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Abstract

A computational approach for modeling interactions between shocks waves, contact
discontinuities and reactions zones with a high-order compact scheme is investi-
gated. To prevent the formation of spurious oscillations around shocks, artificial
nonlinear viscosity [1], based on high-order derivative of the strain rate tensor is
used. To capture temperature and species discontinuities a nonlinear diffusivity
based on the entropy gradient is added. It is shown that the damping of ‘wiggles‘ is
controlled by the model constants and is largely independent of the mesh size and
the shock strength. The same holds for the numerical shock thickness and allows a
determination of the L2 error. In the shock tube problem, with fluids of different
initial entropy separated by the diaphragm, an artificial diffusivity is required to
accurately capture the contact surface. Finally, the method is applied to a shock
wave propagating into a medium with non-uniform density/entropy and to a CJ
detonation wave. Multi-dimensional formulation of the model is presented and is il-
lustrated by a 2D oblique wave reflection from an inviscid wall, by a 2D supersonic
blunt body flow and by a Mach reflection problem .

Key words: high-order scheme, shock capturing, supersonic combustion, nonlinear
diffusivity
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1 Introduction

Supersonic combustion involves complex interactions between turbulence, shock
waves and combustion. Because of their capability to reproduce unsteady ef-
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fects, Direct (DNS) or Large-Eddy Numerical Simulations (LES) are attrac-
tive to model such supersonic reactive flows. In order to capture the physi-
cally important turbulent and chemical scales, such simulations require the
use of accurate numerical schemes. As they can reproduce a wide range of
wavenumbers, compact schemes [2] are well adapted. Unfortunately, the use
of high-order compact schemes to solve steep gradients like those in shock
waves generates non-physical oscillations [3]. The objective of this article is
to develop and to validate a numerical methodology adequate for resolving
interactions between shocks, turbulence and combustion.

Several approaches that modify or adapt high-order schemes to capture shock
waves have been proposed in the literature. For shock-turbulence interac-
tion problems, Adams and Shariff [4,5] proposed a high-order compact-ENO
scheme and later Pirozzoli [6] introduced a conservative compact-WENO scheme.
Deng and Zhang [7] developed high-order compact schemes based on the
weighted technique. Rizzetta et al. [8], proposed a hybrid compact-Roe ap-
proach in order to simulate a supersonic compression-ramp flow. Visbal and
Gaitonde [9] introduced an adaptive filter methodology to maintain the same
high-order compact scheme in all of the numerical domain. An attractive al-
ternative to these has been proposed by Cook and Cabot [1,10] who avoid
the use of a shock detector by adding an artificial dissipation term. A non-
linear artificial viscosity, based on high-order derivatives of the strain rate
tensor, is introduced. The capability of this approach to accurately treats
shock-turbulence interaction was successfully demonstrated.

In the context of supersonic combustion, high temperature and species gradi-
ents are expected in addition to shock waves. In order to accurately predict
the interactions between these phenomenon, the original methodology pro-
posed by Cook and Cabot [1,10] is extended. In addition to the nonlinear vis-
cosity, an artificial diffusivity based on high-order derivatives of the entropy
is introduced. Detailed analysis of the errors associated with shock-capturing
and contact-surface capturing were conducted for the new scheme. These have
shown that new scheme is able to capture both weak and strong shocks without
any degradation of performance. Both the numerical shock thickness, which
is related to the number of points used to ’capture’ the discontinuity, and the
magnitude of the spurious wiggles are shown to be largely independent of the
mesh size and the shock/contact surface strength. The original methodology
and its extension are tested on the shock tube problem. It is observed that
when the temperature from each side of the shock is initially different the
original method by Cook and Cabot [1,10] is not sufficient. Introduction of
an artificial diffusivity is required to accurately capture the contact surface.
The Shu-Osher problem [11] which consists of a shock wave crossing sinu-
soidal density waves is then considered. This test case has been used by many
authors [4,10,11] for one dimensional shock turbulence interactions. The com-
putation of a Chapman-Jouguet detonation wave demonstrates the capability

2



of the model to reproduce interactions between shock wave and combustion.
The formulation of the model in multiple dimensions is then proposed and is
illustrated by the computations of a 2D oblique shock, a 2D blunt body flow
and a Mach reflection problem.

