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Introduction

The Camassa-Holm equation (C-H) κ , κ ≥ 0,

u t -u txx = -2κu x -3uu x + 2u x u xx + uu xxx , (t, x) ∈ IR 2 , (1) 
can be derived as a model for the propagation of unidirectional shalow water waves over a flat bottom by writing the Green-Naghdi equations in Lie-Poisson Hamiltonian form and then making an asymptotic expansion which keeps the Hamiltonian structure ( [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], [START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF]). It was also found independently by Dai [START_REF] Dai | Model equations for nonlinear dispersive waves in compressible Mooney-Rivlin rod[END_REF] as a model for nonlinear waves in cylindrical hyperelastic rods and was, in fact, first discovered by the method of recursive operator by Fokas and Fuchsteiner [START_REF] Fokas | Symplectic structures, their Bäcklund transformation and hereditary symmetries[END_REF] as an example of bi-Hamiltonian equation.

(C-H) κ is completely integrable (see [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], [START_REF] Camassa | An new integrable shallow water equation[END_REF]). It possesses among others the following invariants

E(v) = IR v 2 (x) + v 2 x (x) dx and F (v) = IR v 3 (x) + v(x)v 2 x (x) + 2κv 2 (x) dx (2) 
and can be written in Hamiltonian form as

∂ t E ′ (u) = -∂ x F ′ (u) . (3) 
For κ > 0 it possesses smooth positive solitary waves ϕ κ,c with speed c > 2κ, their orbital stability has been proved in [START_REF] Constantin | Stability of the Camassa-Holm solitons[END_REF] by applying the classical 1 spectral method initiated by Benjamin [START_REF] Benjamin | The stability of solitary waves[END_REF] (see also [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]). In [START_REF] Dika | Exponential decay of H 1 -localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF], following the general method developed in [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] (see also [START_REF] Dika | Stability of N solitary waves for the generalized BBM equations[END_REF]), the authors proved the stability of ordered trains of such solitary waves. It is worth recalling that this general method requires principally two ingredients : A property of almost monotonicity which says that for a solution close to ϕ κ,c , the part of the energy traveling at the right of ϕ κ,c (•ct) is almost time decreasing; A dynamical proof of the stability of the solitary wave using the spectral approach (as in [START_REF] Benjamin | The stability of solitary waves[END_REF] or [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] for instance).

In this paper we consider the Camassa-Holm equation in the case κ = 0, that is

u t -u txx = -3uu x + 2u x u xx + uu xxx , (t, x) ∈ IR 2 . (4) 
Henceforth, we refer to (4) as the Camassa-Holm equation (C-H). ( 4) possesses also solitary waves but they are non smooth and are called peakons. They are given by u(t, x) = ϕ c (xct) = cϕ(xct) = ce |x-ct| , c ∈ IR.

Their stability seems not to enter the general framework mentioned above (see the beginning of Section 3 for further commentaries on this aspect). However, Constantin and Strauss [START_REF] Constantin | Stability of peakons[END_REF] succeeded in proving their orbital stability by a direct approach. In this work, following the general strategy initiated in [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF](note that due to the reasons mentioned above, the general method of [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] is not directly applicable here ), we combine the monotonicity result proved in [START_REF] Dika | Stability of N solitary waves for the generalized BBM equations[END_REF] with localized versions of the estimates established in [START_REF] Constantin | Stability of peakons[END_REF] to derive the stability of the trains of peakons. Before stating the main result we have to introduce the function space where will live our class of solutions to the equation. For I a finite or infinite interval of IR, we denote by Y (I) the function space1 

Y (I) := u ∈ C(I; H 1 (IR)) ∩ L ∞ (I; W 1,1 (IR)), u x ∈ L ∞ (I; BV (IR)) . (5)
We are now ready to state our main result.

Theorem 1.1 Let be given N velocities c 1 , .., c N such that 0 < c 1 < c 2 < .. < c N . There exist γ 0 , A > 0, L 0 > 0 and ε 0 > 0 such that if u ∈ Y ([0, T [), with 0 < T ≤ ∞, is a solution of (C-H) satisfying u 0 - N j=1 ϕ c j (• -z 0 j ) H 1 ≤ ε 2 (6) 
for some 0 < ε < ε 0 and z 0 jz 0 j-1 ≥ L, with L > L 0 , then there exist

x 1 (t), .., x N (t) such that sup [0,T [ u(t, •) - N j=1 ϕ c j (• -x j (t)) H 1 ≤ A( √ ε + L -1/8 ) (7) 
and

x j (t) -x j-1 (t) > L/2, ∀t ∈ [0, T [ . (8) 
As discovered by Camassa and Holm [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], (C-H) possesses also special solutions called multipeakons given by

u(t, x) = N i=1 p j (t)e -|x-q j (t)| ,
where (p j (t), q j (t)) satisfy the differential system (60). In [START_REF] Beals | Multipeakons and the classical moment problem[END_REF] (see also [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF]), the asymptotic behavior of the multipeakons is studied. In particular, the limits as t tends to +∞ and -∞ of p i (t) and qi (t) are determined. Combining these asymptotics with the preceding theorem we get the following result on the stability of the variety N of H 1 (IR) defined by

