of long
memory dynamics than a change in the strength of association between

immediately consecutive time points. We conclude that parsimonious
mapping of fMRI noise properties in terms of fGn parameters
efficiently estimated in the wavelet domain is feasible and can enhance
insight into the pathophysiology of Alzheimer’s disease.

Keywords: Neuroimaging; Brain; Fractional Brownian motion; Spectral
exponent; Neurodegeneration; Fractal

Introduction

It is well-known that functional magnetic resonance imaging
(fMRI) time series typically demonstrate complex and locally
variable autocorrelation structure, even when the data have been
acquired with the subject “at rest”. There is preliminary evidence
that fMRI noise often has long memory in time, or 1/f spectral
properties, meaning it is positively autocorrelated and there is
disproportionate power in the spectrum at low frequencies (Zarahn
et al., 1997); for review, see Bullmore et al. (2004) and references
therein. However, there may also be high-frequency events like
spikes or transients, or more sustained bursts of negative
autocorrelation, in fMRI noise.

Not only is fMRI noise diverse, its presumably multiple
sources are incompletely known, and are likely to vary in impact
from one data set to the next. Head movement, for example, is an
individually variable but common source of long memory noise
caused by slow rotation or translation of the subject’s head
through an imperfectly homogeneous magnetic or RF field during
scanning (Bullmore et al., 1999a). Cardiac and/or respiratory
cycle-related pulsations may also contribute noise with properties
depending in part on the sampling rate of data acquisition
(repetition time, TR) and the proportion of cerebrospinal fluid
represented in a voxel (Cordes et al., 2001; Purdon and Weisskoft,
1999). There are inevitably also instrumental and thermal sources
of noise.

To date, one of the most successful modelling strategies for
fMRI noise G = (G1,Gy,...,G,), n being the number of time



points, has been the adoption of autoregressive, linear time
invariant models (Bullmore et al., 1996, 2001; Dale, 1999;
Locascio et al., 1997; Purdon and Weisskoff, 1999; Worsley
et al., 2002) of the form

P
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where p is the order of the autoregressive AR(p) process and ¢ =
1,2,....,n. However, AR models will require many parameters to
account for long-range autocorrelated processes. The variability of
autocorrelation between voxels (Bullmore et al., 1996; Worsley
et al., 2002) suggests that it might be appropriate to adapt the order
of AR process to each individual time series, which can be
automated using model selection criteria such as the Bayesian
information criterion (Fadili and Bullmore, 2002), but this is not
always done in practice.

In this paper, we consider an alternative class of models, called
fractional Gaussian noise or fGn, as a new approach to statistical
modelling of fMRI noise. More formally, we are interested in the
model that fMRI noise is distributed as a fractional Gaussian noise
specified completely by only two parameters, its Hurst exponent H
and its variance 67, i.e., G ~ N(0,2), with covariance matrix 2 :=
Y (H,0?). The main potential advantage of fGn compared to AR(p)
models is its simplicity and parsimony: Only two parameters need
to be estimated, with no complications concerning optimal model
order specification.

In the rest of this paper, we rehearse some key mathematical
properties of fractional Gaussian noise; we comparatively
evaluate four possible estimators of fGn parameters; and we
apply the optimal, wavelet-based maximum likelihood estimator
to analysis of fMRI noise properties in resting data acquired
from healthy volunteers and patients with early Alzheimer’s
disease, motivated by the hypothesis that there might be
disease-related changes in the Hurst exponent of fMRI noise
(Jeong, 2004).

Methods
Terms and notation

A fractional Gaussian noise G = (G,: t = 1,2,..., n) is a zero
mean stationary process characterised by two parameters: the Hurst
exponent H < (0,1) and the variance ¢> = Var (G,), teN. The
distribution of fractional Gaussian noise is fully specified by its
auto-covariances at lags T € Z (Beran, 1994),

O.2
e(t)= T (e + 1P =21 + e = 1P7). @)

As can be seen from Eq. (2), the Hurst exponent is a measure of
the long-term correlation between the discrete time points G,
whereas the variance is only a scale parameter.

Alternatively, a fractional Gaussian noise can be seen as the
unique Gaussian process that is the stationary increment of a
self-similar process, called fractional Brownian motion (Man-
delbrot and van Ness, 1968). When H = 0.5, this generalisation is
of course consistent with the familiar observation that a time series
of white Gaussian noise cumulatively constitutes a sample of
classical Brownian motion. It is easy to check from Eq. (2) that the
samples are now independent: c¢(t) = 0, for all T # 0. The middle

value H = 0.5 is also a special case because it defines two distinct
regions in the interval (0,1). A Hurst exponent / < (0,0.5) means
that the process is negatively correlated, or anti-persistent, whereas
H < (0.5,1) means that it is positively correlated or has long
memory. Some simulated fractional Gaussian noises, exemplifying
these three kinds of behaviour, are shown in Fig. 1, along with their
autocorrelations until lag 20.

The auto-covariances characterise fGn in the time domain. The
equivalent information in the frequency domain is carried by the
spectral density function (SDF), also called the power spectrum,
and denoted here by S(f), f e [-1/2,1/2].

The spectral density of an fGn is more precisely defined as the
Fourier transform of its auto-covariance sequence,

0

S(f)= " e(r)e™ " = 46> Cyysin®( f)

-
S 1

R TYE
1

—rsrs ()

with Cp = I'QH + Dsin(wH) / 27)*" * ' (Beran, 1994; Sinai,
1976). By Taylor expansion, we can see that

S(f)=a*Cu(2n)’| I, (4)

in the neighbourhood of the origin. Thus, S(f) is integrable, and

we have fi/lizS(f) = ¢>. We note that the SDF is related to

frequency by a power law with spectral exponent

y=1-2H, —1<y<l, (5)
ie.,

S alfl’ (6)
or, equivalently,

logS(f) o yloglf]. (7)

This approximately linear relation between log S(f) and log | /],
the log periodogram, provides a simple empirical estimator of the
spectral exponent y, useful especially in the case of general 1/f
processes without entailing parametric assumptions.

Thus, when H > 0.5, the spectral exponent will be less than zero
and power will attenuate as frequency increases (or the spectrum
will be approximately 1/f); when H < 0.5, the spectral exponent
will be greater than zero and power will increase with frequency;
and when H = 0.5, all frequencies will be present with equal power
in the spectrum (see Fig. 2).

Spectral densities defined by Eq. (3) for fractional Gaussian
noises with various values of H can be compared directly to the
SDFs approximated by truncated Taylor expansion, Eq.(4). It is
clear that, especially when H < 0.5, the approximate SDF is only
acceptable for small values of f; see Fig. 2.

Wavelets and fractional Gaussian noise

Wavelets provide flexible and increasingly widely used
mathematical tools for time scale analysis of images and signals;
see Mallat (1989), Percival and Walden (2000) for general
background texts and Bullmore et al. (2004) for a recent review
of wavelets applied to analysis of functional MRI data.
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Fig. 1. Simulated fractional Gaussian noises with various values of the Hurst exponent (left column). From top to bottom, the values of H are 0.1
(antipersistent), 0.5 (white Gaussian noise) and 0.7 (persistent). The right column shows their estimated autocorrelation sequences. Slow autocorrelation decay
with increasing lag can be observed for the first and the last time series, with negative autocorrelation at first lag for the Hurst exponent A = 0.1 < 0.5 and
positive dominance for the Hurst exponent 4 = 0.7 > 0.5. The corresponding spectral density functions are plotted in Fig. 2.

The discrete wavelet transform

Like the Fourier transform, which decomposes a signal into a
spectrum of frequencies, wavelet analysis decomposes a signal into
a hierarchy of scales, ranging from the coarsest scale (defined by
the approximation coefficients) to a series of finer scales (defined
by the detail or wavelet coefficients). However, the important
distinction between these two transforms is that wavelets are little
waves, localised in space or time, unlike the sine and cosine waves
of the Fourier basis, which extend infinitely. Thus, a wavelet
transform is inherently more sensitive to nonstationary aspects of
data and may provide a particularly natural basis for analysis of
scale-invariant or fractal processes.