2 Shock capturing model: 1D formulation

2.1 Governing equations

The governing equations of a one-dimensional compressible reactive flow are:
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Where ρ is the density, p is the pressure, E is the total energy (per unit
mass), γ is the ratio of specific heats, R is the gas constant, T is the gas
temperature, λ is the thermal conductivity, µl is the fluid viscosity, Nsp is the
number of species, Yk is the mass fraction of the kth species, h0

k is the enthalpy
of formation of kth species, Dk is the diffusivity of kth species and ω̇k is its
reaction rate. Ideal gas law has been assumed here for simplicity.

2.2 Nonlinear artificial viscosity

When numerical discontinuities such as those due to shocks waves are present,
the application of a high-order compact scheme to solve the previous set of
equations results in spurious oscillations. These oscillations can be damped by
adding a artificial viscous term to the momentum and energy equations [1,10].
A grid-dependent artificial viscosity µ, defined by the following relation, is
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introduced:

µ = Cµρ(∆x)r+1

∣

∣

∣

∣

∣

∂ru

∂xr

∣

∣

∣

∣

∣

(6)

where ∆x is the grid spacing and |f | is the absolute value of f . The overbar f
denotes a truncated-Gaussian filter defined in [1]. Cµ is a model constant and
r is a user-specified integer.

For practical meshes, the discrete representation of shock waves involves nu-
merical discontinuities in the velocity and pressure fields. In terms of Fourier
analysis, these numerical discontinuities correspond to the largest wavenum-
bers. If r is sufficiently high, µ will therefore be important in the location near
the shock waves and close to zero in the rest of the flow.

2.3 Nonlinear artificial diffusivity

In practical non-isothermal configurations, high temperature gradients can
exist without being associated to sharp velocity gradients. For instance, in
contact surface regions, a temperature discontinuity exists, whereas both ve-
locity and pressure fields vary smoothly. Since µ is only based on the velocity
gradient, such discontinuities are not detected by Eq. (6). Therefore, a grid-
dependent artificial diffusivity, based on the entropy gradient needs to be
defined:

χρ = Cρ
a0

cp

(∆x)r+1

∣

∣

∣

∣

∣

∂rs

∂xr

∣

∣

∣

∣

∣

(7)

where a0 is a reference speed of sound, cp is the specific heat at constant
pressure, s is the entropy (per unit mass), and Cρ is a model constant. In
supersonic reactive flows, steep gradients in species mass fractions are also
associated with entropy gradients. Therefore, a similar formulation can be
employed to detect species discontinuities:
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where only the model constant CY differs from that in Eq. (7).

2.4 Model implementation

In the orginal model proposed by Cook and Cabot [10], artificial dissipative
terms are added to the momentum and the energy equations. In order to
activate the nonlinear diffusivity defined by Eq. (7) and (8), an artificial dis-
sipation term is also added to the mass and species transport equations. The
governing equations therefore become:
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In order to demonstrate that the model is suitable for a large variety of flow
conditions, µl, λ and Dk are set to zero in the following test cases.

The addition of non physical mass fluxes in the mass balance Eq. 9 requires
a further comment. Such a term can potentially cause a pressure imbalance
and create additional consistency errors. However, as the artificial dissipa-
tion operator is scaled by ∆x

(r+1), the detrimental effects of the non-linear
diffusivity are minimized when an appropriate large value of r is chosen. Typ-
ically a value of r ≥ 4 is used. To see the effect of the artificial diffusivity,
we consider a ideal fluid moving at an uniform speed, at constant pressure
and with a sinusoidal density field ρ(x, 0) = ρ0(1 + 0.2sin(kx)) where k = 2π
and 0 ≤ x ≤ 5. Three flow speed conditions are investigated that correspond
to a Mach number of 0.1, 1 and 10. Spatial derivatives are computed with a
6th order compact scheme. RMS error of density and velocity are plotted on
figures 1 and 2, respectively for three different grids conditions correspond-
ing to ∆x = 0.1, 0.05 and 0.025. Solid and dashed lines are the solutions
of equations 9-12 with model parameter (Cµ = 0.0, Cρ = 0.0; r = 5) and
(Cµ = 0.0, Cρ = 0.01; r = 5), respectively. As expected, the non-linear dif-
fusivity generates additional numerical error but its convergence correspond
to (r+1), which is the same than the truncation error of the spatial scheme.
For detailed chemistry computations where N is the number of species, N −1
species transport equations are solved in addition to the continuity equation
and the non-physical mass flux is associated with the Nth species. By choos-
ing the Nth component to be a major non-reactive species (N2 for instance in
the case of air/fuel combustion), the additional numerical error induced by
the non-linear diffusivity which is of the order of the truncation error of the
spatial scheme, will not create any significant numerical artifacts.