N := v = N i=1
p j e -|•-q j | , (p 1 , .., p N ) ∈ (IR + ) N , q 1 < q 2 < .. < q N . Corollary 1.1 Let be given N positive real numbers p 0 1 , .., p 0 N and N real numbers q 0 1 < .. < q 0 N . For any B > 0 and any γ > 0 there exists α > 0

such that if u 0 ∈ H 1 (IR) satisfies 2 m 0 := u 0 -u 0,xx ∈ M + (IR) with m 0 M ≤ B and u 0 - N j=1 p 0 j exp(• -q 0 j ) H 1 ≤ α (9) then ∀t ∈ IR, inf P ∈(IR + ) N ,Q∈IR N u(t, •) - N j=1 p j exp(• -q j ) H 1 ≤ γ . ( 10 
)
Moreover, there exists T > 0 such that

∀t ≥ T, inf Q∈G u(t, •) - N j=1 λ j exp(• -q j ) H 1 ≤ γ (11) 
and

∀t ≤ -T, inf Q∈G u(t, •) - N j=1 λ N +1-j exp(• -q j ) H 1 ≤ γ , (12) 
where G := {Q ∈ IR N , q 1 < q 2 < .. < q N } and 0 < λ 1 < .. < λ N are the eigenvalues of the matrix p 0 j e -|q 0

i -q 0 j |/2 1≤i,j≤N
.

This paper is organized as follows. In Section 2 we state a well-posedness result for (C-H) established in [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF] and [START_REF] Danchin | A few remarks on the Camassa-Holm equation[END_REF]. This allows us to work in the function space Y ([0, T ]) that contains the peakons. Next, in Section 3 we present the result and the proof of Constantin and Strauss on the stability of peakons. Section 4 is devoted to the proof of Theorem 1.1. It is divided into four subsections. First we use a modulation argument in order to control the distance between the different bumps of the solution we consider.

Then we state a monotonicity result that was established in [START_REF] Dika | Stability of N solitary waves for the generalized BBM equations[END_REF]. In Subsection 4.3 we establish a local version of an estimate involved in the stability of a single peakon. The proof of Theorem 1.1 is completed in Subsection 4.4. In Section 5 we recall some properties of the multipeakons and prove Corollary 1.1. Finally in the appendix we give the proof of the monotonicity result for sake of completeness.

As mentioned above, the proof of the stability of trains of peakons does not enter the general framework ( [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF], [START_REF] Dika | Stability of N solitary waves for the generalized BBM equations[END_REF], [START_REF] Dika | Exponential decay of H 1 -localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF]) on orbital stability of ordered trains of solitary waves. However, the strategy of combining the orbital stability of a single solitary wave with a monotonicity result seems to be quite robust.

Well-posedness result

Recall that the peakons do not belong to H 3/2 (IR). To give a sens to these solutions, (4) has to be rewritten as

u t -u txx = - 3 2 ∂ x (u 2 ) - 1 2 ∂ x (u 2 x ) + 1 2 ∂ 3 x (u 2 ) ( 13 
)
or u t + uu x + (1 -∂ 2 x ) -1 ∂ x (u 2 + u x /2) = 0 . (14) 
In [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF], [START_REF] Danchin | A few remarks on the Camassa-Holm equation[END_REF] (see also [START_REF] Molinet | On well-posedness results for Camassa-Holm equation on the line: a survey[END_REF]) the following existence and uniqueness result is derived. Moreover, let {u 0,n } ⊂ H 1 (IR) with {u 0,n -∂ 2 x u 0,n } bounded in M + (IR) such that u 0,n → u 0 in H 1 (IR). Then, for all T > 0,

u n -→ u in C([-T, T ]; H 1 (IR)) . ( 15 
)
Let us note that the last assertion of the above theorem is not explicitely contained in the works mentioned above. However, following the same arguments as those developped in these works (see for instance Section 5 of [START_REF] Molinet | On well-posedness results for Camassa-Holm equation on the line: a survey[END_REF]), one can prove that there exists a subsequence {u n k } of solutions of (4) that converges in C([-T, T ]; H 1 (IR)) to some solution v of (4) belonging to Y (-T, T ). Since u 0,n k converges to u 0 in H 1 , it follows that v(0) = u 0 and thus v = u by uniqueness. This ensures that the whole sequence {u n } converges to u in C([-T, T ]; H 1 (IR)) and concludes the proof of the last assertion.

Stability of a single peakon

Recall that the classical proof of orbital stability (see [START_REF] Benjamin | The stability of solitary waves[END_REF], [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]), successfully used in the case κ > 0 in [START_REF] Constantin | Stability of the Camassa-Holm solitons[END_REF], is based on the spectral properties of the second differential operator of the invariant functional L c (•) := cE(•) -F (•) evaluated at the solitary wave ϕ c . Indeed, using a Liouville substitution, it can be shown that the spectrum of the L 2 -self-adjoint operator

H c := L ′′ c (ϕ κ,c ) = -∂ x (2c -2ϕ κ,c )∂ x -6ϕ κ,c -2∂ 2 x ϕ κ,c + 2(c -2κ)
contains a unique negative eigenvalue which is simple and that 0 is a simple eigenvalue associated with ∂ x ϕ κ,c . The rest of the spectrum consists of a finite number of positive eigenvalues and of the essential spectrum [2c -4κ, +∞[. Therefore, controlling the negative direction by modulating the velocity c and using that

E ′ (ϕ κ,c ), u -ϕ κ,c ∼ 0 (since E(•) is conserved)
and the kernel direction by choosing a suitable translation ϕ κ,c (•-r) of ϕ κ,c , the orbital stability is proven by writing the Taylor expansion of cE(