More precisely, the wavelet transform can be seen from two
perspectives, which are unified by the formalism of multiresolution
analysis developed by Mallat (1989). On the one hand, if the signal
of interest is continuous and square integrable, the wavelet

transform can be understood to project it onto a basis, the elements
of which are shifted and dilated versions of a scaling function and a
wavelet function

gq,-jk(x)==2"/2g0(2"x - k), l//j’k(x)==2j/2l//(2jx - k), jkeZ. (8)

Wavelets can be distinguished by their smoothness (also called
regularity) and by their number of vanishing moments. The
number of vanishing moments of a wavelet i is the largest integer
R which satisfies [ "(¢)dr =0, for all » = 0,.. . R—1.

On the other hand, if the signal is discrete, the wavelet
transform is implemented by a two-channel filtering algorithm
(Mallat, 1989), summarised in Fig. 3. At each step, the low-
scale component from the preceding step is split in two, by
passing it through a low-scale filter # and a high-scale filter g.
Let us suppose that the length of the signal n is some power of
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Fig. 2. Spectral density functions (SDFs) of fractional Gaussian noise with various values of the Hurst exponent /. The exact SDF (Eq. (3)) is shown as a red
continuous line and can be compared to the approximation by truncated Taylor series expansion (Eq. (4)), which is shown as a blue dotted line. Fractional
Gaussian noise with / > 0.5 has greater power at low frequencies, whereas fGn with A < 0.5 has greater power at high frequencies; f{Gn with A = 0.5 has equal
power at all frequencies. Note that the approximation to the exact SDF is only tenable in the neighbourhood of the origin and for # > 0.5. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

2 and we repeat the preceding operation j, times. The result is
a set of approximation (or scaling) coefficients a_; , k =
1,...,n/2° and a sequence of detail (or wavelet) coefficients d; ,
J=—Jos-0—1, k= /27, 1f the scaling function has finite
support, the required number of operations for DWT of a
discrete signal is O(n), compared to O(n log n) for the Fast
Fourier Transform.

Wavelets as decorrelating filters

It was shown by several authors (Dijkerman and Mazumdar,
1994; Flandrin, 1992; Tewfik and Kim, 1992; Wornell, 1996) that
the covariance of any two wavelet coefficients d; ; and d;» ;» of a
continuous 1/f process decays rapidly to zero when the distance
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Fig. 3. Mallat’s pyramid algorithm for the discrete wavelet transform. The
data are iteratively decomposed into high- and low-scale components by a
two-channel filter bank. The wavelet or detail coefficients are retained at
each scale, together with the approximation or scaling coefficients at the
coarsest scale.

k27 — K 27/’| increases to infinity. Moreover, assuming the
wavelet filter is bandpass, i.e.,

; ©)

otherwise,

1
Ft//(f)={(1)’ z <|/]=<1

where Fiy denotes the Fourier transform of the wavelet i/, it can be
shown that wavelet coefficients from different scales are uncorre-
lated (Wornell, 1996). Due to this result and to empirical
observation, it is widely accepted that the wavelet coefficients of
a correlated 1/f time series are, to a good approximation,
uncorrelated. Wornell’s estimator (Wornell and Oppenheim, 1992)
and the wavelet-ML estimator (Fadili and Bullmore, 2002) of fGn
parameters we describe hereafter are based on this assumption.

Estimators of fractional Gaussian noise parameters

There are many possible estimators of fractional Gaussian noise
parameters H and ¢2; see Beran (1994) and Taqqu et al. (1995) for a
detailed treatment of the issues. Here we are concerned primarily
with comparative evaluation of four estimators, one in the time
domain and three in the wavelet domain; additionally, we will briefly
discuss the maximum likelihood (ML) estimator in the time domain:

¢ Time
1. Maximum likelihood estimator
2. Whittle’s estimator (Beran, 1994; Whittle, 1953)



*  Wavelet

1. Estimation by discrete variations of filtered fractional
Brownian motion (fBm)

2. Wornell’s estimator (Wornell, 1996; Wornell and Oppen-
heim, 1992)

3. Wavelet-based maximum likelihood estimator (wavelet-
ML)
— with approximate SDF (Fadili and Bullmore, 2002)
— with exact SDF

Each of these estimators is technically described in greater
detail in Appendix A.

Simulation of fractional Gaussian noise

Several algorithms exist to simulate fGn (Beran, 1994) and
these have been comparatively evaluated (Coeurjolly, 2000a). On
this basis, we adopted the Davies—Harte algorithm (Davies and
Harte, 1987), which is both exact and fast, to generate the fGn
simulations used here. For each value of # = 0.1, 0.2,...,0.9, we
simulated 1000 realisations of fGn with 512 time points in each
series; we set o2 = 1 for all simulations.

Functional MRI data acquisition

Gradient-echo echo planar imaging (EPI) data depicting T2*-
weighted BOLD contrast were acquired at 1.5 and 3.0 T from
participants lying quietly “at rest” in the scanners with their eyes
closed. All participants gave informed consent in writing. The
studies were approved by the Local Research Ethics Committee,
Addenbrooke’s NHS Trust (3.0 T data set) and the Research
(Ethics) Committee, South London and Maudsley NHS Trust (1.5 T
data sets).

3.0 T data set: younger volunteer

A single healthy male volunteer (age = 45 years) was scanned
using a Bruker Medspec 3.0 T system at the Wolfson Brain Imaging
Centre, Cambridge, with the following parameters: TR = 1100 ms,
time to echo (TE) =27.5 ms, slice thickness =4 mm, interslice gap =
1 mm, in-plane resolution = 3.1 mm. Five hundred eighteen image
volumes, each comprising 21 slices collectively providing whole
brain coverage, were acquired over the course of 9 min and 30 s; the
first six images were discarded because of T1 equilibration effects.

1.5 T data sets: case-control study of Alzheimer s disease (AD)
Nine patients who met National Institute of Neurological and
Communicative Disorders criteria and Stroke—Alzheimer’s Disease
and Related Disorders Association (McKhann et al., 1984) criteria
for mild probable Alzheimer’s Disease (6 female, 3 male; mean
age = 75.9 years, range = 69-85 years) and 12 healthy, elderly
controls (7 female, 5 male; mean age = 77.3 years, range = 69-82
years) were recruited into the study. The patients were diagnosed at
an early stage and were not severely impaired cognitively: mean
mini-mental state examination (MMSE) score was 26.1 (range 24—
29) in the patients compared to 29.1 (range 27-30) in the healthy
volunteer group. Subjects were right-handed apart from two
patients and three controls. All subjects were screened for
concomitant serious medical diagnoses (such as Parkinson’s
disease, diabetes, stroke, and epilepsy) and previous psychiatric

history. Seven patients were receiving treatment for cognitive
impairment (6 were being treated with donepezil and 1 with
rivastigmine). Twelve patients and 12 controls were included into
the study but data were missing or incomplete for some of them.

Each participant was scanned using a General Electric (GE)
Signa LX Horizon 1.5-T system at the Maudsley Hospital, London,
with the following parameters: TR = 2000 ms, TE = 40 ms, slice
thickness = 7 mm, interslice gap = 0.7 mm, in-plane resolution =
3.75 mm. One hundred fifty-four image volumes, each comprising
16 oblique axial slices collectively providing whole brain cover-
age, were acquired over the course of 5 min and 8 s; the first 4
volumes were discarded because of T1 equilibration effects,
leaving 150 images available for analysis.

All images were mapped into standard space (Talairach and
Tournoux, 1988) using affine transforms to minimise sum of
square differences between the mean EPI volume for each
individual and a contrast-matched template image. The resulting
transformation matrices were identically applied to H and o
parameter maps individually estimated in native space to co-
register them in standard space.