For one-dimensional test cases, in order to have the same conditions as in the
original studies of Cook and Cabot in [1] and [10], the spatial derivatives are

5



computed with the 10th order compact scheme. A fourth order Runge-Kutta
method is used for time advancement. Numerical stability is guaranteed by
applying an eight-order compact filter to the conserved variables after each
Runge-Kutta step [10]. It is important to note that high-order compact filter if
applied to discontinuous data may cause spurious oscillations. Nevertheless, as
it will be further demonstrated, the non-linear viscosity and diffusivity smear
the discontinuity over a small number of grid points such that both compact
derivative and filtering operators do not generate further overshoots.

Cook and Cabot [1] have demonstrated that for smooth flows in one dimension,
a higher order of accuracy can be obtained by using an appropriate large
value of r. In terms of practical use, setting r to 5 allows accurate detection
of the discontinuity without affecting the rest of the flow. The effects of the
other model parameter Cµ (and Cρ and CY for the extended model proposed
here) were not investigated. Although one can anticipate that these coefficients
determine the extent to which the discontinuity is smeared, it is less obvious
how to estimate the overall error induced by the model. Before applying the
model to complex test cases, an investigation of this point is proposed in the
following section.

3 Performance of the nonlinear viscosity/diffusivity model

We first consider a stationary normal shock that corresponds to a pressure
jump pl/pr = 4.3, where subscripts l and r respectively denote the left and
right shock conditions. The initial conditions were set equal to the Rankine-
Hugoniot solution. In this first computation, a constant mesh size ∆x = 0.05
is used. Since neither contact nor species discontinuity is present in this simple
configuration, the nonlinear diffusivity is not required and is therefore turned
off ( Cρ = CY = 0). This allows for a focus on the effect of nonlinear artificial
viscosity. Fig. 3 shows the dimensionless pressure distribution in the physical
space for different values of Cµ ranging between 0 and 2. When the nonlinear
viscosity model is turned off (Cµ = 0), large amplitude wiggles surround the
shock. As Cµ increases, the shock is smeared and the amplitude of these spuri-
ous oscillations decreases. A dimensionless maximum amplitude of the wiggles
is defined by dividing the maximum wiggles amplitude by the pressure jump
∆p = pl − pr. The variation of the normalized wiggles amplitude with Cµ is
plotted in Fig. 4 for three mesh sizes (∆x = 0.025; 0.05; 0.1 ). Also shown is
the data for a weaker shock condition (pl/pr = 1.4). It is observed that the
damping of wiggles is primarily controlled by the model constant, Cµ and is
largely independent of the mesh size and the shock strength. For Cµ = 1,
the normalized wiggle amplitude is about 0.7% (this level of wiggles will be
accepted as a practical compromise). In order to measure the impact of the
artificial dissipation on the shock resolution, a dimensionless numerical shock
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thickness is introduced:
δ

∆x
=

∆p

∆x ∂p
∂x
|max

(14)

Figures 5 and 6 show the numerical shock thickness and the L2 error in pres-
sure for the different shock and grid spacings in terms of Cµ. It is observed that
the thickness of the shock, which is related to the number of grid points used
to capture the discontinuity, is controlled mainly by the dissipation strength.
For a given Cµ, the shock front is smeared approximately over the same num-
ber of grid points. For example, 99% of the profile is captured over 5 grid
points when Cµ = 1.0 is used. The L2 error shows a similar dependence on Cµ

as the numerical shock thickness. This relationship is explained later.

