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l’Environnement, BP 80, 13545 Aix-en-Provence, FRANCE

Abstract

We propose to model the uppermost inner core as an aggregate of randomly oriented

anisotropic “patches”. A patch is defined as an assemblage of a possibly large num-

ber of crystals with identically oriented crystallographic axes. This simple model

accounts for the observed velocity isotropy of short period body waves, and of-

fers a reasonable physical interpretation for the scatterers detected at the top of

the inner core. From rigorous multiple scattering modeling of seismic wave prop-

agation through the aggregate, we obtain strong constraints on both the size and

the elastic constants of iron patches. In a first step, we study the phase velocity

and scattering attenuation of aggregates composed of hexagonal and cubic crys-
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tals, whose elastic constants have been published in the mineral physics literature.

The predicted attenuations for P waves vary over two orders of magnitude. Our

calculations demonstrate that scattering attenuation is extremely sensitive to the

anisotropic properties of single crystals and offers an attractive way to discriminate

among iron models with e.g. identical Voigt average speeds. When anisotropy of

elastic constants is pronounced, we find that the S wavespeed in the aggregate can

be as much as 15% lower than the Voigt average shear velocity of a single crystal.

In a second step, we perform a systematic search for iron models compatible with

measured seismic velocities and attenuations. An iron model is characterized by its

symmetry (cubic or hexagonal), elastic constants, and patch size. Independent of

the crystal symmetry, we infer a most likely size of patch of the order of 400 m. Re-

cent bcc iron models from the literature are in very good agreement with the most

probable elastic constants of cubic crystals found in our inversion. Our study (1)

suggests that the presence of melt may not be required to explain the low shear

wavespeeds in the inner core and (2) supports the recent experimental results on

the stability of cubic iron in the inner core, at least in its upper part.

Key words: multiple scattering, attenuation, dispersion, iron elastic properties,

grain size, Earth’s inner core

1 Introduction

The gross seismic features of the inner core are nowadays known with some

confidence. The uppermost inner core, where crystallization of iron occurs,

is a peculiar region with isotropic seismic velocities, strong attenuation and
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where the presence of scatterers has been detected. Mineral physicists have

concentrated a lot of efforts on experimental and theoretical investigations

of elastic properties of iron at inner core condition. In spite of remarkable

advances, fundamental questions pertaining to the symmetry class and the

anisotropy parameters of iron are still actively debated and no clear consensus

has emerged yet. In this study, we use the velocity and attenuation properties

of seismic waves inferred from previous studies to propose a simple physical

model of the uppermost inner core. Using a rigorous multiple scattering approach

based on the Dyson equation for elastic waves in random media, we analyze

critically various iron models from the mineral physics literature and give

constraints on the possible stable iron phases in the inner core. In what

follows, the necessary seismological and mineralogical data are reviewed and

our approach is described.

1.1 Seismic observations and mineral physics

Traveltime analyses of seismic body waves have revealed that the Earth’s inner

core is anisotropic with about 1-3% velocity anisotropy and a fast direction

of propagation parallel to Earth’s rotation axis. Depth variations have been

observed with an isotropic layer overlying deep anisotropy (Shearer, 1994;

Su and Dziewonski, 1995; Creager, 1999; Garcia and Souriau, 2000; Wen

and F. Niu, 2002) and a change of velocity anisotropy near the centre of

the inner core (Ishii and Dziewonski, 2002; Beghein and Trampert, 2003;

Calvet et al., 2006). The inner core is heterogeneous at different scales with

hemispherical velocity variations (Niu and Wen, 2001; Garcia, 2002; Cao

and Romanowicz, 2004), continent scale (Stroujkova and Cormier, 2004) and
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short wavelength features (20-200 km) (Bréger et al., 1999). There are strong

evidences for the concentration of very small scale heterogeneities at the top of

the inner core. The PKIKP wave that bottoms in the uppermost inner core is

strongly attenuated compared to outer core phases. In addition, its frequency

spectrum is depleted in high frequencies. Various studies proposed a range

of values for P-wave quality factor between 100 and 400 in the uppermost

200 km with possible lateral variations (e.g. Souriau and Roudil, 1995; Wen

and F. Niu, 2002; Cao and Romanowicz, 2004; Yu and Wen, 2006). Viscoelastic

and scattering attenuation are candidates to explain this observation (Li and

Cormier, 2002; Cormier and Li, 2002) but the latter mechanism seems more

consistent with the strong coda of the reflected P wave generated at the

inner core boundary (Vidale and Earle, 2000; Poupinet and Kennett, 2004;

Koper et al., 2004; Krasnoshchekov et al., 2005; Leyton and Koper, 2007).

Thus, the prominent features of the uppermost inner core are its isotropy and

strong scattering properties. An important open question is to relate these

macroscopic properties to the microscopic anisotropy of the iron alloy.