•)-F (•) at ϕ κ,c , recalling that cE ′ (ϕ κ,c ) -F ′ (ϕ κ,c ) vanishes.
Now, in the case κ = 0, H c is degenerate since ϕ κ,c (0) = c and the Liouville substitution is no more well-defined. However, Constantin and Strauss (cf. [START_REF] Constantin | Stability of peakons[END_REF]) succeeded in proving the orbital stability by a direct approach (see also [START_REF] Constantin | Orbital stability of solitary waves for a shallow water equation[END_REF] for another stability result using Cazenave-Lions method). Actually, a by-product of their proof is the following very rigid property : for any function v in some

H 1 -neighborhood of ϕ c it holds v -ϕ c (• -ξ) 2 H 1 |E(v) -E(ϕ c )| + c |L c (v) -L c (ϕ c )| .
where v(ξ) = max IR v. Since E(•) and F (•) are conserved and are continuous functional on H 1 (IR), this clearly leads to the orbital stability.

Since we will use similar considerations, we present here a sketch of the proof of the stability of peakons (Theorem 3.1) proved by Constantin and Strauss in [START_REF] Constantin | Stability of peakons[END_REF].

Theorem 3.1 Let be given c > 0 . There exist C > 0 and ε 0 > 0 such that if u ∈ C([0, T [; H 1 (IR)) is a solution of (4) such that E(u(t)) and F (u(t)) are conserved quantities on [0, T [ and u(0) -ϕ c H 1 ε 2 , then u(t, •) -ϕ c (• -r(t)) H 1 C √ ε, ∀t ∈ [0, T [, (16) 
where r(t) ∈ IR is any point where the function u(t, •) attains its maximum.

The proof of this theorem is principally based on the following lemma of [START_REF] Constantin | Stability of peakons[END_REF].

Lemma 3.1 For any u ∈ H 1 (IR) and ξ ∈ IR, E(u) -E(ϕ c ) = u -ϕ c (• -ξ) 2 H 1 + 4c(u(ξ) -c). ( 17 
)
For any u ∈ H 1 (IR), let M = max x∈IR {u(x)}, then

F (u) M E(u) - 2 3 M 3 . ( 18 
)
Remark 3.1 It is worth noticing that [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] ensures that the minimum of the H 1 -distance between u and {ϕ c (•ξ), ξ ∈ IR} is exactly reached at any point ξ where u attains its maximum on IR.

Proof of Theorem3.1 Let u ∈ C([0, T [; H 1 (IR)) be a solution of (4) with u(0) -ϕ c H 1 ε 2 and let ξ(t) ∈ IR be such that u(t, ξ(t)) = max IR u(t, •). By the remark above, t → u(t) -ϕ c (• -ξ(t)) H 1 is continuous on [0, T [ and u(0) -ϕ c (• -ξ(0)) H 1 ε 2 .
Moreover, as shown in [START_REF] Constantin | Stability of peakons[END_REF], it is no to hard to check that for any

v ∈ H 1 (IR) such that u -ϕ c H 1 < γ for some γ < 1, it holds |E(u) -E(ϕ c )| < 4 cγ and |F (u) -F (ϕ c )| < 10 cγ. ( 19 
)
¿From the conservation laws it follows that for any t ∈ [0, T [

|E(u(t)) -E(ϕ c )| < 4 cε 2 and |F (u(t)) -F (ϕ c )| < 10 cε 2 . ( 20 
)
Therefore, by a classical continuity argument, it suffices to prove that for any v ∈ H 1 (IR) satisfying [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] and

v -ϕ c (•-ξ) H 1 ε 1/4 , with v(ξ) = max IR v, it holds actually v -ϕ c (• -ξ) H 1 √ ε . Setting M = v(ξ) and δ = c -M = c -v(ξ)
, we notice that [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] ensures that for δ 0,

v -ϕ c (• -ξ) 2 H 1 E(u 0 ) -E(ϕ c ) ε 2 .
Hence to prove the stability it remains to examine the case δ > 0, that is the maximum of the function u is less than the maximum of the peakon ϕ c . Substituting M by cδ in [START_REF] Holden | A convergent numerical scheme for the Camassa-Holm equation based on multipeakons[END_REF], using [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] and that

E(ϕ c ) = 2c 2 and F (ϕ c ) = 4 3 c 3 , (21) 
one can easily check that

4 3 c 3 -O(ε 2 ) (c -δ)(2c 2 + O(ε 2 )) - 2 3 (c -δ) 3 which leads to δ 2 (c -δ/3) O(ε 2 ) . ( 22 
)
On the other hand, on account of the hypothesis v -

ϕ c (• -ξ) H 1 ≤ ε 1/4
and of the continuous embedding of H 1 (IR) into L ∞ (IR), it holds δ < c/2 for ε small enough. Therefore (22) ensures that δ Cε, the constant C depending only on c. This estimate on δ combining with [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] and [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] concludes the proof of Theorem 3.1.