Results
Comparative evaluation of fGn estimators

Using simulated fGn with known parameters, we comparatively
evaluated the performance of Whittle’s estimator in the time
domain and three estimators in the wavelet domain: the wavelet-
ML estimator incorporating the exact expression for the SDF; the
estimator based on discrete variations of a filtered fractional
Brownian motion; and Wornell’s algorithm. The wavelet-ML
algorithm was also used to estimate the parameter vector f§ of an
arbitrary design matrix X fitted to simulated fGn and real fMRI
data acquired at rest, i.e., under the null hypothesis that § = 0.

Bias and efficiency

The results are summarised in Figs. 4 and 5, which show
boxplots for estimated values of H and ¢ for 1000 simulated fGn
series at each value of H.

All methods are reasonably good estimators of H. Whittle’s
estimator and the fBm-based estimator are the least biased;
Wornell’s estimator and the wavelet-ML algorithm are both slightly
biased in estimating extreme values of H. The most efficient
estimators are the wavelet-ML algorithm and Whittle’s estimator;
both Wornell’s estimator and the fBm-based algorithm are
marginally less efficient.

However, Whittle’s algorithm incorporates the usual variance
estimator in the time domain, which is known to be biased towards
underestimation of ¢ in the context of long memory autocorrela-
tion (Eq. (12)), and our results confirm this prediction empirically.
Wavelet-ML and fBm-based algorithms are less biased estimators
of ¢ and, of the two, wavelet-ML is more efficient. Wornell’s
algorithm performs poorly as an estimator of .

Type one error calibration curves

Using the wavelet-ML algorithm, we fitted an arbitrary
experimental design (a periodic contrast between epochs each
comprising 10 consecutive images) to simulated fGn and the 3.0 T
resting fMRI data set. On this basis, we estimated 3 and its
standard error, referred the ratio ¢ = 3/SE (P) to critical values of
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the ¢ distribution, and could directly compare the nominal threshold
for statistical significance, or size of test 0 < o < 1, to the empirical
size of test estimated by the proportion of hypothesis tests that
were (false) positives.

As shown in Fig. 6, wavelet-ML estimation of 7 provided exact
or slightly conservative type 1 error control for tests on simulated
fGn over all values of H, and exact type 1 error control for tests on
the resting fMRI data set. Note that these results provide an
alternative validation of the estimation of ¢ by the wavelet-ML
algorithm because if o> was, for example, substantially under-
estimated this would lead to an underestimate of SE(f) with
consequent inflation of the # statistic and an invalid hypothesis test
with an empirical significance threshold more lenient (or less
conservative) than the nominal size of test.

Mapping fGn parameters in “resting” state fMRI data

As a result of these evaluation exercises, we considered the
wavelet-ML algorithm to represent the best available solution for
efficient estimation of both fGn parameters H and ¢ (as well as f);
though see Discussion for a fuller treatment of the relative merits of
all four estimators. To explore the noise properties of the resting
fMRI data sets in greater detail, we will therefore report primarily
results estimated by the wavelet-ML algorithm. Additionally, we
will report some results obtained using the log periodogram (Eq.
(6)) to estimate the spectral exponent y in each fMRI time series,
and some comparative results of using a first-order autoregression
AR(1) model to characterize serial dependencies in the data.

Effects of head movement and its correction

Let us first consider the effects of head movement on fMRI
noise. It is well known that head movement is almost inevitable in
fMRI studies and even translations <1 mm or rotations of a few
degrees can have profound effects on fMRI time series; this issue
may be particularly problematic in studies of patients rather than
healthy young volunteers (Bullmore et al., 1999a). Movement
correction preprocessing algorithms generically consist of two
steps: first, the series of image volumes is realigned, e.g., by rigid
body or affine transformation, so that each volume is geometrically
approximated to the first image volume in the series; second, the
realigned time series may be regressed on the time series of three-
dimensional rotations and translations of the head’s center of
gravity estimated in the course of realignment (Friston et al., 1996),
or the time series of local voxel displacements trigonometrically
derived from the estimated movements of the head’s center of
gravity (Bullmore et al., 1999a).

If we estimate y at each voxel of one of the 1.5-T data sets,
acquired from a healthy elderly volunteer, after movement correc-
tion by realignment (but not regression), we can see that there are
many large negative values of the spectral exponent, i.e.,y) < —1, on
the edge of the cortex, where we might expect the residual effects of
head movement to be most salient; see Fig. 7. Similarly, the
frequency distribution of y, estimated over all voxels in this slice of
the image, confirms that values of y < —1 are quite common; see Fig.
7. This is technically important because a fractional Gaussian noise
model assumes —1 <y < 1; values of y < —1 are consistent with
fractional Brownian motion, rather than fGn, as an appropriate noise
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Fig. 5. Comparative evaluation of bias and efficiency of four possible estimators of the variance o> of fGn. Simulated realisations of fractional Gaussian noise

(n =512) were generated using the Davies—Harte algorithm with A ranging in increments of 0.1 from A = 0.1 to # = 0.9; 1000 realisations were simulated for

each value of H. The boxplots in each panel summarise the median and interquartile range of the estimated values of ¢* for Whittle’s estimator in the time
domain and for three alternative estimators in the wavelet domain. Variance of all simulations was set o> = 1.

model. However, the second stage of movement correction applied
to these data by regressing each realigned time series on the
estimated voxel displacements (Bullmore et al., 1999a) substantially
changes the anatomical and frequency distribution of y; see Fig. 7.
Many of'the large negative spectral exponents on the cortical rim are
substantially reduced in absolute value and the frequency distribu-
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tion of y is now centered on zero and falls almost entirely within the
range associated with fGn.

In short, head movement and its correction can impact strongly
on fMRI noise parameters, and a two-stage correction algorithm,
involving regression as well as realignment, seems advisable if we
wish to model the noise as fGn. We therefore adopted this
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Fig. 6. Type I error calibration curves for the wavelet-maximum likelihood estimator of the GLM model parameter vector f§ in the context of simulated fGn (left
panel) and biological fMRI noise (right panel). For the simulated data, ¥ = 1000 realisations of fGn with n = 512, ¢* = 1 and 0.1 < H < 0.9 were generated
using the Davies—Harte algorithm. A blocked periodic design matrix was fitted to each realisation and the test statistic //SE () was tested against the ¢
distribution for various sizes of test 0 < o < 1. The observed frequency of positive tests ( y-axis) was almost exactly identical to the nominal size of test (o, x-
axis), indicating that the test based on wavelet-ML estimation is exact and has nominal type I error control. Each curve corresponds to a different value of H.
For the biological data, the same design matrix was fit to all voxels of a null fMRI data set, acquired at 3.0 T with the subject “at rest”; the observed number of
positive tests was slightly below the number expected under the null hypothesis, indicating that the test is valid and slightly conservative.
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Fig. 7. Effects of head movement on spectral exponent of fMRI noise. Top
panel: Maps of spectral exponent y estimated by the log periodogram in
“resting” state fMRI data after one-stage (left) and two-stage (right)
correction for head movement. One-stage correction involved geometric
realignment by sinc interpolation of all images volumes relative to the first
volume in the series; two-stage correction involved realignment followed
by regression of the realigned time series on the estimated time series of
voxel displacements. As indicated by the color bar, for fractional Gaussian
noise (fGN) —1 <y = 1-2 H < 1; whereas for fractional Brownian motion
(fBm) —1 > y. These data demonstrate that uncorrected head movement can
exaggerate the persistence of fMRI noise, causing the distribution of y to
include frequent values y < —1, which is indicative of fractional Brownian
motion. Bottom panel: The frequency distributions of spectral exponent y in
the “resting” state fMRI data. The red line indicates the distribution of y
following one-stage movement correction by realignment alone; the blue
line indicates the distribution of y following two-stage correction by
realignment and regression. The more rigorous movement correction results
in a distribution of y that is centered approximately on zero and largely falls
within the expected range for fractional Gaussian noise.

movement correction strategy consistently in all subsequent studies
of “resting” fMRI data sets.