Iron is thought to be the main constituent of Earth’s inner core. However,

the bulk properties and crystalline structure of Fe at such extreme physical

conditions remain uncertain. The hexagonal-close-packed (hcp) phase of iron

has been proposed as a likely stable phase in the inner core by several authors

(e.g. Stixrude and Cohen, 1995; Yoo et al., 1995; Ma et al., 2004) but there is

no consensus on its anisotropy (Mao et al., 1998; Steinle-Neumann et al., 2001;

Antonangeli et al., 2006). Because the uncertainty on the temperature in the

inner core is very large (Williams et al., 1987; Boehler, 1993; Saxena et al.,

1994; Ma et al., 2004), other structures such as body-centered cubic (Poirier

and Shankland, 1993; Saxena and Dubrovinsky, 1998), double hexagonal closed
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packed (Saxena et al., 1995) and orthorhombic (Anderson and Duba, 1997;

Andrault et al., 2000) cannot be excluded. The problem is made even more

complex by the nature and quantity of light elements present in the inner

core (Poirier, 1994). Nickel or silicon may stabilise a body-centered-cubic (bcc)

phase at inner core conditions (Lin et al., 2002; Vočadlo et al., 2003b; Vočadlo,

2007; Dubrovinsky et al., 2007). A long standing issue in mineral physics is

the discrepancy between the Voigt average velocity of iron crystals and the

observed seismic velocity. Even the most recent models such as proposed by

Vočadlo (2007) and Belonoshko et al. (2007), that incorporate the effect of

temperature, have Voigt average shear velocity between 4.0 to 4.4 km.s−1. This

is still significantly higher than the adopted 3.5 km.s−1 velocity in seismological

models.

1.2 Approach of this study

Two distinct classes of model have been proposed to explain the bulk seismic

properties of the solid core: (1) Some authors have invoked the presence

of elliptic liquid inclusions which could mimic the observed anisotropy and

attenuation of seismic waves through the inner core (Singh et al., 2000); (2)

Bergman (1997) proposed a solidification texturing model which results in

depth dependent anisotropic properties in qualitative agreement with body

wave traveltime measurements. In this work, we focus on the specific scattering

properties of the uppermost inner core and its implication for the attenuation

and velocity dispersion of seismic waves. Previous seismological studies of

scattering have thus far only considered the effects of elastically isotropic

heterogeneities with possibly anisotropic (anisomeric) spatial distributions
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(Cormier et al., 1998; Vidale and Earle, 2000; Cormier and Li, 2002; Cormier,

2007). These seismological models of heterogeneity are not clearly connected

with the mineralogical and geodynamical models of the inner core. One may for

instance ask: what is the physical meaning of an isotropic velocity perturbation

in an intrinsically anisotropic material?

We propose a simple model of solidification texturing of the uppermost inner

core, consistent with seismological and mineralogical data. We limit our considerations

to a few simple quantities that can be inferred from seismic observations: P and

S wave velocities and P-wave attenuation. We model the superficial part of the

solid core as an untextured aggregate of iron “patches” (Krasnoshchekov et al.,

2005) as depicted in Figure 1. Each patch is characterized by the anisotropic

properties of individual iron crystals and the orientation of crystallographic

axes varies randomly from one patch to another. One patch is not necessarily

made of a single crystal. One can for example imagine that it contains a large

number of dendrites with strongly correlated orientation of crystallographic

axes. Such a texture is shown in Figure 1 and is similar to what is observed

in laboratory experiments of crystallization of ice or hcp iron (Worster, 1997;

Bergman, 1997; Bergman et al., 2003). The seismic properties of the aggregate

depend on the patch size and the iron crystal properties (symmetry, anisotropy).

As a consequence of our assumption of random patch orientation, the aggregate

is macroscopically isotropic. But, because of crystal anisotropy, seismic wave

velocities vary from one patch to an other which makes the aggregate microscopically

inhomogeneous. A seismic pulse travelling through such a medium will be

prone to amplitude attenuation and velocity dispersion. We show how multiple

scattering theory can be used to relate the intrinsic elastic properties of iron

crystals to the macroscopic seismic properties of the aggregate. An important
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conclusion of our theory is that the Voigt average velocity of a single crystal

is a poor approximation of the seismic velocity of the aggregate.

2 Multiple scattering theory

To describe statistically the aggregate, we introduce the following decomposition

of the elastic tensor:

Cijkl(x) = C0

ijkl + δCijkl(x) (1)

C0

ijkl = 〈Cijkl(x)〉, (2)

where

〈δCijkl(x)〉 = 0. (3)

Angular brackets represent the ensemble average over all possible orientation

of a single crystal, also known as the Voigt average. The fluctuations δCijkl(x)

are considered to be single realizations drawn from an ensemble of random

fields, having zero mean. In such an aggregate, the spatial variations of the

elastic constants are only caused by different orientations of the patches.