To test the nonlinear diffusivity model, a stationary surface discontinuity cor-
responding to a density jump ρl/ρr = 10 is considered. A single-component
fluid is used and CY is set to 0. The solution is computed for three differ-
ent mesh sizes (∆x = 0.025; 0.05; 0.1 ) and for two density ratio conditions
(ρl/ρr = 2; 10). The wiggle amplitude, the numerical front thickness and the
L2 error for the density are plotted in Fig 7, 8 and 9, respectively. The results
are qualitatively similar to the shock wave case. Both the wiggle amplitude
and the numerical front thickness remain largely independent of the mesh size
and the discontinuity strength.

If one assumes that the undesired wiggles are effectively damped by the ar-
tificial dissipation, the L2 error induced by the nonlinear viscosity/diffusivity
model is primarily associated with the smearing of the discontinuity. Approx-
imating the density field by the following relation:

ρappr =
(ρl + ρr)

2
+

(ρl − ρr)

2
erf(

√
πx

δ
) (15)

where δ, the observed front thickness, allows an estimation of the L2 error.
Fig. 10 compares the measured and the estimated L2 error for a range of Cρ.
It shows that Eq 15 gives a good approximation of the error induced by the
model.

This analysis shows that for a given value of the model constants, the dis-
continuity is smeared over a fixed number of grid points and this smearing is
the dominant L2 error. To demonstrate the capability of the present approach
to solve various complex shocks configurations, the same constant values will
be used in all simulation presented in this paper. As suggested in [10], Cµ is
set to 1.00 with r = 5. The constants Cρ and CY are respectively set to 0.01
and 0.05. As will be shown further, this choice of constant allows capturing
of surface discontinuities (or steep entropy waves). The original nonlinear vis-
cosity model proposed by Cook and Cabot [1] gives unsatisfactory spurious
oscillations near the contact surfaces.
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4 Results for more complex 1D shock wave problems

In the following subsections, the accuracy of the present shock capturing
scheme is demonstrated on more complex configurations. Flow and thermo-
chemical variables are made dimensionless as follow [13]:

ρ =
ρ∗

ρr

, u =
u∗
ur

, T =
T∗
Tr

, P =
P ∗

ρrur
2
, E =

E∗

ur
2

(16)

where asterisk and subscript r respectively represent dimensional and free-
stream quantities. The equation of state is expressed in terms of the free-
stream Mach number Mr:

p =
ρT

γMr
2 (17)

4.1 Shock tube problem

The first test case is a Mach 2 shock tube problem with an initial discontinuity
at x = 0. Left and right side initialization values are given in Table 0(a).
Variables are made dimensionless according to Eq. (16). The same temperature
is set on either side of the diaphragm, therefore the configuration gives rise to
a weak contact discontinuity. The numerical method with nonlinear viscosity
only is denoted NVI (Cµ = 1.0, Cρ = 0) and the numerical method with both
non linear viscosity and diffusivity is denoted NVIDI (Cµ = 1.0, Cρ = 0.01).
Simulations were carried out on an uniform mesh of 160 grid points and are
analyzed at the time τ = 1.8. A comparison between the exact solution, the
NVI and the NVIDI solutions for the pressure, the velocity, the density and the
temperature is plotted in Fig. 11. A good agreement between the numerical
simulation and the theory is observed, in particular both the positions of the
contact surface and of the right propagating shock are well captured. The NVI
and NVIDI methods give nearly identical solution except at the contact surface
where small differences are observed. This is visible on the temperature plot of
Fig. 11, where the NVIDI method improved slightly the contact discontinuity
prediction. In this configuration, the pressure jump is challenging to capture
but the contact discontinuity is weak, therefore it explains why the impact of
the hyperdiffusivity is moderate.

A second shock tube problem with a stronger pressure ratio is computed. Ini-
tial value, specified in Table 0(b), give rise to a stronger contact discontinuity
which presents a density ratio of 2. Simulations were carried out on an uni-
form mesh of 400 grid points and are analyzed at the time τ = 4.5. Due to
the sharp pressure and density discontinuities at (x = 0, τ = 0), NVI alone
has start up difficulty but NVIDI overcomes that problem. Comparisons be-

8



tween theory and NVIDI solution are shown in Fig. 12. The numerical front
thickness (in terms of grid spacing) of both the shock wave and the surface
discontinuity are about 3, which is consistent with the analysis of section 3.
Maximal wiggles amplitude are observed for the density field in the vicinity
of the surface discontinuity and are about 3%.