Anatomical distribution of fGn and AR(1) parameters

Fractional Gaussian noise parameters were estimated by wave-
let-ML at each voxel of the “resting” 3.0-T data set; a single slice
sampled from this single subject’s pair of fGn parameter maps is
shown in Fig. 8. It is clear in this example that the anatomical
distribution of H is not random. Larger values of the Hurst
exponent H > 0.5 are symmetrically concentrated in lateral and
medial cortical regions whereas values of H < 0.5 predominate in
the central white matter and in the vicinity of the lateral ventricles.
It is also notable that the anatomical distribution of ¢ demonstrates
particularly high variance in the ventricles and locally on the
cortical rim.

This map of the Hurst exponent is clearly comparable to a map
of the first-order autoregression AR(1) coefficient estimated at
each voxel of the same data; see Fig. 8. As expected theoretically,
voxels with H > 0.5 tend to have large positive AR(1) coefficients,
whereas voxels with H < 0.5 tend to have negative AR(1)
coefficients. A similar, cortically concentrated anatomical distri-
bution of the AR(1) coefficient (Worsley et al., 2002), the Hurst
exponent and the Holder exponent (Shimizu et al., 2004) has

previously been reported in single slices of resting fMRI data.
However, although H is correlated with AR(1), it is evident from
the scatterplot in Fig. 8 that the relationship between these two
metrics is not simply linear. In particular, it seems that the AR(1)
coefficient provides a greater dynamic range to characterize
moderately autocorrelated voxels, whereas H provides a greater
dynamic range to characterize the most strongly autocorrelated
voxels. Both metrics provide equivalent characterisations of white
noise sampled from voxels in the image outside the brain, which
tended to have AR(1) ~ 0 and H ~ 0.5. The variance map estimated
in the context of a first-order autoregressive model was very
similar to the map of variance estimated as an fGn parameter (data
not shown). However, we again noted that the residual fMRI time
series defined by subtraction of an estimated AR(1) process often
demonstrated significant temporal autocorrelation. For example,
approximately 95% of residual time series demonstrated significant
autocorrelation by the Box—Pierce test for whiteness after AR(1)
modeling (Fig. 8), and 85% of residual series were significantly
autocorrelated after AR(3) modeling.

AR(1) Box-Pierce

background :

Fig. 8. Fractional Gaussian noise parameters, Hurst exponent / and ¢, are
mapped for a single section of “resting” FMRI data (top row, left). Also
shown is a comparable map of the first order autoregression coefficient AR(1)
and a map of the Box—Pierce statistic (a test for white noise) estimated after
subtracting an AR(1) process from each time series (top row, right). The key
points to note are that voxels with large (positive) Hurst exponents (or AR(1)
coefficients) tend to be concentrated symmetrically in cortical regions,
whereas voxels with small values of H or negative values of AR(1) tend to be
concentrated around ventricles and are associated with high variance. The
Box—Pierce statistic map indicates that a simple AR(1) model is generally
inadequate to account for all correlation structure in these data. Bottom row:
Scatterplot of H versus AR(1) for all voxels shows that the two metrics are
correlated (» = 0.54) but H provides greater dynamic range for character-
ization of strongly autocorrelated time series. Also shown in this plot is the
swarm of (pink) points corresponding to estimates of A/ and AR(1) in voxels
located outside the brain, which show that the background instrumental noise
in fMRI is approximately white by both metrics.
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Fig. 9. Examples of single-voxel fMRI time series exhibiting antipersistence (top panel) and persistence (bottom panel). Each panel comprises four diagnostic
plots, from left to right, top to bottom: the time series, its autocovariance sequence, smoothed periodogram, and log-variance of the wavelet coefficients at each
scale. The slope of the straight line fitted to the log wavelet variance plots is an indirect estimator of H, leading to the values H =033 and H = 0.86,
compared to # = 0.31 and A = 0.92 by wavelet-ML, in the case of the antipersistent and persistent time series, respectively. The persistent series was sampled
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from a region of medial posterior parietal cortex and the antipersistent series was sampled from the left lateral ventricle.



To illustrate in greater detail the wide range of fMRI noises that
are subsumed by the fGn model, we extracted time series from two
voxels with different fGn parameters: one time series was extracted
from a voxel in medial posterior parietal cortex that had H = 0.92
and high variance; another time series was extracted from a voxel
in the lateral ventricles that had /' = 0.31 and high variance. As
shown in Fig. 9, and as theoretically expected, the cortical time
series was persistent in time and had positive autocorrelation
coefficients for lags < 5. The spectral density function of this series
demonstrated peak power at low frequencies and a plot of the
logarithm of the wavelet coefficient variances at each scale versus
scale showed an approximately linear decay in log variance as a
function of increasingly detailed scale of the DWT. Collectively,
these results can be summarised by saying that this cortical time
series with / > 0.5 demonstrated long memory or 1/f properties.
The ventricular time series (Fig. 9) demonstrated a very different
behavior characterised by anti-persistence in time, a negative
autocorrelation coefficient at lag = 1, a spectral density function

Elderly
controls
H

AD
patients
H

Elderly
controls
(o]

AD
patients
(0

dominated by high-frequency power, and an approximately linear
increase in the log of the wavelet coefficient variances as a function
of increasingly detailed scale of the DWT.

To provide a more generally representative map of fGn
parameters, the individual subject maps of A and ¢ estimated in
the nine healthy elderly volunteers were co-registered in Talairach
space (Brammer et al., 1997) and averaged at each voxel to
produce a pair of group mean fGn parameter maps; see Fig. 10.
These group maps confirm that the anatomical distribution of H is
not random: Cortical regions are generally associated with larger H
and there is some evidence for right-left symmetry in the cortical
distribution of long memory noise.

A case-control study of long memory noise: patients with
Alzheimer's disease compared to healthy volunteers

Group mean maps of H and o2 were constructed in exactly the
same way using the data acquired from patients with early AD; see

Fig. 10. Effects of Alzheimer’s disease (AD) on Hurst exponent estimated by wavelet-ML in “resting” state fMRI data. Group average maps of H are shown for AD
group (N = 9; third row) and age-matched volunteers (N = 12; second row). The top row localises significant between-group differences in A (greater in AD;
cluster-wise o < 0.007 by permutation test) to medial and lateral temporal cortex, left somatosensorimotor cortex and dorsal cingulate. All maps are orientated with
the right brain represented by the left side of each section; the z-coordinates (mm) of each section in relation to the intercomissural line are indicated.



Fig. 10. The anatomical distributions of H and ¢* can be simply
compared between groups by inspection of the two sets of group
mean parameter maps, which suggest that the patients with AD
may have higher values of / in various cortical regions. We used a
permutation test to make this comparison more formally (Bullmore
et al., 1999b; Suckling and Bullmore, 2004). Briefly, the observed
between-group difference in H at each voxel was compared to
critical values of its permutation distribution sampled by repeat-
edly, randomly reassigning each subject to two groups (regardless
of diagnostic status) and estimating the voxel-wise differences
between groups after each permutation. Voxels in the observed
group difference map, which exceeded the critical value for a two-
tailed test of size o = 0.05, comprised a set of suprathreshold voxel
clusters. The “mass” of each observed voxel cluster, i.e., the sum of
the suprathreshold voxel statistics it comprised, was then tested for
significance by comparison to a critical value of the permutation
distribution for cluster mass sampled by applying the same voxel
threshold to the between-group difference maps derived from the
permuted data. The significance threshold for this cluster-level test
was set at o < 0.005, meaning that we expect less than one positive
cluster over the whole map under the null hypothesis. The same
methods were used to test the significance of between-group
differences in 62, estimated by the wavelet-ML algorithm at each
voxel. To further explore the relationship between the Hurst
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exponent and the AR(1) coefficient, which in principle provide
equally parsimonious (single parameter) descriptions of fMRI
noise, we also compared the AD patients to the healthy volunteer
group in terms of the AR(1) coefficient, using an identical
permutation test and cluster-wise probability threshold to define
regions of significant between-group difference.

