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BP 72, 29 avenue de la division Leclerc

92322 Châtillon Cedex, France
†† Université Pierre et Marie Curie-Paris 6

Institut Jean Le Rond d’Alembert, UMR CNRS 7190
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Abstract. The aim of this paper is to propose methods that enable us to
build new numerical schemes, which preserve the Lie symmetries of the original
differential equations. To this purpose, the compound Burgers-Korteweg-de
Vries (CBKDV ) equation is considered. The particular case of the Burgers
equation is taken as a numerical example, and the resulting semi-invariant
scheme is exposed.

1. Introduction. Finite difference equations used to approximate the solutions of
a differential equation generally do not respect the symmetries of the original equa-
tion, and can lead to inaccurate numerical results. Usually, specific equations are
considered, for which the authors build a scheme preserving the symmetries of the
original differential equation. Yet, it is more interesting to directly consider a class
of differential equations, in order to obtain more general results.

Using the work of Yanenko [4] and Shokin [3], who applied the Lie group theory to
finite difference equations by means of the differential approximation, in conjunction
with the approach of Ames et al. [8], we generalize results developed in [1], [2], and
expose the invariance condition for a differential approximation of the CBKDV
equation. A numerical example, in the particular case of the Burgers equation, is
developed.

2. Notion of symmetry.

2.1. Definitions.

Definition 2.1. A r-parameter Lie group is a r-dimensional smooth manifold Gr,
which has the group properties, such that the group operation of multiplication and
inversion are smooth maps.
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Especially, a Lie group Gr is defined as a group of continuous transformations which
act on an open subset of the Euclidean space R

k of variables, which change under
the action of Gr. We presently concentrate on a local group, the transformations
of which are close to the identity transformation.

Definition 2.2. A r-parameter Lie group Gr is a group of point transformations,
which acts on X × U , the space of the independent variables and the dependent
ones:

Gr = {x∗i = φi(x, u, a); u
∗
j = ϕj(x, u, a), i = 1, . . . ,m; j = 1, . . . , n; a = (a1, . . . , ar)} (1)

where x ∈ X ⊂ R
m and u ∈ U ⊂ R

n.

Gr locally satisfies the group axioms: existence of an identity element, associativity,
inversibility, closure under the binary composition operation. The transformation
corresponding to a zero parameter is the identity transformation.
Expand the transformations by means of a Taylor series at the zero value of the
parameter a:

x∗i = xi + aα
∂φi

∂aα

∣∣∣
a=0

+ O(a2α), α = 1, . . . , r

u∗j = uj + aα
∂ϕj

∂aα

∣∣∣
a=0

+ O(a2α), α = 1, . . . , r (2)

The derivatives of φi and ϕj with respect to the parameter aα are smooth functions,
called infinitesimals of the group Gr. Denote by ξα

i and ηα
j the infinitesimals of Gr.

The point transformation group Gr can be represented by means of the operator
Lα:

Lα = ξαi (x, u)
∂

∂xi
+ ηαj (x, u)

∂

∂uj
, i = 1, . . . ,m; j = 1, . . . , n; α = 1, . . . , r (3)

The operators Lα, α = 1, . . . , r are called the infinitesimal operators of Gr.
{Lα, α = 1, . . . , r} represents the set of tangent vectors to the manifold Gr, when
the zero value is assigned to the parameter a. The set is a basis of the Lie-algebra
of the infinitesimal operators of Gr, the dimension of which is the same as the one
of the Lie group Gr.
The knowledge of the Lα enables us to determine the point transformations of the
group Gr by solving the equations:

∂x∗i
∂aα

= ξαi (x∗, u∗),
∂u∗j

∂aα
= ηαj (x∗, u∗), i = 1, . . . ,m; j = 1, . . . , n; α = 1, . . . , r (4)

in conjunction with the initial conditions:

x∗i
∣∣
a=0

= xi; u∗j
∣∣
a=0

= uj (5)

Example 2.3. The Galilean transformation group
The Galilean transformations correspond to time dependent translations of a refer-
ence frame :