As usual the material heterogeneity is described by the correlation of the

fluctuations, which in our case is a tensor field (Stanke and Kino, 1984):

〈δCijkl(x)δCαβγδ(x
′)〉 = Ξαβγδ

ijkl η(|x− x′|), (4)

where Ξ denotes the eigth rank covariance tensor of the elastic moduli and

depends on the symmetry of the crystal (Hirsekorn, 1988). The function η(x)

which equals 1 at x = 0 and tends to 0 as x → ∞ is the spatial correlation

function. It gives the probability that two points separated a distance x from
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one another are located within the same patch (Stanke, 1986). Equation

(4) reflects two assumptions regarding the statistics of the aggregate: first,

there are no orientation correlations between different patches (i.e. there is no

macroscopic anisotropy of the aggregate); second, the aggregate is statistically

homogeneous. We have chosen a spatial correlation function of the form:

η(r) = e−r/a. (5)

The correlation function (5) implies that the patches (or grains) are convex

and equi-axed, i.e., not elongated in some particular direction. Such a texture

would produce anisotropic velocity and attenuation as shown by Margerin

(2006). In spite of the limitations mentioned above, an exponential function

describes the variable shapes and linear dimensions of grains in a polycrystalline

material reasonably well (Stanke, 1986). In this case, the effective average

dimension of the patches is d = 2 a.

The inhomogeneity of the aggregate is related to the anisotropy of the patches.

For example, if iron is weakly anisotropic, the elastic properties of the medium

have only weak variations from patch to patch. The degree of inhomogeneity

can be expressed in terms of the effective elastic constants as (Stanke and

Kino, 1984):

ǫ2 ≃
1

4

〈(CIJ − C0

IJ)2〉

(C0

IJ)2
. (6)

To represent the fourth-order stiffness tensor, we have introduced in equation

(6) the Voigt matrix CIJ whose indices I and J vary from 1 to 6 with the

following correspondence rule between tensor and matrix indices: (11) →

1, (22) → 2, (33) → 3, (23) → 4, (13) → 5, (12) → 6. The degree of

inhomogeneity is defined with I = J = 3 for P waves, and with I = J = 4 for
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S waves.

To calculate the seismic response of the aggregate, we have used a formalism

based on the Dyson equation (Rytov et al., 1989) for the ensemble averaged

Green function. The theory takes into account all the physics of the problem:

arbitrary anisotropy of iron, mode conversions between P and S waves, and

multiple scattering (Weaver, 1990). This formalism yields effective phase velocities

and spatial decay rates of coherent P and S waves propagating through the

aggregate. At a given frequency ω, the seismic coherent field 〈G〉 can be

decomposed into longitudinal (P ) and transverse (S) contributions (Weaver,

1990):

〈G(ω,p)〉 = gP (p)p̂p̂ + gS(p)(I − p̂p̂), (7)

where gP (p) and gS(p) are defined as:

gP (p) =
1

ω2 − (pV P
0 )

2
+ σP (p)

(8)

gS(p) =
1

ω2 − (pV S
0 )

2
+ σS(p)

. (9)

In equation (7), I is the identity tensor, p̂ is a unit vector in the direction of the

wavevector p; V P
0

(V S
0

) and σP (p) (σS(p)) denote the longitudinal (transverse)

Voigt velocity and longitudinal (transverse) mass operator, respectively. The

poles of the propagators gP (p) and gS(p) give the dispersion relation of P

and S waves in the aggregate, respectively (Sheng, 1995). To determine the

location of the poles, some approximation of the mass operators has to be

made. In the First-Order-Smoothing Approximation, correct to second order

in material heterogeneity, Weaver (1990) has shown that σP (p) and σS(p)

are related to inner products of Ξ with the unit tensor I and the second

rank tensors p̂p̂. The detailed frequency dependence of the mass operators
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is governed by the correlation function η. At sufficiently low frequency, the

location of the poles can be given explicitly using the Born approximation

which consists in substituting p with k0 = ω/V0 in σ(p) (Weaver, 1990).

One obtains the following expression of the effective wave vector ke in the

untextured aggregate:

kP/S
e =







(

ω

V
P/S
0

)2

+
σP/S(ω/V

P/S
0 )

(

V
P/S
0

)2







1/2

(10)

When the Born approximation fails at high frequencies, one can still locate

approximately the pole by calculating the density of states in the random

medium. This procedure is described in detail in the book of Sheng (1995),

p.85-86. In this work, Born approximation has been used to facilitate calculations

and its validity has been verified a posteriori.

The effective velocities V P/S
e and attenuations αP/S of the seismic waves are

related to the real and imaginary parts of the mass operators, respectively:

1

V
P/S
e

=
1

V
P/S
0

+
1

2 ω2 V
P/S
0

ℜ{σP/S(ω/V
P/S
0 )} (11)

αP/S =
1

2 ω V
P/S
0

ℑ{σP/S(ω/V
P/S
0 )}. (12)

Because the material is heterogeneous at the wavelength scale, the effective

phase velocity in the aggregate is different from the Voigt velocity. The attenuations

αP/S reflect the amplitude decay of the coherent wave caused by scattering.