As shown in Fig. 11, we found significant between-group
differences for the Hurst exponent in several cortical regions
including bilateral inferior, middle and superior temporal gyri, left
precentral and postcentral gyri, left dorsal cingulate and medial
premotor cortex, insula and bilateral medial temporal structures
including hippocampus, amygdala and parahippocampal gyrus. In
all these regions H was significantly greater in the patients with
AD than in the comparison subjects. These differences are also
represented more extensively in Fig. 11.

Comparable maps of between-group difference in ¢ show a
different anatomical distribution, with significantly greater var-
iance in the patient group located in the vicinity of the ventricles
and sulcal CSF spaces at the base of the brain, on the cortical rim
and in proximity to the interhemispheric fissure.

As shown in Fig. 11, many of the regions identified as
significantly different between groups by testing the Hurst exponent
also showed a significant difference in terms of the AR(1)
coefficient. However, the map of differences defined by the AR(1)

AD EC AD EC

1

I

Fig. 11. Whole brain maps showing location of significant differences between patients with Alzheimer’s disease (AD) and an elderly control group of age-
matched volunteers (EC) in terms of the Hurst exponent /A and the first-order autoregression coefficient AR(1). Note that the anatomical pattern of case-control
differences is comparable between metrics but the set of regions identified by the AR(1) coefficient is essentially a subset of the regions identified by the Hurst
exponent; orientation of maps and thresholds for significance are as in Fig. 10. Greater sensitivity of the Hurst exponent to detect emergence of long memory
dynamics in AD is corroborated by the box-plots (bottom left) of standardised AR(1) and H (averaged over all significantly different voxels within each subject),
which show smaller within-group variability and greater between-group difference in terms of H. Superior sensitivity of the Hurst exponent is also demonstrated
by the scatterplot (bottom right) of voxel values of AR(1) versus H, color-coded according to group, which shows clearer separation of the groups in terms of H.



coefficient was essentially a subset of the between-group differences
mapped by testing the Hurst exponent, implying greater sensitivity
of the Hurst exponent to detect pathological changes in these data.
This impression was substantiated by box-plots of AR(1) and H
(standardised for each subject over the set of voxels identified as
abnormal by the Hurst exponent test), which show between-group
differences in both parameters but relatively reduced normal
variability and greater between-group difference in terms of /. This
differential sensitivity between the two metrics can be quantified by
comparing the results of two unpaired ¢ tests for between-group
difference in terms of the / and AR(1) data summarised in the box-
plots: for H, t,9=4.66; P <0.001; whereas for AR(1), #,9=3.18; P=
0.005. The clearer separation between groups in terms of the Hurst
exponent is evident also in a simple scatterplot of H and AR(1)
estimated in all voxels defined by the Hurst exponent test as
significantly different between groups (Fig. 11).

Discussion

The problem of fMRI noise is not new and there have been
several previous efforts to address it statistically, many of them
based on linear time-invariant, autoregressive and/or moving
average models (Bullmore et al., 1996; Dale, 1999; Locascio et
al., 1997; Purdon and Weisskoff, 1999; Worsley et al., 2002). Here
we have introduced fractional Gaussian noise as an alternative
modelling strategy. We have shown empirically that the spectral
exponents of movement-corrected fMRI data acquired at rest are
mainly distributed in the range —1 <y <1, which is compatible with
a fractional Gaussian noise model that economically encompasses
several different forms of noise naturally arising in fMRI data. The
most attractive feature of fGn as a candidate model for fMRI noise,
we suggest, is its parsimony. Only two parameters, H and ¢°, are
required to describe completely both persistent, long memory, 1/f
processes with / > 0.5 and antipersistent, negatively autocorrelated,
predominantly high-frequency processes with H < 0.5, as well as
classical Gaussian white noise with /' = 0.5. An equivalently
parsimonious AR model would necessarily be first order and it has
previously been shown that AR(1) models may not always be
sufficient to provide an adequate account of long memory and other
complex forms of noise that occur particularly in high-field fMRI
(Bullmore et al., 2001). We have replicated this observation in these
data, showing that a large proportion of voxels remain autocorrelated
after AR(1) or AR(3) prewhitening, which would invalidate a test of
P/SE (f) estimated by autoregressive prewhitening in these data.
Nonetheless, we have also directly compared the AR(1) coefticient
to the Hurst exponent in terms of sensitivity to detect pathological
differences in resting state fMRI data.

Neurobiological interpretation of the Hurst exponent

One of the obvious benefits of parsimony in the context of
functional MRI is that it simplifies the problems of understanding
simultaneously the noise properties of tens of thousands of time
series. For example, we can provide a complete account of the
noise properties of the resting brain in the form of two parameter
maps (H and ), which can then be spatially transformed,
averaged, and compared between groups using techniques already
familiar in the multiple univariate analysis of regression model
parameters estimated at each voxel. In this way, we have shown
that the anatomical distribution of the Hurst exponent is not

random: larger values of H, indicative of 1/f processes, are
concentrated symmetrically in lateral and medial cortex; whereas
smaller values, indicative of antipersistence, are concentrated in
ventricles and other CSF spaces. We propose that the predom-
inance of long memory processes in cortical regions is compatible
with recent human and primate electrophysiological studies
demonstrating the existence of long memory oscillations in
spontaneous neuronal firing rates and local field potentials
(Leopold et al.,, 2003; Linkenkaer-Hansen et al., 2001) and
suggesting that these long-term trends in neuronal activity should
be indirectly measurable by associated hemodynamic changes on
the time scale of fMRI. In other words, it seems likely that the
phenomenon of low-frequency fluctuations in cortical BOLD
signals represented, for example, by H maps may be indicative
of synchronised, long memory neuronal oscillations rather than
merely noise in a neurophysiological sense.

Pathophysiological interpretation of the Hurst exponent

Some further evidence that the Hurst exponent of fMRI noise
may be substantively informative is provided by our demonstration
that patients with probable early Alzheimer’s disease have
significantly greater values of H in regions of medial and lateral
temporal cortex, dorsal cingulate and premotor cortex, and left pre-
and postcentral gyrus. These regions are among those that have
previously been implicated in the early stages of AD (Thompson et
al., 2003) and it seems plausible that changes in persistence of
resting state fMRI time series reflect neurodegenerative changes in
the long memory dynamics of neuronal systems in these structures.
Electrophysiological methods have previously provided the only
window on abnormal neurophysiological dynamics in Alzheimer’s
disease but there is considerable evidence from this literature in
support of our observation of abnormal long memory or 1/f
dynamics in AD. The EEG in AD is characterised by a shift of the
power spectrum to lower frequencies and a decrease in coherence
of fast thythms (Jeong, 2004). It is perhaps particularly relevant
that nonlinear dynamical systems modeling of EEG and MEG data
in AD has repeatedly shown that the disease is associated with
reductions in the first Lyapunov exponent L, and the fractal
(correlation) dimension D, (Stam et al., 1995; van Capellen van
Walsum et al., 2003). These changes indicate that the electrical
activity of the brain becomes less dynamically complex, or more
predictable, as a consequence of AD, which is entirely consistent
with the emergence of more persistent dynamics that we have
described in terms of the Hurst exponent. More exactly, the fractal
(Hausdorff) dimension Dy is simply related to the Hurst exponent
by the relation Dy =T + 1 — H, where T = 1 is the topological
dimension of a time series (Schroeder, 1991); so we can see that
increasing H means decreasing D,. Since Do, and D, are
monotonically consistent, it follows that the previously reported
decreases in fractal dimension D, associated with AD directly
predict increases in the Hurst exponent of neurophysiological time
series. It is perhaps also worth noting that increasingly predictable
physiological dynamics, quantified by reductions in L, or fractal
dimensions, have been described as a hallmark of other pathophy-
siological processes including some epilepsies, cardiac arrythmias
and normal ageing; see Goldberger et al. (2002) for review.