G = {T : (x, t, u) 7→ (x∗, t∗, u∗) = (x + ǫt, t, u + ǫ)}

where ǫ is the translation constant velocity.
T and its inverse function are continuous. The infinitesimals functions of the group
are (ξǫ

x, ξǫ
t , η

ǫ
u) = (t, 0, 1)
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2.2. Symmetry properties of differential equations. The notion of symmetry
is a tool for generating new solutions of differential equations. Let us review the
main aspects of the application of the Lie group theory to differential equations.
Consider a system of lth-order differential equations:

Fλ
(
x, u, u(k1), u(k1,k2), . . . , u(k1...kl)

)
= 0, λ = 1, . . . , q (6)

Denote by u(k1...kp) the vector, the components of which are partial derivatives of

order p, namely, u
(k1...kp)
j =

∂puj

∂xk1
...∂xkp

j = 1, . . . , n and k1, . . . , kp ∈ {1, . . . , m}.

Denote by x = (x1, . . . , xm) the independent variables, u = (u1, . . . , un) the depen-
dent variables, and (xk1

. . . xkp
) a set of elements of the independent variables.

Equation (6) is a subset of X×U (l), a prolongation of the space X×U to the space
of the partial derivatives of u with respect to x up to order l. X × U (l), which is a
smooth manifold, is called the l-th order jet space of X × U . In order to take into
account the derivative terms involved in the differential equation, the action of Gr

on X × U needs to be prolonged to the space of the derivatives of the dependent
variables.
Denote by G̃

(l)
r a r-parameter Lie group of point transformations acting on an open

subset M (l) of the l-th order jet space X × U (l) of the independent variables x,
dependent variables u and the partial derivatives of u with respect to x.
The lth-prolongation operator of Gr is:

L̃
(l)
α = ξαi (x, u)

∂

∂xi
+ ηαj (x, u)

∂

∂uj
+ σ

α,(k1)
j

∂

∂uj (k1)
+ · · · + σ

α,(k1...kl)
j

∂

∂uj(k1...kl)
, (7)

i = 1, . . . ,m; j = 1, . . . , n; α = 1, . . . , r.

The infinitesimal functions ξα
i , ηα

j , σ
α,(k1)
j and σ

α,(k1...ko)
j are given by:

ξαi =
∂φi

∂aα

∣∣∣
a=0

, ηαj =
∂ϕj

∂aα

∣∣∣
a=0

, σ
α,(k1)
j =

Dηαj

Dxk1
−

m∑

i=1

∂uj

∂xi

Dξαi
Dxk1

(8)

σ
α,(k1...ko)
j =

Dσ
α,(k1...ko−1)

j

Dx
ko

−
m∑

i=1

∂ouj

∂xi∂xk1 . . . ∂xko−1

Dξαi
Dxko

, o = 2, . . . , l

where:
D

Dxk
=

∂

∂xk
+

n∑

j=1

∂uj

∂xk

∂

∂uj

Theorem 2.4. The system of lth-order differential equations is invariant under the

group G̃
(l)
r if and only if it satisfies the following infinitesimal invariance criterion:

L̃
(l)
α Fλ

∣∣∣
Fλ=0

= 0, α = 1, . . . , r; λ = 1, . . . , q (9)

3. Lie group of a differential approximation. The symmetry group analysis
of the differential approximation uses the techniques of the Lie group theory applied
to differential equations. The differential approximations involve step size variable
which change under the group action.
The technique of symmetry analysis is not directly applied to the finite difference
schemes. It is based on the differential approximation, which describes approxi-
mately the numerical solution behaviour at a reference point of the mesh. Thus the
concept of differential approximation is a local object, which can not systematically
detect a mesh change. Despite the local behaviour of the symmetry group analysis,
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the invariant method based on the differential approximation has enabled one to
establish interesting properties of symmetry group of finite difference schemes.
The finite difference scheme, which approximates the differential system (6), can be
written as:

Λλ(x, u, h, Tu) = 0, λ = 1, . . . , q (10)

where h = (h1, h2, . . . , hm) denotes the space step vector, and T = (T1, T2, . . . , Tm)
the shift-operator along the axis of the independent variables, defined by:

Ti[u](x1, x2, . . . , xi−1, xi, xi+1, . . . , xm) = u(x1, x2, . . . , xi−1, xi + hi, xi+1, . . . , xm). (11)

Definition 3.1. The differential system:

Pλ
(
x, u, u(k1), . . . , u(k1...kl′ )

)
= Fλ

(
x, u, u(k1), . . . , u(k1...kl)

)

+
s∑

β=1

m∑

i=1

(hi)
lβRλ

i (x, u, u(k1), . . . , u
(k1...kl′λ,i

)
),

λ = 1, . . . , q; l′ = max(λ,i)l
′
λ,i (12)

is called the sth-order differential approximation of the finite difference scheme
(10). In the specific case s = 1, the above system is called the first differential
approximation.