Stability of multipeakons

For α > 0 and L > 0 we define the following neighborhood of all the sums of N peakons of speed c 1 , .., c N with spatial shifts x j that satisfied

x j -x j-1 ≥ L. U (α, L) = u ∈ H 1 (IR), inf x j -x j-1 >L u - N j=1 ϕ c j (• -x j ) H 1 < α . (23)
By the continuity of the map t → u(t) from [0, T [ into H 1 (IR), to prove Theorem 1.1 it suffices to prove that there exist A > 0, ε 0 > 0 and L 0 > 0 such that ∀L > L 0 and 0 < ε < ε 0 , if u 0 satisfies (6) and if for some 0 < t 0 < T ,

u(t) ∈ U A( √ ε + L -1/8 ), L/2 for all t ∈ [0, t 0 ] (24) then u(t 0 ) ∈ U A 2 ( √ ε + L -1/8 ), 2L 3 . ( 25 
)
Therefore, in the sequel of this section we will assume (24) for some 0 < ε < ε 0 and L > L 0 , with A, ε 0 and L 0 to be specified later, and we will prove (25).

Control of the distance between the peakons

In this subsection we want to prove that the different bumps of u that are individualy close to a peakon get away from each others as time is increasing. This is crucial in our analysis since we do not know how to manage strong interactions.

Lemma 4.1 Let u 0 satisfying [START_REF] Constantin | Stability of peakons[END_REF]. There exist α 0 > 0, L 0 > 0 and C 0 > 0 such that for all 0 < α < α 0 and 0

< L 0 < L if u(t) ∈ U (α, L/2) on [0, t 0 ]
for some 0 < t 0 < T then there exist C 1 -functions x1 , .., xN defined on [0, t 0 ] such that

d dt xi = c i + O( √ α) + O(L -1 ), i = 1, .., N , (26) 
u(t) - N i=1 ϕ c i (• -xi (t)) H 1 = O( √ α) , (27) xi 
(t) -xi-1 (t) ≥ 3L/4 + (c i -c i-1 )t/2, i = 2, .., N. (28) 
Moreover, setting J i := [y i (t), y i+1 (t)], i = 1, .., N , with

y 1 = -∞, y N +1 = +∞ and y i (t) = xi-1 (t) + xi (t) 2 i = 2, .., N, (29) 
it holds |x i (t) -xi (t)| ≤ L/12, i = 1, .., N. (30) 
where x 1 (t), .., x N (t) are any point such that

u(t, x i (t)) = max J i (t) u(t), i = 1, .., N. (31) 
Proof. To prove this lemma we use a modulation argument. The strategy is to construct N C 1 -functions x1 , .., xN on [0, t 0 ] satisfying a suitable orthogonality condition, see (36). Thanks to this orthogonality condition we will be able to prove that the speed of the xi stays close to c i on [0, t 0 ].

Remark 4.1 It is crucial to note that in the previous works on stability of sum of solitary waves ( [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF], [START_REF] Dika | Stability of N solitary waves for the generalized BBM equations[END_REF], [START_REF] Dika | Exponential decay of H 1 -localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF]) one needs similar modulation to ensure (among other things) that v remains in a subspace of codimension two of H 1 (IR) where the operator H c (see the beginning of this section) is positive. Here, as already mentioned, we do not use such operator in the proof of orbital stability of peakons but we still need a modulation to ensure that the different bumps of u get away from each others.

For Z = (z 1 , .., z N ) ∈ IR N fixed such that z i -z i-1 > L/2, we set R Z (•) = N i=1 ϕ c i (• -z i ) .
For 0 < α < α 0 we define the function

Y : (-α, α) N × B H 1 (R Z , α) → IR n (y 1 , .., y N , u) → (Y 1 (y 1 , .., y N , u), .., Y N (y 1 , .., y N , u))
with

Y i (y 1 , .., y N , u) = IR u - N j=1 ϕ c j (• -z j -y j ) ∂ x ϕ c i (• -z i -y i ) .
Y is clearly of class C 1 . For i = 1, .., N ,

∂Y i ∂y i (y 1 , .., y N , u) = IR u x - N j=1,j =i IR ∂ x ϕ c j (•-z j -y j ) ∂ x ϕ c i (•-z i -y i ) dx .
(32) and ∀j = i

∂Y i ∂y j (y 1 , .., y N , u) = IR ∂ x ϕ c j (• -z j -y j )∂ x ϕ c i (• -z i -y i ) dx .
Hence,

∂Y i ∂y i (0, .., 0, R Z ) = ∂ x ϕ c i 2 L 2 ≥ c 2 1 . (33) 
and, for j = i, using the exponential decay of ϕ c and that z iz i-1 > L we infer that for L 0 large enough (recall that L > L 0 ),

∂Y i ∂y j (0, .., 0, R Z ) = R ∂ x ϕ c j (• -z j ) ∂ x ϕ c i (• -z i ) dx ≤ O(e -L/4
) .

We deduce that, for L > 0 large enough, D (y 1 ,..,y N ) Y (0, .., 0, R Z ) = D + P where D is an invertible diagonal matrix with D -1 ≤ (c 1 ) -2 and P ≤ O(e -L/4 ). Hence there exists L 0 > 0 such that for L > L 0 , D (y 1 ,..,y N ) Y (0, .., 0, R Z ) is invertible with an inverse matrix of norm smaller than 2 (c 1 ) -2 . From the implicit function theorem we deduce that there exists β 0 > 0 and C 1 functions (y 1 , .., y N ) from B(R Z , β 0 ) to a neighborhood of (0, .., 0) which are uniquely determined such that Y (y 1 , .., y N , u) = 0 for all u ∈ B(R Z , β 0 ) .