Severity of Alzheimer’s disease correlates with the extent of
EEG abnormalities (Hughes et al., 1989; Kowalski et al., 2001) and
in longitudinal studies of disease progression, delta and theta
activity increase and alpha and beta decrease (Duffy, 1984).



Changes in EEG power are most prominent in left-sided temporal
regions (Breslau et al., 1989; Rice et al., 1990). This is consistent
with reports of reductions in left temporal and temporo-occipital
alpha (Adler et al., 2003; Leuchter et al., 1992; Locatelli et al.,
1998) and interhemispheric theta coherence (Adler et al., 2003).
EEG changes in AD probably reflect functional disconnections
among cortical areas resulting from death of cortical neurons,
axonal pathology and cholinergic deficit. Since the basal fore-
brain’s acetylcholinergic projections maintain desynchronised EEG
activity (Metherate et al., 1992), loss of cholinergic innervation of
the neocortex early in the course of AD (Bartus et al., 1992; Coyle
et al., 1983) is likely to play a critical role in the emergence of low-
frequency dynamics in the EEG. Damage to other neurotransmitter
systems besides the cholinergic system is also likely to be
important in AD (Dringenberg, 2000). However, both cholinergic
and anticholinergic drugs have acute normalizing effects on the
EEG in AD (Agnoli et al., 1983; Neufeld et al., 1994) and long-
term treatment with cholinesterase inhibitors decreases the mean
absolute power of theta activity (Kogan et al., 2001) and reduces
EEG deterioration (Rodriguez et al., 2002).

Several experimentally refutable predictions are generated by the
hypothesis that abnormally long-memory fMRI noise, indicated by
large values of the Hurst exponent, represents the same pathophy-
siological process previously measurable only in terms of altered
EEG spectral and nonlinear dynamical parameters in AD. For
example, we might expect that EEG and fMRI measures of low-
frequency dynamics should be correlated and both should show
progressive deterioration with increasing disease severity. We might
also anticipate that pharmacological manipulations emulating the
cholinergic model of AD, such as administration of a cholinergic
antagonist like scopolamine to healthy elderly volunteers, will cause
transiently increased Hurst exponents in fMRI time series recorded
from the temporal, cingulate and subcortical regions found to be
dynamically abnormal in this study. Indeed, bearing in mind that we
were able to demonstrate significant fMRI abnormalities in such a
small group of patients with early AD and mild cognitive impair-
ment, many of whom were already receiving treatment, it is
conceivable that fMRI may prove to be a more sensitive marker
than EEG of disease- and treatment-related changes in AD.

Mapping between-group differences in low-frequency fMRI noise

It is notable that these case-control differences in correlation
structure of fMRI noise were evident in data that had been
rigorously preprocessed to eliminate effects of head movement,
making this an unlikely alternative interpretation. It is interesting
also that pathological changes in correlation structure were not
generally accompanied by local changes in variance, although
there was evidence for pathologically increased noise variance in
left prefrontal and parietal cortex, thalamus and basal forebrain;
only in the dorsal cingulate cortex was increased variance
associated with locally increased persistence.

We have carefully compared the sensitivity of the Hurst
exponent in detecting these differences to the sensitivity of the
equally parsimonious AR(1) model and shown, convincingly we
hope, that the Hurst exponent is the more discriminating metric.
Comparable group differences are evident in terms of the AR(1)
coefficient, as expected theoretically, but these represent a subset of
the differences mapped in terms of the Hurst exponent. The most
likely explanation for this disparity, in our view, is that the brain
changes in AD do not involve simply a greater strength of

association between immediately consecutive time points, which
would be optimally described by a first order autoregression
model. Rather, the neurophysiological signature of AD is more
likely to involve greater salience of low-frequency or long-memory
components in neurophysiological data, consistent with previously
reported changes in nonlinear dynamical system parameters
indicating pathologically increased predictability or reduced fractal
dimensionality (Jeong, 2004), and dynamic changes of this sort are
naturally better described by the Hurst exponent parameterising the
covariance of a fractional Gaussian noise model.

Relative merits of various fGn estimators

Given that fractional Gaussian parameters of fMRI noise may be
interesting and useful quantities, it is important to be sure that they are
estimated with low bias and high efficiency. We have evaluated
several possible estimators and the fairest overall conclusion is
probably that no single estimator was unquestionably superior by all
criteria. Whittle’s approximation to the time domain ML estimator
was the least biased and most efficient estimator of H; its perform-
ance was particularly good compared to alternatives in the wavelet
domain when H was close to its limiting values (0, 1). However,
Whittle’s algorithm incorporates the usual empirical estimator of 62,
which is biased by long memory, and this is a serious problem
potentially if we are interested in using estimates of ¢* to construct
standardised statistics like §/SE (/) for tests of brain activation (such
statistics will be overestimated, leading to loss of nominal type 1 error
control, if ¢® is underestimated). Similar considerations counted
against Wornell’s algorithm, which was a slightly biased estimator of
H but a severely biased estimator of 2. The fractional Brownian
motion-based algorithm performed almost as well as Whittle’s
algorithm for estimation of / (it was the best wavelet-based method
in this respect) and, in principle, it could be generalised to estimate
the parameters of more complex models such as fGn plus additive
white noise, or multifractional Gaussian noise with nonstationary /-
and 2. However, the wavelet maximum likelihood algorithm,
refined by incorporation of the exact SDF for fGn, was only slightly
more biased in estimation of /, and was marginally more efficient in
estimation of ¢, than the fBM-based algorithm. Additionally, the
wavelet-ML algorithm was the most readily generalised to estimate
simultaneously the regression model parameters § and was shown
empirically to provide a valid basis for significance testing of
possibly activated voxels. On balance, we have preferred to use the
wavelet-ML algorithm because of our interest potentially in both
signal and noise parameters of fMRI time series. If one was interested
more purely in the Hurst exponent of the noise then Whittle’s
estimator in the time domain, or the fBm-based algorithm in the
wavelet domain, would be good alternative choices. Moreover, if one
was interested only in the spectral exponent of the noise y, without
wishing to make any prior assumptions about whether the noise was
fGn or fBm, then the log periodogram is a simple, quick and model-
free estimator of y. Another class of estimators that we did not discuss
here are the semiparametric estimators. They allow for weaker
assumptions on the model and may be used when the parameter of
interest is the spectral exponent (Bardet et al., 2003).

It almost goes without saying that the efficiency of all estimators
improved as a function of increasing length of the time series, at
least up to » = 512 in simulated data. For estimation of long-
memory parameters in resting fMRI data, it is therefore probably
advisable to acquire time series comprising at least several hundred
time points and preferably perhaps one thousand or more.
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Appendix A
A.1. Wavelet analysis of the variance of a fractional Gaussian noise

The aim of this section is to emphasize how important it is to
know the mean of a long-range dependent process when estimating
its variance and, therefore, how wavelet-based estimators of the
variance may be less biased than traditional estimators when applied
to long memory processes such as fractional Gaussian noise.

Let us first assume that the process we observe is a pure fGn. In
this case, its mean is known to be 0 and an unbiased estimator of
the variance is

1 n
A2 1 2
7= E G;. (10)

t=1

Unfortunately, the mean of a natural process is not usually
known a priori so it must be estimated. This is the case, for
instance, with fMRI noise, which has a spatially varying, unknown
mean. One possible estimator of the variance is then

PO zn:(cﬁc‘)z. (11)

(=1
However, this estimator is biased. Indeed,
E(6?) = o> — Var(G) = o* (1 — n*"7?), (12)

and it can be seen that the bias can be arbitrarily close to 6> when H
gets close to 1. Let us have a closer look at this formula for the
special case H = 0.5, corresponding to a Normal white noise. In this
case, one obtains the well-known result that n/(n — 1)62 is an
unbiased estimator of the variance. Following this example, an
appealing estimator would be 02/(1 — n?/=2), but one has to  bear
in mind that the Hurst exponent is also unknown, and errors in its
estimation will exponentially affect the estimation of the variance.