The differential system (3) is obtained from the algebraic system (10) by applying
Taylor series expansion to the components of Tu about the point x = (x1, . . . , xm)
and truncating the expansion to a given finite order.
Denote by G′

r a group of transformations acting on an open subset M ′ of X×U×H
the space of the independent variables, the dependent variables and the step size
variables :

G′
r = {x∗i = φi(x, u, a); u

∗
j = ϕj(x, u, a); h

∗
i = ψi(x, u, h, a), i = 1, . . . ,m; j = 1, . . . , n} (13)

by Lα
′ the basis infinitesimal operator of G′

r:

Lα
′ = ξαi (x, u)

∂

∂xi
+ ηαj (x, u)

∂

∂uj
+ ζαi (x, u, h)

∂

∂hi
, α = 1, . . . , r (14)

where ζαi = ∂ψi
∂aα

∣∣∣
a=0

, α = 1, . . . , r

and by G̃
(l′)
r a group of transformation acting on an open subset M (l′) of the space of

the independent variables, the dependent variables and the step size variables and

the partial derivatives involved in the differential system . The l′
th

-prolongation

operator of G′

r, L̃
(l′)
α can be written as:

L̃
(l′)
α = Lα

′ +
n∑

j=1

l′∑

p=1

σ
α,(k1...kp)
j

∂

∂u
(k1...kp)
j

(15)

Theorem 3.2. The differential approximation (3) is invariant under the group

G̃
(l′)
r if and only if

L̃
(l′)
α Pλ

(
(x, u, u(k1), . . . , u(k1...kl′ )

)∣∣∣
Pλ=0

= 0, α = 1, . . . , r; λ = 1, . . . , q (16)

or
[
L̃

(l)
α Fλ + L̃

(l′)
α

( s∑

β=1

m∑

i=1

(hi)
lβRλ

i

)]∣∣∣
Pλ=0

= 0, α = 1, . . . , r; λ = 1, . . . , q (17)

4. Determination of the infinitesimal functions. The calculation of Lie groups
of differential equations with pencil and paper is tedious and may induce errors. The
size of related equations increases with the number of the symmetry variables, and
the order of the differential equations. A large amount of packages have been cre-
ated using software programs with symbolic manipulations, such as Mathematica,
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MACSYMA, Maple, REDUCE, AXIOM, MuPAD. Schwarz [19] wrote algorithms for
REDUCE and AXIOM computer algebra systems, Vu and Carminati [16] worked on
DESOLVE, a Maple program, Herod [17] and Baumann [18] developed Mathematica

programs.
The authors have implemented a Mathematica package [1], for the determination of
the Lie group of the differential approximation of one dimensional model equations.
Theorems 2.4 and 3.2, respectively give the algorithmic procedure for the determi-
nation of Lie group of any differential system and differential approximation.
The theorem infinitesimal invariance criteria involved the independent variables x,
the dependent ones u, products of the partial derivatives of u with respect to x, the
unknown infinitesimal functions ξα

i , and ηα
j , i = 1, . . . , m; j = 1, . . . , n and their

partial derivatives with respect to x and u.
The partial derivatives of the infinitesimal functions with respect to x and u come
from the coefficients of prolonged Lie algebra vector field (8).
Equations (9) and (17) are simplified by means of the conditions (6) and (3). This
simplification manipulation eliminates some derivatives of u. These equations are
then solved algebrically with respect to the partial derivatives of the dependent
variables, handled as independent variables. Denote by w the vector, the compo-
nents of which are these variables. Since the whole equation holds for all the w