In particular, there exits

C 0 > 0 such that if u ∈ B(R Z , β), with 0 < β ≤ β 0 , then N i=1 |y i (u)| ≤ C 0 β ; . (34) 
Note that β 0 and C 0 only depend on c 1 and L 0 and not on the point (z 1 , .., z N ). For u ∈ B(R Z , β 0 ) we set xi (u) = z i + y i (u). Assuming that

β 0 ≤ L 0 8C 0 , (x 1 , .., xN ) are thus C 1 -functions on B(R Z , β) satisfying xj (u) -xj-1 (u) > L/2 -2C 0 β > L/4 . (35) 
For L ≥ L 0 and 0 < α < α 0 < β 0 /2 to be chosen later, we define the modulation of u ∈ U (α, L/2) in the following way : we cover the trajectory of u by a finite number of open balls in the following way :

u(t), t ∈ [0, t 0 ] ⊂ k=1,..,M B(R Z k , 2α)
It is worth noticing that, since 0 < α < α 0 < β 0 /2, the functions xj (u) are uniquely determined for

u ∈ B(R Z k ) , 2α) ∩ B(R Z k ′ , 2α
). We can thus define the functions t → xj (t) on [0, t 0 ] by setting xj (t) = xj (u(t)). By construction

IR u(t, •) - N j=1 ϕ c j (• -xj (t)) ∂ x ϕ c i (• -xi (t)) dx = 0 . (36) 
Moreover, on account of (34) and the fact that ϕ ′′ c is the sum of a L 1 function and a Dirac mass it holds

v(t) H 1 C 0 √ α , ∀t ∈ [0, t 0 ] . (37) 
Let us now prove that the speed of xi stays close to c i . We set

R j (t) = ϕ c j (• -xj (t)) and v(t) = u(t) - N i=1 R j (t) = u(t, •) -R X(t) .
Differentiating (36) with respect to time we get

IR v t ∂ x R i = ẋi ∂ 2 x R i , v H -1 ,H 1 , .
and thus

IR v t ∂ x R i ≤ | ẋi |O( v H 1 ) ≤ | ẋi -c i |O( v H 1 ) + O( v H 1 ) . ( 38 
)
Substituting u by v + N j=1 R j in ( 14) and using that R j satisfies

∂ t R j + ( ẋj -c j )∂ x R j + R j ∂ x R j + (1 -∂ 2 x ) -1 ∂ x [u 2 + u 2 x /2] = 0 ,
we infer that v satisfies on [0, t 0 ],

v t - N j=1 ( ẋj -c j )∂ x R j = - 1 2 ∂ x (v + N j=1 R j ) 2 - N j=1 R 2 j -(1 -∂ 2 x ) -1 ∂ x (v + N j=1 R j ) 2 - N j=1 R 2 j + 1 2 (v x + N j=1 ∂ x R j ) 2 - 1 2 N j=1 (∂ x R j ) 2 .
Taking the L 2 -scalar product with ∂ x R i , integrating by parts, using the decay of R j and its first derivative, (37), ( 38) and (35), we find

| ẋi -c i | ∂ x R i 2 L 2 + O( √ α) ≤ O( √ α) + O(e -L/8 ) . ( 39 
)
Taking α 0 small enough and L 0 large enough we get

| ẋi -c i | ≤ (c i -c i-1 )/4
and thus for all 0 < α < α 0 and L ≥ L 0 > 3C 0 ε, it follows from ( 6), ( 34) and (39) that

xj (t) -xj-1 (t) > L -C 0 ε + (c j -c j-1 )t/2, ∀t ∈ [0, t 0 ] . ( 40 
)
which yields (28). Finally from (37) and the continuous embedding of

H 1 (IR) into L ∞ (IR), we infer that u(x) = R X (x) + O( √ α), ∀x ∈ IR .
Applying this formula with x = x i = max J i (t) u(t) and taking advantage of (28), we obtain

u(x i ) = c i + O( √ α) + O(e -L/4 ) ≥ 2c i /3 .
On the other hand, for x

∈ J i \]x i -L/12, xi + L/12[, we get u(x) ≤ c i e -L/12 + O( √ α) + O(e -L/4 ) ≤ c i /2 .
This ensures that x i belongs to [x i -L/12, xi + L/12].

Monotonicity property

Thanks to the preceding lemma, for ε 0 > 0 small enough and L 0 > 0 large enough, one can construct C 1 -functions x1 , .., xN defined on [0, t 0 ] such that (26)-( 30) are satisfied. In this subsection we state the almost monotonicity of functionals that are very close to the energy at the right of the ith bump, i = 1, .., N -1 of u. The proof is similar to the one of Lemma 4.2 in [START_REF] Dika | Exponential decay of H 1 -localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF]. We give it in the appendix for sake of completeness.

Let Ψ be a C ∞ function such that 0

< Ψ ≤ 1, Ψ ′ > 0 on IR, |Ψ ′′′ | ≤ 10|Ψ ′ | on [-1/2, 1/2], Ψ(x) = e -|x| x < -1/2 1 -e -|x| x > 1/2 and Ψ(x) ≤ 2e -|x| on [-1/2, 0] 1 -Ψ(x) ≤ 2e -|x| on [0, 1/2]
Setting Ψ K = Ψ(•/K), we introduce for j ∈ {2, .., N },

I j,K (t) = I j,K (t, u(t)) = IR (u 2 (t) + u 2 x (t))Ψ j,K (t) dx ,
where Ψ j,K (t, x) = Ψ K (xy j (t)) with y j (t), j = 2, .., N , defined in (29). Note that I j (t) is close to u(t) H 1 (x>y j (t)) and thus measures the energy at the right of the (j -1)th bump of u. Finally, we set

σ 0 = 1 4 min c 1 , c 2 -c 1 , .., c N -c N -1 . (41) 
In [START_REF] Dika | Exponential decay of H 1 -localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF] the following monotonicity result is derived.