In the third shock tube problem configuration, fluids of different initial en-
tropy are now separated by the diaphragm. The (reference) free-stream Mach
number is set to 1. Initial values are specified in Table 0(c). Such changes in
temperature are encountered inside a combustion chamber, where fresh gases
and hot products are present. Simulations were performed on an uniform mesh
of 150 grid points and are analyzed at the time τ = 1.6. Comparisons between
theory, NVI and NVIDI methods are plotted in Fig. 13. The propagation of
the shock wave is well captured by both models, but a large discrepancy is
now observed in the contact surface region. Differences are most visible in
the temperature plot, where the NVI method shows high amplitude spurious
oscillation almost entirely damped by the NVIDI method.

4.2 Shu-Osher problem

The Shu-Osher problem [11], where a sinusoidal density field is crossed by
a shock wave, is then investigated. In order to validate the shock-turbulence
interactions, the original model presented by Cook and Cabot [10] was tested
for this configuration. If the numerical dissipation is too high, the entropy
waves will be damped. In this sense, this canonical test case allows an assess-
ment of the effect of nonlinear viscosity/diffusivity on turbulence. The initial
conditions are indicated on table 2. The free-stream Mach number is equal to
3. The simulation of this problem is performed on the same 200 grid points
mesh which was used in [10]. Numerical simulation of this configuration on a
1600 grid points mesh by Adams and Stolz [14] with a fifth-order ENO-Roe
scheme is chosen as a reference solution. The comparisons between the refer-
ence solution and the NVI and the NVIDI solution at τ = 1.8 is shown in Fig.
14. Predictions of the two models are very similar and in good agreement with
the reference solution. Solutions obtained with this numerical approach shows
that the addition of a non-linear diffusion term to the continuity equation pre-
vents the formation of wiggles without any noticeable detrimental effect on the
physical oscillations resulting from the interaction with the shock wave. We
note in passing that if larger value of Cρ are used (e.g. Cρ = 0.03) the ampli-
tude of the steep entropy waves shows noticeable departure from the reference
solution. The choice of Cρ is thus a compromise between controlling density
wiggles and capturing high wavenumber physical entropy/density waves.
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4.3 Chapman-Jouguet detonation wave

As a reactive test case, a Chapman Jouguet detonation wave is investigated.
To recover the correct ZND structure, interactions between shock waves and
combustion have to be accurately predicted [15]. We will assume for simplicity
that the chemical kinetics are represented by a progress variable c which is 0 in
the fresh gases and 1 in the burnt products. The species transport equations
(Eq. (12)) are then reduced to a single transport equation for the progress
variable c:

∂ρc

∂t
+

∂

∂x
(ρuc) =

∂

∂x

(

(χc)
∂Yc

∂x

)

+ ω̇c (18)

The reaction rate ω̇c is expressed by an Arrhenius law:

ω̇c = K0exp(−E+/T ) (19)

where E+ is the activation energy and K0 the rate constant. After introducing
the dimensionless heat release q0 = q0

∗/ur
2, the equation of state become:

ρE =
p

γ − 1
+

1

2
ρuu + ρq0c (20)

The initial conditions consist of totally burnt gas on the left-hand side and
unburnt gas on the right hand side. Values of density, velocity, pressure and
progress variable are given in Table 3. The other parameters are set to E+ =
25, K0 = 50000, q0 = 25 and the reference Mach number is 0.845. These val-
ues are chosen so that the burnt and unburnt states are connected by a CJ
detonation wave moving with a speed equal to 7.1247. The simulation is per-
formed on an uniform mesh of 800 grid points. Pressure, density, temperature
and progress variable are plotted in Fig 15. The ZND structure is well pre-
dicted while the non linear viscosity/diffusivity model prevents the formation
of spurious oscillations around the shock.

A highly resolved numerical solution on 1600 grid points is set as a reference
solution. The L2 error of the density prediction relative to this solution can
then be computed for the various mesh sizes. To separate the contribution
of the chemistry resolution from that of the shock capturing approach, the
domain is split into two regions from each side of the midpoint of the density
discontinuity. The left part contains the chemical structure of the detona-
tion, whereas the shock is included the right part. The total L2 error and
its components are plotted in Fig. 16. Most of the contribution to the L2
error is due to the chemistry and not due to the shock. It means that the
number of grid points required to solve this problem will not be restricted
by the shock capturing but by the resolution of the chemical structure. For
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all mesh conditions the detonation speed is well captured. As it was demon-
strated in section 3, the dimensionless shock thickness defined by Eq. (14) is
quasi-constant (δ/DX ≈ 2.5), meaning that the same number of grid points
is used to capture the shock for the various grid sizes.