In a recent review paper, Thompson (2002) shows the remarkable agreement

between experimental measurements of attenuation in untextured metals and

the theoretical prediction (12). To ease the comparison with seismic observations,

we define P-wave and S-wave attenuation quality factors as:

QP/S =
ω

2αP/SV
P/S
0

(13)
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3 Effective seismic properties of aggregates: study of 6 iron models

from the literature

3.1 Anisotropy and Voigt speed of single crystals

Table 1 gives elastic properties of six iron crystals proposed for the inner

core, obtained from either laboratory experiments or theoretical calculations.

These crystals present very different anisotropic characteristics as revealed by

Table 1. For example, the sign and amplitude of the anisotropic parameters

for hexagonal iron defined in Appendix A vary significantly from one crystal

to an other (Table 1). This is illustrated in Figure 2 where the P and S wave

velocities of three hexagonal iron crystals are plotted as a function of the

direction of propagation measured from the symmetry axis. In Figure 2a, the

longitudinal sound velocity deduced from x-ray diffraction experiments (Mao

et al., 1998) has a maximum at 45◦ from the symmetry axis. This result has

not been supported by either first principle calculations or other experimental

studies. The theoretical investigations themselves have led to contradictory

conclusions: the symmetry axis could be either fast (Laio et al., 2000) or slow

(Vočadlo, 2007) as shown in Figure 2. Recently, Dubrovinsky et al. (2007) have

proposed that a body-centered-cubic (bcc) phase could be stable at inner core

conditions. Recent cubic iron models computed by (Belonoshko et al., 2007)

and Vočadlo (2007) at inner core temperature, present different anisotropic

characteristics, described by the parameter ν in Table 1 (Appendix A). All

iron crystals in Table 1 have a higher S-wave Voigt velocity than that inferred

from seismology -between 3.5 km.s−1 and 3.67 km.s−1 in the ak135 model

(Kennett et al., 1995) -. Recent theoretical calculations of elastic properties of
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iron at inner core conditions converge towards S-wave Voigt velocities between

4.0 km.s−1 and 4.4 km.s−1.

3.2 Seismic wave dispersion

We explore the seismic properties of hcp and bcc iron aggregates at the typical

frequency of short period PKIKP waves (around 1 Hz). In what follows,

an iron model will be simultaneously characterized by its single crystal and

aggregate properties. We have calculated the P and S effective velocities for

patch sizes ranging from 30 m to 100 km. As explained in section 2, the

material heterogeneity induces a shift of the seismic wavespeeds from the Voigt

velocities V0. This effect is illustrated in Figure 3, where we have plotted the

normalized variation of phase velocity δV = (Ve − V0)/V0 as a function of

adimensional frequency k0 a (where k0 is the Voigt wavenumber and a is the

correlation length) for hcp aggregates (top) and bcc agregates (bottom). Over

the whole frequency range, the effective velocity of both P and S waves is

reduced compared to the Voigt average. Typically, the shift is stronger by one

order of magnitude for S wave than for P wave. For a given polarization the

shift grossly increases with the degree of inhomogeneity ǫ2 (see equation 6),

and varies over one order of magnitude at least, depending on the iron models.

The effective velocity is also a sensitive function of the size of the patch. The

strongest variations occur around k
S/P
0 a ≈ 1 which corresponds to a strong

coupling between P and S modes. The “jump” of the velocity dispersion curve

around k
S/P
0 a ≈ 1 is absent in scalar wave propagation and is a remarkable

feature of the elastic propagation in metals as illustrated by Stanke and Kino

(1984). At very low frequency, our calculations verify the Hashin-Strikman
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bounds as they should. Calculations with a gaussian two-point correlation

function η yield qualitatively very similar results. Since gaussian correlations

are usually too smooth to represent natural materials, we have preferred the

more realistic exponential function.

Figure 3 illustrates the renormalization of the velocity in the heterogeneous

material. Since the effective seismic velocity of an aggregate is lower than

its Voigt average velocity, we can conclude that stable iron phases at inner

core condition should have P-wave Voigt velocity close to the observed one,

or slightly larger (around 2 %) if the degree of inhomogeneity is large. In the

case of S waves, the difference between the Voigt and the seismic velocity has

to be positive, and can be large (up to 10 % for the model of Belonoshko et al.

(2007)). Our calculations show that the Voigt velocity is not the appropriate

parameter to discuss the compatibility of iron models obtained from mineral

physics with seismic observations.

3.3 Seismic wave attenuation

We now examine the attenuation properties of six iron aggregates whose

properties are summarized in Table 1. In Figure 4 we show the P-wave attenuation

(1/QP ) as a function of adimensional frequency kP
0
a. Variations of 1/QP with

respect to adimensional frequency depend on whether ω or a is varied. In our

case, we work at constant central frequency ω = 2π and let a range from

300 m to 90 km. A prominent feature is the strong frequency dependence of

P-wave attenuation. Typically, the attenuation increases by about two orders

of magnitude for P waves as k0a varies from 0.1 to 10.
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Scattering attenuation is very sensitive to the anisotropic characteristics of