Lemma 4.2 Let u ∈ Y ([0, T [) be a solution of (C-H) satisfying (27) on [0, t 0 ].
There exist α 0 > 0 and L 0 > 0 only depending on c 1 such that if 0 < α < α 0 and L ≥ L 0 then for any 4 ≤ K L 1/2 ,

I j,K (t) -I j,K (0) ≤ O(e -σ 0 L 8K ), ∀j ∈ {2, .., N }, ∀t ∈ [0, t 0 ] . (42) 

A localized and a global estimate

We define the function

Φ i = Φ i (t, x) by Φ 1 = 1 -Ψ 2,K = 1 -Ψ K (• -y 2 (t)), Φ N = Ψ N,K = Ψ K (• -y N (t)
) and for i = 2, .., N -1

Φ i = Ψ i,K -Ψ i+1,K = Ψ K (• -y i (t)) -Ψ K (• -y i+1 (t)) ,
where Ψ K and the y i 's are defined in Section 4.2. It is easy to check that N i=1 Φ i,K ≡ 1. We take L > 0 and L/K > 0 large enough so that Φ i satisfies

|1 -Φ i,K | ≤ 4e -L 4K on [ x i -L/4, x i + L/4] (43) 
and

|Φ i,K | ≤ 4e -L 4K on [ x j -L/4, x j + L/4] whenever j = i . (44) 
We will use the following localized version of E and F defined for i ∈ {1, .., N }, by

E t i (u) = IR Φ i (t)(u 2 + u 2 x ) and F t i (u) = IR Φ i (t)(u 3 + uu 2 x ) . (45) 
Please note that henceforth we take K = L 1/2 /8.

The following lemma gives a localized version of [START_REF] Holden | A convergent numerical scheme for the Camassa-Holm equation based on multipeakons[END_REF]. Note that the functionals E i and F i do not depend on time in the statement below since we fix x1 < .. < xN .

Lemma 4.3 Let be given N real numbers x1 < .. < xN with xixi-1 ≥ 2L/3. Define the J i 's as in (29) and assume that, for i = 1, .., N , there exists

x i ∈ J i such that |x i -xi | ≤ L/12 and u(x i ) = max J i u := M i . Then, for any u ∈ H 1 (IR), it holds F i (u) M i E i (u) - 2 3 M 3 i + u 0 3 H 1 O(L -1/2 ), i ∈ {1, .., N } . (46) 
Proof. Let i ∈ {1, .., N } be fixed. Following [START_REF] Constantin | Stability of peakons[END_REF], we introduce the function g defined by

g(x) = u(x) -u x (x) for x < x i u(x) + u x (x) for x > x i .
Integrating by parts we compute

ug 2 Φ i = x i -∞ (u 3 + uu 2 x -2u 2 u x )Φ i + +∞ x i (u 3 + uu 2 x + 2u 2 u x )Φ i = F i (u) - 4 3 u(x i ) 3 Φ i (x i ) + 2 3 x i -∞ u 3 Φ ′ i - 2 3 +∞ x i u 3 Φ ′ i . (47) 
Recall that we take K = √ L/8 and thus

|Φ ′ | ≤ C/K = O(L -1/2 ). Moreover, since |x i -xi | ≤ L/12, it follows from (43) that Φ -i(x i ) = 1 + O(e -L 1/2 ) and thus ug 2 Φ i = F i (u) - 4 3 M 3 i + u 0 3 H 1 O(L -1/2 ) . (48) 
On the other hand,

ug 2 Φ i ≤ M i g 2 Φ i ≤ M i E i (u) -2 x i -∞ uu x Φ i + 2 +∞ x i uu x Φ i ≤ M i E i (u) -2M 3 i + u 0 3 H 1 O(L -1/2 ) . (49) 
This proves (46). Now let us state a global identity related to [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF].

Lemma 4.4 For any Z ∈ IR N such that |z iz i-1 | ≥ L/2 and any u ∈ H 1 it holds

E(u) - N i=1 E(ϕ c i ) = u -R Z 2 H 1 + 4 N i=1 c i (u(z i ) -c i ) + O(e -L/4 ) . ( 50 
)
Proof . Using the relation between ϕ an its derivative and integrating by parts, we get

E(u -R Z ) = E(u) + E(R Z ) -2 N i=1 u ϕ c i (• -z i ) + u x ∂ x ϕ c i (• -z i ) = E(u) + E(R Z ) -2 N i=1 u ϕ c i (• -z i )
5 Proof of Corollary 1.1

As written in the introduction, Camassa and Holm discovered that (4) possesses special solutions given by

u(t, x) = N i=1 p i (t)e |x-q i (t)| (59) 
where the (p i , q i ) ∈ (IR 2 ) satisfy the Hamiltonian system qi = N j=1 p j e -|q i -q j | ṗi = N j=1 p i p j sgn(q iq j )e -|q i -q j | .