components, each coefficient in front of the products of the w components has to be
zero. This leads to a linear overdetermined system of partial differential equation,
with respect to the infinitesimal functions, called the determining equations of the
Lie group of the related differential system .
The solution of the overdetermined system can be found either by using elementary
methods of the theory of linear partial differential equations or by using a poly-
nomial form for the infinitesimals. The last technique provides a linear system of
algebraic equations with respect to the polynomial coefficients. But it can not find
infinitesimals with transcendal functions.
The resolution of the determining equations yields explicitly the expression of ξα

i ,
ηα

j , α = 1, . . . , r, i = 1, . . . , m, j = 1, . . . , n. Then relations (4) and (5) provide the
calculation of group transformations from the infinitesimal expression.

5. Symmetries of the CBKDV equation. The invariance condition of theorem
2.4, which enables us to obtain the expression of the infinitesimal operators, can be
written as:

L̃
(2)
α F

∣∣∣
ut+αuux+βu2ux+µuxx−suxxx=0

= 0, α = 1, . . . , r; (18)

Equation (18) provides an overdetermined system of linear partial differential equa-
tions for the infinitesimal functions.
Solving these equations, by means of a symbolic calculus tool (Mathematica), pro-
vides the expression of the infinitesimal functions of a two-parameter group:

ξα1 = a0 , ξα2 = b0 , ηα = 0

where a0, b0 are constants.
The two-dimensional Lie algebra of the group G is generated by the following op-
erators:

L1 =
∂

∂x
, L2 =

∂

∂t

which respectively correspond to:
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• the space translation : (x, t, u, ν) 7−→ (x+ x0, t, u, ν);
• the time translation : (x, t, u, ν) 7−→ (x, t+ t0, u, ν);

x0, t0 are constants.

It is important to note that, in the case of particular cases of the CBKDV equation,
when, for instance, some of the coefficients are equal to zero, more symmetries can
be obtained.

6. The specific case of the Burgers equation. Yanenko [4] and Shokin [3]
symmetry analysis is applied to finite difference schemes for solving the Burgers
equation. Thus, the symmetries of the Burgers equation, which are finally broken
by the finite difference discretization, are determined. The techniques exposed in
[3] and [4] enable one to construct differential approximations, which preserve the
symmetries of the original differential system. We call the related finite difference
scheme a semi-invariant scheme, in so far as the invariance condition is weaker
than the one of the other invariance methods, defined as direct invariance methods.
Indeed, the approach in [3] and [4] does not deal with the invariance of the algebraic
equations, which govern the mesh evolution.
The differential equation has provided important characteristics for numerical schemes,
in the study of numerical stability, dissipation and dispersive property. In [3], [4]
and [8], the differential approximation has been revealed as a practical and recevable
tool for symmetry analysis of finite difference scheme.
A comparison is made between the numerical solutions of the Burgers equation for
some standard schemes and the semi-invariant one.

6.1. Symmetries of the Burgers equation. The Burgers equation, which is a
particular case of the CBKDV equation, with α = 1, β = 0, s = 0, µ = −ν, can be
written as:

F(x, t, u, ν, ux, ut, uxx) = ut + u ux − ν uxx = 0 (19)

where ν ≥ 0 is the dynamic viscosity.
Let us denote by G a group of continuous transformations of the Burgers equation
acting on an open subset M of the space the independent variables (x, t), the depen-
dent variable u, and the viscosity ν. The viscosity is taken as a symmetry variable
in order to enable us to take into account variations of the Reynolds number.
The six-dimensional Lie algebra of the group G is generated by the following oper-
ators:

L1 =
∂

∂x
, L2 =

∂

∂t
, L3 = x

∂

∂x
+ 2t

∂

∂t
− u

∂

∂u

L4 = xt
∂

∂x
+ t2

∂

∂t
+ (−ut+ x)

∂

∂u
, L5 = t

∂

∂x
+

∂

∂u
, L6 = −t

∂

∂t
+ u

∂

∂u
+ ν

∂

∂ν
(20)

which respectively correspond to:

• the space translation : (x, t, u, ν) 7−→ (x+ ǫ1, t, u, ν);
• the time translation : (x, t, u, ν) 7−→ (x, t+ ǫ2, u, ν);
• the dilatation : (x, t, u, ν) 7−→ (ǫ3x, ǫ23t, ǫ

−1
3 u, ν);

• the projective transformation : (x, t, u, ν) 7−→
(

x
1−ǫ4t

, t
1−ǫ4t

, xǫ4 + u(1 − ǫ4t), ν
)
;

• the Galilean transformation : (x, t, u, ν) 7−→ (x+ ǫ5 t, t, u+ ǫ5, ν);
• the dilatation : (x, t, u, ν) 7−→ (x, ǫ−1

6 t, ǫ6u, ǫ6ν).

(ǫi)i=1,...,6 are constants.
As expected, the Burgers equation, as a particular form of the CBKDV equation,
admits more symmetries, yieldind a richer Lie algebra.
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6.2. Symmetries of first differential approximations. Denote by h the mesh
size, τ the time step, Nx the number of mesh points, Nt the number of time steps,
and un

i , i ∈ {0, . . . , Nt}, n ∈ {0, . . . , Nx} the discrete approximation of u(ih, nτ).
In order to shorten the size of the finite difference scheme expressions, we use the
following notations introduced by Hildebrand in [20]:

δ(uni ) =

un
i+ 1

2

− un
i− 1

2

h
, µ(uni ) =

un
i+ 1

2

+ un
i− 1

2

2

δ+(uni ) =
uni+1 − uni

h
, δ−(uni ) =

uni − uni−1

h
, Eαuni = uni+α

The Burgers equation can be discretized by means of:

• the FTCS (forward-time and centered-space) scheme:

un+1
i − uni

τ
+
µδ

h

(u2

2

)n
i
− ν

δ2

h2
uni = 0

• the Lax-Wendroff scheme:

un+1
i − uni

τ
+
µδ

h

( u2

2

)n
i
− ν

δ2

h2
uni + Ani = 0

where:

Ani = −
τ

2h2

[
E

1

2 uni δ
+

( u2

2

)n
i
−E−

1

2 uni δ
−

(u2

2

)n
i

]
−
ν2τ

2

[ δ4
h4
uni

]

+
ντ

2h3

[
E

1

2 uni δ
2(E

1

2 uni ) − E−
1

2 uni δ
2(E−

1

2 uni )
]

+
ντ

2

[µδ3

h3

(u2

2

)n
i

]

• the Crank-Nicolson scheme:

un+1
i − uni

τ
+
µδ

h

[(u2

2

)n+1

i
+

(u2

2

)n
i

]
− ν

δ2

h2
[un+1
i + uni ] = 0

The linear stability properties and the related orders of approximation are:

• the FTCS scheme: S ≤ 1
2
, CFL ≤ 1, CFL2 ≤ 2S; O(τ, h2)

• the Lax-Wendroff scheme: S∗ ≤ 1
2
, CFL ≤ 1; O(τ2, h2)

• the Crank-Nicolson scheme: unconditional stability; O(τ2, h2)

where CFL = aτ
h

, S = ντ
h2 and S∗ =

(
ν + ahCFL

2

)
τ
h2 .

Consider ui
n as a function of the time step τ , and of the mesh size h, expand it at

a given order by means of its Taylor series, and neglect the o(τα) and o(hβ) terms,
where α and β depend on the order of the schemes. This yields the differential
representation of the finite difference equation.
The following differential representations are obtained:

• for the FTCS scheme:

ut +
1

2
(u2)x − ν uxx +

τ

2
g2 +

h2

12
(u2)xxx −

νh2

12
uxxxx = 0

• for the Lax-Wendroff scheme:

ut +
1

2
(u2)x − ν uxx +

τ2

6
g3 +

h2

12
(u2)xxx −

νh2

12
uxxxx = 0

• for the Crank-Nicolson scheme:

ut +
1

2
(u2)x − νuxx + τ2

( g3
6

+
1

4
(g21 + ug2)x −

ν

4
(g2)xx

)
+
h2

12
(u2)xxx −

νh2

12
uxxxx = 0

where g1 = −
(
u2

2

)
x

+ νuxx, g2 =
(
− g1u

)
x

+ ν
(
g1

)
xx

, g3 =
(
− g2u− g21

)
x

+ ν
(
g2

)
xx

Denote by G′ the group of transformations of a first differential approximation
acting on an open subset M ′ of the space of the independent variables (x, t) and
the dependent variable u, the step size variables (h, τ) and the viscosity ν.
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The l′
th