iron crystals. For example, the iron models of Mao et al. (1998) and Laio

et al. (2000) have nearly equal Voigt velocities for both P and S waves (see

Table 1). However, the elastic anisotropy of the crystals is quite different

as illustrated in Figure 2. As a consequence, we find one order of magnitude

difference for P-wave attenuation in the aggregates, at fixed patch size. At high

frequency, we observe that longitudinal attenuation increases with the degree

of inhomogeneity ǫ2

P . All the attenuation curves show a smooth bump around

k0a = 1, which corresponds to a frequency range where the coupling between

P and S waves is maximum. Because attenuation and velocity are related by

Kramers-Krönig relations, the “jump” of the velocity curve and the “bump”

of the attenuation curve coincide. Considering these six iron models proposed

for the inner core, we find as much as two orders of magnitude difference

in attenuation for P waves at fixed patch size. Elastic wave attenuation is

therefore an important quantity to characterize the properties of iron in the

inner core.

In Figure 4, the grey lines give some typical values for P-wave attenuation at

1 Hz at the top of the inner core, i.e. 300 < QP < 600 as proposed by Yu and

Wen (2006). Several iron models can explain the observed QP by scattering

attenuation only, but with different textures. For example, the Belonoshko

et al. (2007) model yields typical size of patches of about a few hundred meters,

whereas the bcc iron model at 5500 K by Vočadlo (2007) implies patches around

ten kilometers. In the case of Laio et al. (2000), it seems difficult to explain

P-wave attenuation in the uppermost inner core by scattering only. The study

of these six iron models reveals a clear trade-off between elastic properties and

typical size of patches (scattering objects). In what follows, this problem will
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be further examined in order to simultaneously constrain crystal anisotropy

and the texture of aggregates in the uppermost inner core.

4 Constraints on elastic contants of iron in the inner core

In this section, we consider the following inverse problem: find iron models

that match the seismic measurements of P and S wave velocities, and P wave

attenuation at 1 Hz in the uppermost inner core. An iron model is defined by

the elastic tensor of a single crystal and the texture of the aggregate. Because

the stable phase of iron at inner core conditions is still uncertain, we propose

to examine two kinds of crystal symmetry: hexagonal and cubic. In our simple

model, the texture is characterized by the correlation length a, equal to half

the average patch size. We let a vary over more than two orders of magnitude:

50 m < a < 10000 m.

The observation of strong PKiKP coda suggests that scattering attenuation is

the dominant mechanism for attenuation in the inner core. This interpretation

is also supported by the study of Cormier and Li (2002) and Cormier (2007).

A commonly accepted value for QP at the top of the inner core is about 300

(Yu and Wen, 2006). We impose that an acceptable iron model should have

a scattering QP within the range 300-600. This choice implies that more than

half the observed attenuation is explained by scattering and leaves some room

for other attenuation mechanisms. Since S-wave attenuation in the inner core

around 1 Hz is still poorly known, we do not impose constraints on QS. The

range of acceptable seismic velocities corresponds to the values given by the

ak135 model for the whole inner core.
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4.1 Hexagonal iron

To find acceptable iron models we perform a systematic grid search in the

CIJ space. Only positive definite elastic tensors have been retained. For each

correlation length, we test 1.8×108 physical iron models with anisotropy parameters

(ε, δ, γ) smaller than 50%. In Figure 5 (left), we represent the percentage of

acceptable hexagonal models as a function of the correlation length. The curve

shows a sharp maximum at a ≃ 220 m, which yields an average size of the

patches around 450 m. The correlation length of the aggregate cannot be

smaller than 140 m but can be as large as 10000 m. It is to be noted that the

most probable patch size is about 20 times smaller than the central wavelength

of P waves. A careful analysis reveals that the bounds on the seismic velocities

determine the overall number of acceptable models, whereas the bounds on

the attenuation fix the position of the maximum.

For three correlation lengths a =140 m, 220 m, 1000 m, we examine in Figure

6 the distribution of acceptable models in the (ε, δ) parameter space. We focus

on the two parameters controlling the P-wave crystal anisotropy, in order to

facilitate comparisons with results from mineral physics. Figure 6 is a 2-D

histogram of the number of acceptable models. For each correlation length,

there is a clear trade-off between ε and δ because only three independent

observations serve to constrain 5 independent parameters. To avoid artefacts

due to uneven sampling of the model space, we have taken care of normalizing

the results by the total number of tested models per class. In fact the systematic

exploration of the CIJ space yields relatively homogeneous coverage of the (ε,

δ) space. In Figure 7, we show the a-posteriori histograms of acceptable Voigt

velocities for the three correlation lengths.
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At small correlation length (a = 140 m), the aggregate is most likely composed

of hexagonal iron crystals with a slow symmetry axis (20% < ε < 50%), and

possibly high Voigt velocities (11.6 km.s−1< V P
0

<12.1 km.s−1, 3.8 km.s−1<

V S
0

<4.7 km.s−1). There is no clear constraint on δ. We remark that Voigt

velocities of iron crystals can never be smaller than seismic velocities, but high

Voigt velocities are not necessarily incompatible with seismic observations.