(60)

It is easy to check that the local solution of this differential system can be extended as soon as the q ′ i s stay distinct from each other. In [START_REF] Holden | A convergent numerical scheme for the Camassa-Holm equation based on multipeakons[END_REF], Holden and Raynaud proved that this is indeed the case if at time t = 0, the p i are all positive , i.e. there are only peakons (the case with only anti-peakons works also but in the case with peakon and anti-peakon this is no longer true). More precisely, they proved that if at time t = 0, p 1 , .., p N > 0 and q 1 < q 2 < q N (61) then (61) remains true for all time. In particular, under these hypotheses the different peakons never overlap each others. For example, if a larger peakon follows a smaller one, it will come close to this last one and then transfer part of its energy to it. In this way, the smaller one will become the larger one and the two peakons will be well ordered. In [START_REF] Beals | Multipeakons and the classical moment problem[END_REF] (see also [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF]), using the integrability of (4), Beals et al established a formula for the asymptotics of the q i 's and the p i 's. In particular, they prove the following limits for the p i and qi , i ∈ {1, .., N },

lim t→+∞ p i (t) = lim t→+∞ qi (t) = λ i (62) 
and lim

t→-∞ p i (t) = lim t→-∞ qi (t) = λ N +1-i , (63) 
where 0 < λ 1 < •• < λ N are the eigenvalues of the matrix (p j (0)e -|q i (0)-q j (0)|/2 ) i,j .

Remark 5.1 The matrix A N := (p j e -|q i -q j |/2 ) 1≤i,j≤N is obtained by substituing the multipeakon solution (59) in the isospectral problem

Ψ xx = 1 4 - m(t, •) 2λ Ψ, with m = u -u xx , (64) 
associated with the Camassa-Holm equation. More precisely, any solution of (64) with m = 2 N i=1 p i δ q i , that vanishes at ∓∞, is completely determined by its values at the q j 's and satisfies λΨ(q i ) = N j=1 p j e -|q i -q j |/2 Ψ(q j ), ∀i ∈ {1, .., N } .

(65)

In [START_REF] Beals | Multipeakons and the classical moment problem[END_REF], ( 64) is transformed into a density problem on [-1, 1] by applying a Liouville transformation. The corresponding N-multipeakon matrix is then proved to possess N distinct positive eingenvalues. The arguments of [START_REF] Beals | Multipeakons and the classical moment problem[END_REF] hold also clearly for A N . Indeed, first since for any fixed λ, (64) has clearly at most one solution (up to multiplication by a scalar) that vanishes at ∓∞, it follows that the eigenvalues of A N are all of geometric multiplicity one. Next, setting D = diag (p i ) and Λ i,j = e -|q i -q j |/2 , A N can be rewritten as DΛ. Since Λ is symmetric with Λ ii = 1 and |Λ ij | < 1 for i = j, Λ is actually positively defined. Therefore there exists B a symmetric positively defined matrix such that Λ = B 2 . It is then easy to check that A N and BDB have got the same spectrum and since BDB is symmetric positively defined, this ensures that A N possesses N distinct positive eigenvalues. Now, let be given (p i (0), q i (0)) satisfying (61) and γ > 0. From the asymptotics above there exists T > 0 such that q i (T )q i-1 (T ) > L and q i (-T )q i-1 (-T ) > L (66)

with L > max L 0 , ( γ 2A ) 8 . (67) 
From the last assertion of Theorem 2.1, for any given B > 0, there exists α > 0 such that if u 0 satisfies (9) then for all t ∈ [-T, T ],

u(t) - N i=1 p i (t)e |x-q i (t)| H 1 ≤ γ 2A 4 . (68) 
At this stage, it is crucial to remark that since (4) is invariant under the transformation (t, x) → (-t, -x), Theorem 1.1 remains true when replacing t by -t, z 0 j by -z 0 j and x j (t) by -x j (-t). This gives a stability result in the past for trains of peakons that are ordered in the inverse order with respect to Theorem 1.1. Combining (66), (68), Theorem 1.1 and the remark above, the first part of the corollay follows.

Finally, from (62)-(63), we can also assume that

|p i (T ) -λ i | ≤ 1 100N γ 2A 4 and |p i (-T ) -λ N -i | ≤ 1 100N γ 2A 4 so that u(T )- N i=1 λ i e |x-q i (T )| H 1 ≤ γ 2A 4 and u(-T )- N i=1 λ N -i e |x-q i (-T )| H 1 ≤ γ 2A 4 .
This completes the proof of the corollary.

Appendix

Proof of Lemma 4.2.

Let us assume that u is smooth since the case u ∈ Y ([0, T [) follows by modifying slightly the arguments (see Remark 3.2 of [START_REF] Dika | Stability of N solitary waves for the generalized BBM equations[END_REF]). From (13), it is not too hard to check that for any smooth space function g, the folllowing differential identity on the weighted energy holds : 

d dt IR (u 2 + u 2 x )g dx = IR (u 3 + 4uu 2 x )g ′ dx - IR u 3 g ′′′ dx - IR ug ′ (1 -∂ 2 x ) -1 (2u
- IR Ψ ′′′ j,K u 3 dx - IR Ψ ′ j,K u (1 -∂ 2 x ) -1 (2u 2 + u 2 x ) dx ≤ - c 1 2 IR Ψ ′ j,K (u 2 + u 2 x ) + J 1 + J 2 + J 3 . (70) 
We claim that for i ∈ {1, 2, 3}, it holds

J i ≤ c 1 8 IR Ψ ′ j,K (u 2 + u 2 x ) + C K e -1 K (σ 0 t+L/8) . (71) 
To handle with J 1 we divide IR into two regions D j and D c j with On the other hand, on D j we notice, according to (27), that

D j = [
u(t) L ∞ D j ≤ N i=1 ϕ c i (• -xi (t)) L ∞ (D j ) + u - N i=1 ϕ c i (• -xi (t)) L ∞ (D j )
≤ C e -L/8 + O( √ α) .