-prolongation of G′ can be written as:

L̃
′(l′)
α = ξα1

∂

∂x
+ ξα2

∂

∂t
+ ηα

∂

∂u
+

l′∑

p=1

σ
α,(k1...kp)
j

∂

∂u
(k1...kp)
j

+ ζα1
∂

∂h
+ ζα2

∂

∂τ
+ θα

∂

∂ν
(21)

where l′ has been defined in definition 3.1.
Theorem 3.2 enables us to obtain the necessary and sufficient condition of invari-
ance of the first differential approximation P :

L̃
′(l′)
α P

∣∣∣
P=0

= 0 (22)

Theorem 3.2 is applied to the differential representations of the above schemes.
The resolution of the determining equations of each first differential approximation
yields the 4-parameter group (see [1]):

ξα1 = a + b x, ξα2 = c+ (2b − d) t, ηα = (−b+ d) u (23)

ζα1 = b h, ζα2 = (2b− d) τ , θα = eν

The 4-dimensional Lie algebra of G′ is generated by:

L1 =
∂

∂x
, L2 =

∂

∂t
, L

′
3 = x

∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
+ h

∂

∂h
+ 2τ

∂

∂τ

L
′
4 = −t

∂

∂t
+ u

∂

∂u
− τ

∂

∂τ
+ ν

∂

∂ν
(24)

These operators are respectively related to:

• the space translation : (x, t, u, h, τ, ν) 7−→ (x+ ǫ1, t, u, h, τ, ν);
• the time translation : (x, t, u, h, τ, ν) 7−→ (x, t+ ǫ2, u, h, τ, ν);
• the dilatation : (x, t, u, h, τ, ν) 7−→ (ǫ3x, ǫ23t, ǫ

−1
3 u, ǫ3h, ǫ23τ, ν);

• the dilatation : (x, t, u, h, τ, ν) 7−→ (x, ǫ−1
4 t, ǫ4u, h, ǫ

−1
4 τ, ǫ4ν);

where (ǫi)i=1,...,4 are constants.
The above finite difference equations are preserved by the space translation, the
time translation and both dilatations.
Approximating the Burgers equation by the above finite difference equations results
in the loss of the projective and Galilean transformations.

6.3. A semi-invariant scheme. Two analogous methods provide a direct sym-
metry analysis of finite difference schemes and can lead to the definition of adapted
evolutionary meshes, whose geometrical structure is preserved by the entire group.
The first direct method has been introduced by Dorodnitsyn [11] and is based on
Lie algebra techniques, using the infinitesimal operators. The second method has
been introduced by Olver [9] and is based on the theory of the Cartan moving frame.
The method proposed by Yanenko [4] and Shokin [3] consists of a symmetry study
of the differential approximation. Although the last method is not fully exact, the
numerical results in [3] and [8] has proved its effectiveness.
The scheme proposed below is associated to an uniform orthogonal mesh.
We propose to approximate the Burgers equation by the finite difference scheme:

un+1
i − uni

τ
+

1

h

(
µδ −

µδ3

6

)( u2

2

)n
i
− ν

1

h2

(
δ2 −

δ4

12

)
(uni ) − h

(
Ωn
i+ 1

2

δ+ − Ωn
i− 1

2

δ−
)
uni = 0 (25)

where Ωn
i = Ω(xi, tn, un

i ) is defined next so that the related differential represen-
tation is preserved by the symmetries of the Burgers equation. The scheme has
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second-order accuracy in space and first-order accuracy in time. The derivatives
(u2)x and uxx are approximated by fourth order accuracy difference expressions:

(µδ
h

−
µδ3

6h

)
(uni ) =

(
ux −

h4

30
u5x

)n
i

+ O(h6),
( δ2
h2

−
δ4

12h2

)
(uni ) =

(
uxx −

h4

90
u6x

)n
i

+ O(h6) (26)

The truncation error of the difference scheme (25) can be written as:

ǫ =
τ

2
utt − h2

(
Ωux

)

x
+ O(τ2) + O(h4)

utt is replaced by an expression involving partial derivatives with respect to x, by
using the Burgers equation. Replacing the obtained expression in the truncation
error leads to:

ǫ =
(
Cux

)

x
−
ντ

2

(
uuxx

)

x
−
ντ

2

(u2

2

)
xxx

+
ν2τ

2
uxxxx + O(τ2) + O(h4)

where C = τ
2 u2 − h2Ω.