At large correlation length (a > 500 m), the (ε , δ) distribution has the

shape of an ellipse centered around (0, 0), with positive correlation between

ε and δ in the range −10% < ε < 10%, −20% < δ < 25%. The crystal

Voigt velocities must be close to seismic velocities. Careful analysis shows that

there are slightly more hcp crystals with a slow symmetry axis, than with a

fast symmetry axis. At large correlation length, none of the 8 hexagonal iron

models considered in this study has both anisotropic parameters and Voigt

velocities compatible with seismic observations.

For a ∼ 220 m, we obtain a maximum of acceptable iron aggregates. Corresponding

iron crystals have a complex distribution in ε and δ. δ is not constrained, and

ε varies between −20% and +50%. Interestingly, the elliptic domain which

defined acceptable models at large correlation length is forbidden when a

equals the most probable patch size. Like for small correlation lengths, we

obtain a larger number of hexagonal iron crystals with a slow symmetry axis

for P waves. The distributions of acceptable P-wave Voigt velocity (11.3 km.s−1<

V P
0

<12.0 km.s−1) and S-wave Voigt velocity (3.5 km.s−1< V S
0

<5.5 km.s−1)

are very broad, with an average clearly higher than the seismic velocities.

The iron crystal proposed by Steinle-Neumann et al. (2001) is the only model

which presents both anisotropic parameters (ε, δ) and Voigt velocities that are

compatible with seismic observations. However, this iron model is questionable

17



because of the too large value of the axial ratio of hcp iron predicted by the

calculations (Gannarelli et al., 2005).

4.2 Cubic iron

We perform a grid search in the (C11, C12, C44)/ρ parameter space, where ρ

is the model iron density. The normalization by ρ facilitates the comparison

between models with different densities. In any case, the scattering properties

of an aggregate depend only on CIJ/ρ.

For a given texture, we test 8.8×106 cubic iron crystals with a homogeneous

distribution in the range: 0.1 < C11/ρ < 0.2, 0.06 < C12/ρ < 0.12, 0 <

C44/ρ < 0.04, where the CIJ and ρ units are GPa and kg.m−3, respectively. In

Figure 5 (right), we represent the percentage of acceptable cubic models as a

function of the correlation length. The curve shows a maximum at a ≃ 200 m,

which yields an average size of the patches around 400 m. Therefore the most

probable size of patch is a robust feature, independent of the symmetry of

the crystal. Like in the hexagonal case, the correlation length of the aggregate

cannot be smaller than 150 m but can be as large as 10000 m. The percentage

of accepted models is by one order of magnitude smaller in the cubic case than

in the hexagonal case.

For three correlation lengths (150 m, 200 m and 500 m), we examine, in Figure

8, the distribution of elastic constants of acceptable cubic crystals. At large

correlation length, we observe two distinct families shown in grey and black in

Figure 8 (middle-bottom), whereas a single family exists at correlation length

smaller than 200 m. The black and white circles show the recent results of
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Vočadlo (2007) for cubic iron at two different inner core temperatures, and

the black square is the recent bcc iron model by Belonoshko et al. (2007). This

last model is completely compatible with seismic observations and corresponds

to the “grey” family of cubic models.

In Figure 9, we show the a posteriori distributions of Voigt velocities for three

correlation lengths. The main features are very similar to the hexagonal case

but the bounds are slightly sharper. For the most probable patch size, the

average S-wave Voigt velocity is around 4.4 km.s−1, in agreement with recent

results by Vočadlo (2007) and Belonoshko et al. (2007). Our study shows

that some cubic iron crystal with S-wave Voigt velocity around 4.0 km.s−1

can explain seismological data without invoking the presence of melt, as for

example the iron model by Belonoshko et al. (2007). On the other hand the

bcc iron model at 5500K by Vočadlo (2007), although in reasonably good

agreement with the results of our inversion, is not anisotropic enough to induce

a strong renormalization of the seismic velocities in the aggregate (only 1 %

as shown in Figure 3). For such an iron model, it is necessary to invoke the

presence of some melt to explain the seismic velocities.

5 Discussion and conclusion

5.1 Patch size

(1) From mineral physics and geodynamics. Estimates of the size of iron

crystals in the Earth’s inner core vary from the entire volume, some 1200 km,

to about 5 mm. Stixrude and Cohen (1995) have proposed that a single crystal

of iron with anisotropy around 4 % could explain seismic traveltimes. The
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smaller estimates stem from geodynamical considerations. Near the melting

temperature of iron, a grain size of about 5 mm is necessary to make the

viscosity smaller than 1016 Pa.s, as proposed by Buffett (1997). Assuming

dynamic recrystallisation, Yoshida et al. (1996) obtained a typical crystal

size around 5 m. Bergman (1997, 1998) suggested that observed attenuation

and velocity anisotropy of the inner core may result from radially elongated

columnar grains and estimated the columnar grain width around 200 m. This

last study is in good agreement with our most probable patch size.