Therefore, for α small enough and L large enough it holds

J 1 ≤ c 1 8 IR Ψ ′ j,K (u 2 + u 2 x ) + C K e -1 K (σ 0 t+L/8) .
Since J 2 can be handled in exactly the same way, it remains to treat J 3 . For this, we first notice as above that 

Now in the region D j , noticing that Ψ ′ j,K and u 2 + u 2 x /2 are non-negative, we get

- D j uΨ ′ j,K (1 -∂ 2 x ) -1 (2u 2 + u 2 x ) ≤ u(t) L ∞ (D j ) D j Ψ ′ j,K ((1 -∂ 2 x ) -1 (2u 2 + u 2 x ) ≤ u(t) L ∞ (D j ) IR (2u 2 + u 2 x )(1 -∂ 2 x ) -1 Ψ ′ j,K . (75) 
On the other hand, from the definition of Ψ in Section 4.2 and (74) we infer that for K ≥ 4,

(1 -∂ 2 x )Ψ ′ j,K ≥ (1 - 10 K 2 )Ψ ′ j,K ⇒ (1 -∂ 2 x ) -1 Ψ ′ j,K ≤ (1 - 10 K 2 ) -1 Ψ ′ j,K .
Therefore, taking K ≥ 4 and using (72) we deduce for α small enough and L large enough that

- D j uΨ ′ K (1 -∂ 2 x ) -1 (2u 2 + u 2 x ) ≤ c 1 8 IR (u 2 + u 2 x )Ψ ′ K . ( 76 
)
This completes the proof of (71). Gathering (70) and (71) we infer that

d dt IR Ψ j,K (u 2 + u 2 x ) dx ≤ - c 1 8 IR Ψ ′ (u 2 + u 2 x ) + C K u 0 3 H 1 e -1 K (σ 0 t+L/8) .
Integrating this inequality between 0 and t, (42) follows.

Theorem 2 . 1

 21 Let u 0 ∈ H 1 (IR) with m 0 := u 0u 0,xx ∈ M(IR) then there exists T = T ( m 0 M ) > 0 and a unique solution u ∈ Y ([-T, T ]) to (C-H) with initial data u 0 . The functionals E(•) and F (•) are constant along the trajectory and if m 0 has a definite sign then u is global in time.

4 ] 3 H 1 e - 1 K

 431 x j-1 (t) + L/4, xj (t) -L/First since from (28), for x ∈ D c j , |xy j (t)| ≥ xj (t)xj-1 (t) 2 -L/4 ≥ c jc j-1 2 t + L/8 ,we infer from the definition of Ψ in Section 4.2 that (σ 0 t+L/8) .

3 H 1 e - 1 K

 31 (xy j (t))| IR e -|x| * (u 2 + u 2 x ) (σ 0 t+L/8) ,(73)since ∀f ∈ L 1 (IR), (1 -∂ 2 x ) -1 f = 1 2 e -|x| * f .

W 1,1 (IR) is the space of L 1 (IR) functions with derivatives in L 1 (IR) and BV (IR) is the space of function with bounded variation

M(IR) is the space of Radon measures on IR with bounded total variation and M+(IR) is the subset of non-negative measures

On the other hand, since |z iz i-1 | ≥ L/2, it is not too hard to check that

Combining these two identity, the desired result follows.

As a consequence of this lemma, we obtain an estimate on the H 1 distance between u(t) and R X(t) .

Lemma 4.5 Under the same hypotheses as in Lemma 4.1, the function

Proof. Since u(t) ∈ U (α, L/2) for t ∈ [0, t 0 ], on account of Lemma 4.1 for any t ∈ [0, t 0 ] there exists Z = (z 1 , .., z n ) with

, we deduce (51) from (50).

4.4 End of the proof of Theorem 1.1

Let us set M i = u(t 0 , x i (t 0 )) and δ i = c i -M i . To conclude the proof, it thus suffices to prove that there exists C > 0 which does not depend on A such that

Indeed, in this case (52) and (50), with Z = X(t 0 ), ensure the existence of

), so that one can take A = 2C to conclude the proof (Recall that we already know from (28)-( 30) that x ix i-1 ≥ 2L/3 for i ∈ {2, .., N }). Let us prove (53). From (46) by taking the sum over i one gets :

By ( 6), the exponential decay of the ϕ c i 's and the Φ i 's, and the definition of E i and F i , it is easy to check that

Setting M 0 = 0 and using [START_REF] Molinet | On well-posedness results for Camassa-Holm equation on the line: a survey[END_REF], one thus finds after having substituted

) .

(55) Note that by (51) and the continuous embedding of H 1 (IR) into L ∞ (IR), M i = c i + O(α) + O(e -L/8 ), and thus

) small enough. Using the Abel transformation and the monotonicity estimates (42), we thus get

Injecting ( 55) and ( 57) in (54) we obtain

(56) and (58) yield (53) and concludes the proof of the theorem.