5 Multi-dimensional formulation

For multiple dimensions the flow equations including the artificial diffusivity
and viscosity become:

∂ρ

∂t
+ ∇.ρu −∇ (χρ∇ρ) = 0 (21)

∂ρu

∂t
+ ∇.(ρ.uu + pδ − τ) = 0 (22)

∂ρE

∂t
+ ∇.[(ρEu + (pδ − τ ).u − λ∇T + ρ

Nsp
∑

k=1

Dkhk∇Yk] = 0 (23)

∂ρYk

∂t
+ ∇.(ρuYk) −∇ ((χY + ρDk)∇Yk) = ω̇k (24)

ρE =
ρRT

γ − 1
+

1

2
ρuu + ρ

∑

Ykh
0
k (25)

where δ is the unit tensor and τ . According to [10], the non linear viscosity is
split into a shear and a bulk viscosity respectively noted by µs and µb. This
technique allows to capture shocks without destroying vorticity. The viscous
stress tensor τ is then given by:

τ = (µs + µl)(2S) + (µb −
2

3
(µs + µl))(∇.u)δ (26)

where S = 0.5(∇u + (∇u)T ) is the strain rate tensor. Expression for µs and
µb are given by:

µs = Cs
µη, µb = Cb

µη, η = ρ∆r+1|∇r−1S| (27)

where Cs
µ and Cb

µ are the model constants, ∆ is the local grid spacing and S =

(S : S)1/2 is the magnitude of the strain rate tensor. ∇r−1 is the polyharmonic
operator which denotes a sequence of Laplacians. For instance r = 5 leads to
∇4S = ∇2(∇2S) .The overbar (f) denotes a truncated-Gaussian filter. The
extension of the non linear diffusivity to multiple dimensions is done as follow:

χρ = Cρζ, χY = CY ζ, ζ =
a0

cp
(∆)r+1|∇r−1|∇s|| (28)
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where Cρ and CY are the model constants, |∇s| is the norm of the fluid entropy
gradient, a0 is the speed of sound and cp is the specific heat at constant
pressure.

These numerical procedure has been implemented in the 3-D compressible
Navier-Stokes solver FDL3DI [16] developed at the Air Force Research Labo-
ratory. The spatial derivatives are computed with a 6th order compact scheme
[2] and a 8th order filtering is used for stability purpose [16]. The code is ex-
plicit in time using a fourth order Runge-Kutta method. Parameters used for
the non linear viscosity model are r = 5, Cs

µ = 0.002, Cb
µ = 1, as recommended

in [10]. Concerning the artificial diffusivity components, we maintain the same
parameters that was used in the 1D formulation, i.e. r = 5, Cρ = 0.01 and
CY = 0.05.

5.1 Oblique shock reflection

The first 2D considered test case is the reflection of a shock wave on an inviscid
wall. The shock angle is 33 degrees from the Mach 3 free-stream. The mesh size
is 151 x 51 and is uniformly distributed in both directions. The jump conditions
are imposed on the upper boundary whereas slip wall conditions are set at the
bottom boundary. Pressure field is plotted in Fig 17 and 18. Although the
shock wave is not aligned with the computational mesh, no significant wiggles
are present around the discontinuity which is well captured. The results are
in good agreement with the compact-Roe scheme solution presented in [9].