(2) From seismology. With scattering and a fabric interpretation of seismic

attenuation, Cormier and Li (2002) have proposed average scale length of

isotropic heterogeneities around 10 km, and P-wave velocity perturbations

around 8.4% from the centre of the inner core to about 1000 km radius. From

the energy envelopes of PKiKP coda waves, Vidale and Earle (2000) have

obtained a scale length of about 2 km, and elastic moduli fluctuations of 1.2%

in the uppermost 300 km of the inner core. These results may reflect a trade-

off between velocity perturbations and scale length. However, the most serious

criticism is the lack of physical connection between the hypothesized isotropic

seismic heterogeneities and the crystalline nature of the inner core. Our most

probable correlation length (around 200m) is smaller than previous estimates

by Cormier and Li (2002) and Vidale and Earle (2000), but is close to the lower

limit proposed by Cormier et al. (1998) (about 15 % P-wave perturbations and

scale length in the range 0.5-2 km).
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5.2 On the presence of melt

The vast majority of proposed iron models for the inner core displays much

higher Voigt average velocities than what is inferred from seismic traveltimes.

This discrepancy has sometimes been used as an argument to support the

presence of liquid in the inner core (Singh et al., 2000; Vočadlo, 2007). In our

study, we have shown that high Voigt velocities, typically of the order of what

is found in the most recent studies (Belonoshko et al., 2007; Vočadlo, 2007),

do not necessarily imply the presence of melt. The reason is that the effective

velocity in an aggregate can be as much as 15 % smaller (according to the

anisotropic characteristics of iron crystal) than the average velocity in a single

crystal. Two additional points have to be noted: (1) Iron crystals with Voigt

velocities smaller than seismic wavespeeds have to be rejected, independent of

our assumption for the value of Q (2) Iron models with Voigt velocities larger

than 5.5km.s−1 can also be clearly rejected, unless they contain a huge amount

of melt, typically more than 20 % according to Figure 2 in Singh et al. (2000).

5.3 Cubic vs Hexagonal

Most theoretical and experimental studies show that hexagonal metals at

ambient temperature have a fast symmetry axis (Antonangeli et al., 2006). But

the effect of temperature on the elastic constants is still debated (Laio et al.,

2000). We found that hcp iron models with a slow symmetry axis are more

probable in the inner core. If further experimental or theoretical investigations

definitely show that hcp iron at inner core conditions has a fast symmetry

axis, we may conclude on the basis of our uppermost inner core model that
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the stable iron phase is unlikely to be hexagonal. Recent cubic models from

the literature are in very good agreement with the results of our inversion.

Therefore, our study supports a stable bcc iron phase in the inner core, as

proposed by Dubrovinsky et al. (2007).

Although our study provides some indications on the possible elastic constants

of iron, some large uncertainties remain. They are clearly caused by a lack of

seismological constraints. In future studies, the modeling of the following three

observations could significantly reduce the uncertainties on the properties

of iron in the inner core: (1) energy envelope of PKiKP coda; (2) direct

measurements of QS at 1 Hz; (3) velocity and attenuation anisotropy in the

bulk of the inner core. As a large number of records of PKiKP coda are

available, for which multiple scattering may be relevant, we plan to focus our

efforts on this aspect in future works. The modelling of frequency dependent

inner core attenuation combined with coda analysis could unravel the relative

contributions of viscoelasticity and scattering attenuation.
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Bréger, L., Romanowicz, B., Tkalčić, H., 1999. PKP(BC-DF) traveltime

residuals and short period heterogeneity in the deep earth. Geophys. Res.

Lett. 26, 3169–3172.

Buffett, B. A., 1997. Geodynamics estimates of the viscosity of the Earth’s

inner core. Nature 402, 571–573.

Calvet, M., Chevrot, S., Souriau, A., 2006. P-wave propagation in transversely

isotropic media - II . Application to inner core anisotropy: Effects of data

averaging, parametrization and a priori information. Phys. Earth Planet.

Int. 156, 21–40.

Cao, A., Romanowicz, B., 2004. Hemispherical transition of seismic

attenuation at the top of the earths inner core. Earth Planet. Sci. Lett.

228, 243–253.

Cormier, V. F., 2007. Texture of the uppermost inner core from

forward- and back-scattered seismic waves. Earth Planet. Sci. Lett.

23



doi:10.1016/j.epsl.2007.04.003.

Cormier, V. F., Li, X., 2002. Frequency-dependent seismic attenuation in the

inner core. II. A scattering and fabric interpretation. J. Geophys. Res. 107,

doi:10.1029/2002JB001796.

Cormier, V. F., Xu, L., Choy, G. L., 1998. Seismic attenuation of the inner

core: Viscoelastic or stratigraphic? Geophys. Res. Lett. 25, 4019–4022.

Creager, K. C., 1999. Large-scale variations in inner core anisotropy. J.

Geophys. Res. 104, 23127–23139.