We will now show that the inconveniences caused by an
unknown mean can be easily circumvented by filtering the process,
in our case by a wavelet transform. The key benefit of this
approach is that the wavelet coefficients of any stationary process
have zero mean, leading to a better estimation of the variance
(Percival and Walden, 2000, pp. 299-301) Moreover, even if some
low-order polynomial trend is added to an fGn, the resulting signal
will still have zero mean wavelet coefficients. This is because the
filtering operations implicit in computation of the discrete wavelet
transform (see Fig. 3) act like multiple backward differentiations
(depending on the number of vanishing moments R), which

destroy the positive correlation in the data due to both noise and
trend. As a consequence, the estimated variance of the detail
coefficients converges quickly to the theoretical value.

Let us consider now a wavelet decomposition of a finite sample
G of an fGn, from the finer level 0 to some coarser level —j, jo €
N. At each scale, the wavelet coefficients and the approximation
coefficients form a pair of zero mean stationary time series, with
variances (Wornell, 1996)

var(d) = [ SR (P,

Var(a,) = [ S(IFe, (1P (13)
Eq. (8) and a change of variables under the integral gives

Fiy ) = [, (a= 2R Fy (27). (14)

Egs. (13) and (14) suggest an approximation to the wavelet
coefficients variance, exploiting the fact that the wavelet filters are
almost bandpass [(Percival and Walden, 2000; Wornell, 1996); and
see Eq. (9)]:

Var(d, ) =vi()=27" [* SO = —joen =1 (09

The same argument holds for
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Var(a_,.) =vi( —jo)=2"*' / S(f)df. (16)

0

Note that this is effectively a wavelet decomposition of the
variance of the process, since it is easy to see that

1
wma:/mﬂﬂ:rWﬂﬂw+§p%m. (17)

-12 J==Jo

A simple approximation to the variances of the wavelet and
scaling coefficients (Fadili and Bullmore, 2002; Wornell, 1996)
can be calculated by replacing Eq. (4) in Egs. (15) and (16), thus:

Var(d; ) =93 (j)="Ky(H)27PH j= —jo, ..., =1 (18)
Var(a*fo. ) = 03( 7j0):= O-ZKG (H)Zm(zhLl)’ (19)
with

I'(2H + 1)sin(nH ) (1 — 22772)
n)*' (1 - H)

Ky(H)= , (20)

I'(2H + 1)sin(nH ) (2*772)

0 (1 - H)

From Eq. (18), we can see that there is an almost linear relation
between the log of the variances Var(d; .) and the scales j

K (H)=

(1)

log, [Var(d; )] = — (2H — 1)j + log, (¢’ K4(H)),
J= —Josey — 1 (22)
which can be exploited by empirical estimators of A (Percival and

Walden, 2000), such as some of those described in the following
section.



A.2. Estimators of fractional Gaussian noise parameters

This section provides technical detail concerning the fGn
estimators comparatively evaluated in this paper.

A.2.1. Maximum likelihood estimator in the time domain

The likelihood function of the fGn G = (Gy,...,G,)’, with
covariance matrix 2 depending on an unknown parameter vector
0 = (H,0%) (0,1) x R, is

L(G; 0)=(2m) 3| 2(0)| 23006, (23)

where |2(0)| denotes the determinant of the matrix X(0). The
maximum likelihood estimator (MLE) of 0 is obtained by
maximising L(G;0) with respect to 0, or, equivalently, by
maximising the log-likelihood function

LL(G;0)=logL(G; 0) = ~ 5 log(27) - %10g|2(9)|

- %G@*’(@)G. (24)

This estimator in the time domain converges almost surely and

is asymptotically Normal (Dahlhaus, 1989). However, it entails

inversion of the covariance matrix of the fractional Gaussian noise

2(0), which is computationally costly and numerically unstable.

For this reason, the method has not been widely used and will not
be further considered here.

A.2.2. Whittle s estimator

An alternative to the ML estimator in the time domain was
proposed by Whittle (1953). The key idea is to replace the
two components of LL(G;0) that are dependent on X(0) with
their asymptotic equivalents. More precisely, log|X(0)| is
approximated by n_fl{izlog‘g(f)df and X'(0) is approxi-
mated by the n X n matrix Q0) = (0(i—!));=1.. , Wwith
elements

w(k)= /jﬁe”“k«f df. (25)

This substitution numerically simplifies maximisation of the
log-likelihood function, yet Whittle’s estimator enjoys the same
asymptotic properties as the exact MLE.

A.2.3. Estimation by discrete variations of filtered fractional
Brownian motion

As previously noted, a fGn can be regarded as the increment
process of a fractional Brownian motion (fBm). Equally, if G =
(Gy,...,G,) is a finite sample of a fGn with Hurst exponent H, the
variable B = (By,...,B,),

t
Bi=) G, (26)
/=1

is a finite sample from the path of a fBm, with the same Hurst
exponent /. We can thus identify the fGn by estimating the
parameters of the corresponding fBm.

One of the methods that may be used in this context exploits
the simple dependence on H of the discrete variations of the
filtered sample of fBm (Coeurjolly, 2000a; Istas and Lang,

1997; Kent and Wood, 1997; Poggi and Viano, 1998). In brief,
we can derive an approximately linear relationship between the
log of the variance of the path of fBm passed by a filter g and
the number of filter dilatations. We can thus obtain a simple
least-squares estimator of H and o2, by considering M
dilatations g',....g" of the wavelet filter g.

This estimator is unbiased, converges almost surely, and is
asymptotically normal. The algorithm is computationally fast,
simple and it automatically eliminates polynomial trends. Exten-
sions are available to the case of fBm contaminated with additive
white noise, and to the estimation of the parameters of multifrac-
tional Brownian motion (Coeurjolly, 2000b). It is specified in more
detail as follows.

Let By be a fractional Brownian motion (a continuous process)
sampled at discrete time instants t/n, t = 1,...,n. Let

/
ti
vE(/m)=S quH(Tq),t:/+ 1yoon (27)
q=0

be the sequence obtained after filtering it with some filter g having
length 7 + 1 and satistying the relations

/ /
> gyg' =0, fori=0,..,R—1and » g,g"+0, (28)
q=0 q=0

for some integer R > 1. If g is a wavelet filter, R is the number of
vanishing moments of the wavelet. Let

1 = o 2
si(@)=—— > IV(t/n)] (29)

n—~¢ t=/+1

be the empirical variance (second order moment) of the filtered
sequence. If ¢’ denotes the filter g dilated j times, i.e.,

i e ifi=ki . .
g= { 0 otherwise,l =0,...00+1, (30)

we have the relation

.\ 2H
[E(sn(gf»:fﬂ[asn(g)):AHA,:z(ﬁ) ’ ()

with Ay, » = —2%/2 Z;rzogqg,m — [ Here /2 denotes the
variance of the increments of By(¢), ¢t = 0,1,2,...; in other words,
the stationary time series of fGn (By(1) — By(0),Bu(2) —
By(1),...). Given M dilatations g',....g" of the filter g, the
parameters H and A can be easily estimated by ordinary least
squares after taking the logarithm in Eq. (31).