5.2 Blunt-body flow

As a second test case, a Mach 3 inviscid supersonic flow past a cylinder is
computed. A 81 x 75 mesh, shown in Fig. 19 was generated analytically [17]
for the upper half of the domain. Symmetric flow conditions are imposed at
the centerline. The problem is initalized by a Mach 3 shock moving from the
left while slip wall conditions are imposed at the surface of the cylinder. Iso-
contours of pressure are plotted in Fig. 19. Two radial profiles of pressure,
corresponding to θ = 0o and θ = 45o, where θ is defined in Fig. 19, are shown
in Fig. 20. At the centerline, the shock, smeared over 4 grid points, is located
at a distance of 1.7 from the cylinder, which is in good agreement whith the
compact-Roe scheme results obtained by Visbal and Gaitonde [9] on the same
configuration. The maximal wiggles amplitudes are maintained below 2%.
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5.3 Double Mach reflection

The last test case has been initially used to compare several numerical scheme
[18]. The computational domain has dimension [0,4] X [0,2]. Grid spacing is
∆x = ∆y = 1/60. The problem involves a Mach 10 shock wave in air (γ = 1.4)
which initially makes a 60o angle with the horizontal axis. The undisturbed
air ahead of the shock has a density of 1.4 and a pressure of 1. The shock
intersects the axis at x = 1/6. Along the bottom boundary, at y = 0, the
region from x = 0 to x = 1/6 is always assigned values for the initial post-
shock flow, whereas reflecting wall conditions are set from x = 1/6 to x = 4.
The values along the top boundary condition are set to describe the exact
motion of the Mach 10 shock. A steady 1D shock wave which corresponds to
the normal jump conditions across the Mach 10 oblique shock was initially
computed with the present shock capturing model. This 1D shock solution
that was also been obtained with a grid spacing ∆x = 1/60, has been used to
properly interpolate the initial condition of the 2D Mach reflection problem.

Density contour of the solution at time τ = 0.1 and τ = 0.2, are respectively
plotted on Fig. 21(a) and 21(b). Only the solution for x ∈ [0, 3] and y ∈ [0, 1]
is shown. Visible on both figures is the formation of the two Mach stems and
the wall jet. In particular, the propagation of the two Mach stems and the
formation of the jet which are extremely difficult to compute are recovered.
The results are very similar to solutions obtained on the same grid with a 5th

order WENO scheme [19] and a 7th order TVD scheme [20]. A comparison
with these results shows that the complex features of the flow are captured at
the correct positions. The jet is better represented with the 6th order shock-
capturing scheme than with the 5th order WENO scheme [19], and the shocks
patterns are slightly less smeared with the 7th order TVD scheme [20].

6 Conclusions

A new, simple nonlinear viscosity method has been developed for capturing
shocks and contact surfaces in the context of supersonic reactive flows. By
adding a nonlinear artificial diffusivity, it extends the nonlinear artificial vis-
cosity method proposed by Cook and Cabot [1,10] to treat entropy gradients
associated with temperature and species discontinuities.

Detailed analysis of the errors associated with shock-capturing and contact-
surface capturing was conducted. These have shown that new scheme is able to
capture both weak and strong shocks without any degradation of performance.
Both the dimensionless numerical shock thickness, which is related to the
number of points used to compute the discontinuity, and the damping of the
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spurious wiggles are shown to be largely independent of the mesh size and the
shock/contact surface strength.

This model has been successfully applied to complex 1D shock wave problems,
including the shock tube problem, the Shu Osher problem and a Chapman-
Jouguet detonation wave. It has been observed that the introduction of a non-
linear artificial diffusivity is required to accurately capture contact surface dis-
continuities. Multi-dimensional formulation of the model has been presented
and was successfully applied to a 2D oblique shock wave, to a supersonic blunt
body flow and to a Mach reflection problem. For pure gas-dynamic shock wave
problems, other methodologies [4,6,7,20] may be superior than the present ap-
proach. However, the method proposed in this paper is applicable to broader
class of unsteady flow problems, such as those involving shocks, turbulence,
combustion and their interaction, and is also considerably simpler to imple-
ment.
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(a) Case 1

left right

p 10 5

ρ 10 5

u 0 0

(b) Case 2

left right

p 10 1

ρ 10 1

u 0 0

(c) Case 3

left right

p 1.1 1

ρ 1.0 0.1

u 0 0

Table 1
Left and right initial conditions for the shock tube problems

left right

p 10.33333 1

ρ 3.857143 1+0.2sin(5x)

u 2.629369 0

Table 2
Left and right initial conditions for the Shu-Osher problem [11]

left right

p 1 21.5672

ρ 1 1.6812

u -7.1247 -4.238

c 1 0

Table 3
Left and right initial conditions for the CJ detonation wave
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