Dubrovinsky, L., N. Dubrovinskaia, O. N., Kantor, I., Kuznetzov, A.,

Prakapenka, V. B., Vitos, L., Johansson, B., Mikhaylushkin, A. S., Simak,

S. I., Abrikosov, I. A., 2007. Body-centered cubic iron-nickel alloy in earth’s

core. Science 316, 1880–1883.
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A Anisotropic parameters for hexagonal and cubic crystals

A.1 Hexagonal symmetry

In a transversely isotropic medium (hexagonal symmetry), the symmetry axis

defines a particular direction which is usually chosen along the x̂3-axis for

convenience. To describe anisotropic properties of hexagonal crystals, Mensch

and Rasolofosaon (1997) have defined three anisotropic parameters:

ε =
(C11 − C33)

2C33

δ =
(C13 − C33 + 2C44)

C33

(A.1)

γ =
(C66 − C44)

2C44

The parameter ε represents P-wave anisotropy i.e. the difference between the

phase velocities perpendicular and parallel to the symmetry axis. A negative

value of ε corresponds to a fast symmetry axis for P waves (Table 1). The

parameter γ represents the anisotropy of S waves in a similar way. The parameter

δ controls P wave propagation at intermediate angles from the symmetry axis.

In order to fully prescribe the elastic properties of hexagonal crystals, two

additional parameters have to be introduced. We have chosen the P and S

Voigt average velocities because they are routinely compared with the seismic

measurements.
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A.2 Cubic symmetry

The stiffness tensor of a cubic crystal is described by three independant

constants C11, C12 and C44. The invariant anisotropy factor for cubic-class

crystal is defined as:

ν = C11 − C12 − 2C44 (A.2)

The elastic properties of cubic crystal are fully described by the parameter ν

and the P and S Voigt average velocities.
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Hexagonal Iron Models ρ C11 C12 C44 C33 C13 V P
0

V S
0

ν ε δ γ ǫP ǫS

(kg.m−3) (GPa) (GPa) (GPa) (GPa) (GPa) (km.s−1) (km.s−1) (GPa) (%) (%) (%) (%) (%)

HCP Iron

Mao et al. (1998) 12600 1533 367 583 1544 835 11.47 5.92 -0.36 +29.60 -20.50 2.46 8.71

Laio et al. (2000) 12885 1697 809 444 1799 757 11.45 5.90 -2.84 -11.12 +2.73 0.80 1.75

Vočadlo (2007) 13155 1311 159 1642 1642 1074 11.14 4.04 +2.84 -15.22 +15.72 2.22 5.17

BCC Iron

Belonoshko et al. (2007) 13850 1561 1448 365 11.54 4.20 -617 2.79 17.53

Vočadlo (2007) 13155 1603 1258 256 11.29 4.11 -167 0.86 4.91

Vočadlo (2007) 13842 1795 1519 323 11.83 4.24 -370 1.60 9.73

Table 1

Elastic properties of hexagonal (hcp) and cubic (bcc) iron crystals and associated untextured aggregate: density (ρ), elastic constants

(CIJ), hexagonal anisotropic parameters (ε,δ,γ), cubic anisotropic parameter (ν), P-wave and S-wave Voigt velocities (V P
0 , V S

0 ), degrees

of inhomogeneity (ǫ2

P ,ǫ2

S). The iron models have been computed at inner core temperature except Mao et al. (1998) and Laio et al. (2000).
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Fig. 1. Modelling of the superficial layer at the top of the solid inner core as

an untextured aggregate of iron “patches”, with typical size d. ICB: Inner Core

Boundary.
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Stixrude and Cohen (1995) (red), Söderlind et al. (1996) (black), Mao et al.

(1998) (brown), Steinle-Neumann et al. (1999) (cyan), Laio et al. (2000) (green),

Steinle-Neumann et al. (2001) (purple), Vočadlo et al. (2003a) (orange), Vočadlo

(2007) (magenta). Only two models have been computed at inner core temperature

(squares).
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Fig. 7. Distribution of Voigt velocities of acceptable hcp iron crystals for different

correlation lengths: a = 140 m, a = 220 m, a = 1000 m (from top to bottom).

Vertical lines delimit the range of seismic velocities in the inner core.
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Fig. 8. Distribution of acceptable elastic constants CIJ/ρ of cubic iron for different

correlation lengths, indicated on top of each plot. At large correlation length, we

observe two distinct families of cubic models (shown in grey and black). Circles

correspond to two bcc iron models proposed by Vočadlo (2007) for a density

ρ = 13155 kg.m−3 and a temperature T=5500 K (black), and for ρ = 13842 kg.m−3

and T=6000 K (white). The square corresponds to the bcc iron model proposed

by Belonoshko et al. (2007) for a density ρ = 13580 kg.m−3 and a temperature

T=6000 K.
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Fig. 9. Distribution of Voigt velocities for the two families of acceptable cubic models

of iron shown in Figure 8. The correlation length is indicated on top of each plot:

a =150, 200, 500 m. Circles correspond to the two bcc iron models proposed by

Vočadlo (2007) and the square is the bcc model proposed by Belonoshko et al.

(2007) (same symbols as in Figure 8). Vertical lines delimit the range of seismic

velocities in the inner core.