We will not discuss in detail the fundamental Eq. (26); however,
we note briefly that in applying this estimator one is implicitly
assuming that

G, = By(t/n) — By((t — 1)/n), 1,..n, (32)

where =, denotes equality in distribution. In other words, this
would mean an increase in the sampling rate as » increases but the
total duration of the experiment is constant since

2
) () [

E




Eq. (32) would imply that * = 2%/n*", so the error in its estimation
would be inflated by the error in the estimation of H. In our
comparative study, we avoided this drawback by estimating the
parameters from simulated fBm samples discretised with step 1/n.
In the rest of this paper, since we define the SDF by Eq. (3), we are
assuming that

Gy =a Bu(t) — Bu(t—1), (34)

meaning that the sampling rate does not depend on 7.

We believe that the model (32) is more appropriate for our
application since an increase in the number of brain volumes
acquired during an experiment is generally obtained by extending
the time of observation, instead of decreasing the lag (TR) between
two acquisitions. Moreover, we do not expect the variance of the
data to diminish as the number of time points increases. However,
model (34) may also be used, with the appropriate scaling
of the variance, or if the only parameter of interest is the Hurst
exponent.

A.2.4. Wornell's estimator

One of the first algorithms using wavelets for the identification
of fGn was proposed by Wornell and Oppenheim (1992) and it
exploits the Karhunen—Loéve-like (whitening) properties of the
wavelet decomposition of 1/f processes. Moreover, it treats the
case of a fGn contaminated by some independent, additive white
Gaussian noise. As the wavelet coefficients of white Gaussian
noise are normal, independent and identically distributed, the
wavelet coefficients of the resulting process are approximately
independent and normally distributed. Wornell’s algorithm max-
imises the likelihood function, parameterised by the vector 0 =
(z, ,u,apzy)’, where

=221 =6 Ky(H), (35)
are factors in the variance of the wavelet coefficients of the
fGn (see Eq. (18)) and o¢, is the variance of the white Gaussian
noise.

The maximum likelihood estimates are calculated as
zeroes of the derivative of the log-likelihood function, using
an iterative EM (Expectation—Maximisation; Dempster et al.,
1977) algorithm in order to bypass the numerical difficul-
ties. Wornell’s algorithm has an elegant simplification for
the case of pure fGn. However, the approximation errors in
Eq. (4) and the one-step independent estimation of the quantities
2H — 1 and 6’K4(H) in Eq. (18) produce a large error in the
estimation of 62, when # is as small as it typically is for fMRI time
series.

A.2.5. Wavelet maximum likelihood estimators

A.2.5.1. Wavelet ML with approximate SDF. This algorithm was
originally proposed (Fadili and Bullmore, 2002) as an estimator of
the parameters of the regression model

Y =XB+G, (36)

where X denotes the experimental design matrix, 5 is the model
parameter vector and G is a fractional Gaussian noise. The number
of observations will be assumed to be n = 27,

Let {a_j1,d_j1,...d 11, ..,d_12,1} be the sequence of
coefficients obtained by wavelet decomposition of the noise G.
Assuming that the wavelet filter is close to a bandpass filter, its

covariance matrix is almost diagonal and can be approximated by
the diagonal matrix

Vo=
Va(=J)
~ V2(—
3(H,6%) = va(=1)
()
~ ~~ —_—
1 1 2J-1

(37

where $2(—J) and v3(j), j = —J,...,—1 are the approximations

(Egs. (18) and (19)) to the variances of the wavelet decomposition
coefficients. The approximate likelihood function for the model
(36) in the wavelet domain is then

L(G:0) = ) 3|5 (H, o?) et (1) 6, (38)

where the parameter 0 = (f',H,0%) includes both the two
parameters of the fGn and the regression model parameter vector
p and G, is the wavelet transform of the noise vector G. The
maximum likelihood equation cannot be solved directly; but an
iterative algorithm based on numerical optimisation was proposed
by Fadili and Bullmore (2002), under the name of wavelet-
generalised least squares (WLS), and details of this algorithm are
rehearsed below.

Note that, strictly speaking, this is only an approximate ML
estimator of f§ because the matrix f(H,O'Z) is only a convenient
approximation to the true covariance matrix of the noise X(H,0?),
which is adopted because the assumption of diagonality makes it
easy to invert and consequently improves the computational
performance and numerical stability of the algorithm.

A.2.5.2. Wavelet ML with exact SDF. We have already seen that the
SDF of a fGn is well approximated in the neighbourhood of the
origin by a power function of the frequency. However, Fig. 2 shows
that this approximation becomes progressively less accurate as we
move away from the origin, especially for fractional Gaussian noise
with H < 0.5. We can improve the performance of the wavelet-ML
estimator proposed by Fadili and Bullmore (2002) by substituting
the exact formula for the SDF, Eq. (3); that is, the diagonal elements
of 2(H,0?) are now given by Eqgs. (15) and (16).

Another important issue in designing wavelet-based ML
estimators concerns the approximation coefficients. The approx-
imation coefficients (and low-scale detail coefficients) are more
likely to be correlated than high-scale detail coefficients and the
critical assumption that the error covariance matrix is diagonal
therefore becomes less secure at low scales, suggesting that these
coefficients should not be used in the estimator (Percival and
Walden, 2000). Two additional arguments in favour of withholding
the approximation coefficients from the wavelet-ML estimator are
that polynomial trends in the data will thereby be eliminated and (as
we have found by analysis of simulated data) the estimation of ¢
will be less biased. This latter result is not surprising when we recall
that the usual variance estimator in the time domain is also biased by
long memory components of the data, which will be excluded from
consideration by using only the detail coefficients in a wavelet-ML
estimator. The counter-arguments in favour of incorporating the
approximation coefficients are, first, that this will improve



estimation of the regression model parameter vector f3, at least for the
case when the experimental design matrix X includes low-frequency
periodic contrasts between experimental conditions; second, includ-
ing the approximation coefficients will slightly improve efficiency
of estimation of H (Fadili and Bullmore, 2002). A permissible
compromise is to exclude the approximation coefficients in
estimation of the noise parameters 4 and ¢ (steps 2 and 3 of the
wavelet-ML algorithm) but use all scales of the wavelet decom-
position in estimating f§ (step 4; see below).

A.2.6. Wavelet maximum likelihood estimator: algorithmic details

Let us denote, respectively, by T,(—jo;H) and T,(j;H) the
factors not depending on ¢ in the definitions of ¥2 and v7 [see
Egs. (18) and (19)], i.e.,

T.(—JiH)=K,(H)2'?"=Y | T,(js H) = K (H)2730,
j=—J,.., — L (39)

To find the parameters maximising the likelihood function (38),
we can maximise the log-likelihood function

LL(G;0)
1 S
== (nlog(Znaz) +logT,(—J;H) + ZZJ~’logTd(j;H)>
=
R ST " i zzi (40)
22 \T(~J:H) = = Ta(iH) )

with 0 = (/)”,H,O'Z) and a_,.d; x the wavelet coefficients of the
fractional Gaussian noise G.
The algorithm is:

1. Initialisation: Define the wavelet basis to be used. Estimate /Ai
by ordinary least-squares fit of the model (36) and A by an
arbitrary value in (0,1).

2. Estimate o* Using H and /;’, define

o a’,, n i 25: a?k (41)
67 =— | ———=~ — T
n\T,(-J:H) = L(A))

where a —,/,13“;, ;i are the wavelet coefficients of the residual
E=Y—Xp

3. Estimate H by numerical maximisation of the log-likelihood
function (40), after replacing  and o2 with their estimated
values. As we expect H to be in the interval (0,1), the search
may be restricted to this range of values.

4. Estimate f and its covariance matrix: With A and &
calculated at steps 2 and 3, let

2

p=(xu5 (0, &2)’1)@,)71)(;,5 (#.6%) 7., (42)
and
Var(B)== diag (Xii (131,6'2)71)(”,)71. (43)

where X, and Y,, are the wavelet decomposition coefficients
of vectors X and Y.

5. Loop: Go to step 2 and iterate until the change in successive
parameter estimates is arbitrarily small, e.g., smaller than
102
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