It is convenient for the calculation of C that the truncation error is reduced to:

ǫ =
(
Cux

)

x
+ O(τ2) + O(h4)

The related finite difference scheme is the following first order accuracy in time
and second order accuracy in space:

un+1
i − uni

τ
+

1

h

(
µδ −

µδ3

6

)( u2

2

)n
i
− ν

1

h2

(
δ2 −

δ4

12

)
(uni ) − h

(
Ωn
i+ 1

2

δ+ − Ωn
i− 1

2

δ−
)
uni

+
ντ

2

(
un
i+ 1

2

µδ2

h2
(un
i+ 1

2

) − un
i− 1

2

µδ2

h2
(un
i− 1

2

)
)
−
ν2τ

2

δ4

h4
uni +

ντ

2

µδ3

h3

(u2

2

)n
i

= 0 (27)

and the differential approximation can be written as:

P(x, t, u, ν, ux, ut, uxx) = ut + u ux − ν uxx + (Cux)x = 0 (28)

The von Neumann stability analysis of scheme (27) under a linearized form provides
the following necessary conditions for S, CFL and Ωτ = Ωτ :

CFL2 − 2S − 2Ωτ ≤ 0, 0 ≤ (4S)/3 − 2S2 + Ωτ ≤ 1/2 (29)

If Ω is sufficiently close to zero, these conditions become then sufficient for the
linear formulation.

6.4. Numerical application. The artificial viscosity term (Cux)x is build so as
to preserve the symmetries of the Burgers equation. C is function of (x, t, u, τ, h).

The Burgers equation is solved numerically for the semi-invariant scheme, and the
classical schemes mentioned above. The numerical solutions are determined in the
frame (F1), with an uniform and orthogonal mesh, in the frame (F2) and (F3),
which are respectively obtained with the Galilean transformation (x, t, u, ν) 7−→
(x + 0.25 t, t, u + 0.25, ν) and a higher translation velocity (x, t, u, ν) 7−→ (x +
0.5 t, t, u+0.5, ν). In (F2) and (F3) the orthogonality of the mesh is not preserved.
The parameters, which control the numerical stability, i.e. the CFL number and the
cell Reynolds number, are preserved by the Galilean transformation. Any change of
the frame does not modify their value. These parameters satisfy the linear stability
conditions, which are sufficient for all the numerical applications realized below.

Figures 1 display the time evolution, of the L2 norm of the error, for the above
numerical schemes, in the different frames. A shock wave type solution is initially
introduced. The CFL and the cell Reynolds number are respectively equal to 4
and 0.5. Non-invariant schemes are sensitive to the change of frame. Thus, the
numerical error of the FTCS scheme oscillates after the application of a translation
with a velocity of 0.25. It increases sharply after a translation with a velocity of 0.5.
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Figure 1. Evolution in time of the L2 norm of the error in (F1), (F2), (F3) when

Reh = 4.0, CFL = 0.5

The linear numerical stability is satisfied, though the discretization parameters of
the CFL and the cell Reynolds numbers are situated on the boundary between the
region where the solutions rapidly blow up and the one where the solutions remain
bounded for certain time steps. The introduction of an additional error due to the
loss of the Galilean transformation leads to the numerical solution blow-up.
We notice the dependence of numerical error, for the semi-invariant scheme, upon
the frame. The change of the frame causes the apparition of slight oscillations.
Figures 2 display the time evolution, of the L2 norm of the error, for the above
numerical schemes, in the same frames. This time, a wavy solution is initially
introduced. The CFL number and the cell Reynolds number are respectively equal
to 0.2 and 0.06. We clearly notice the dependence of numerical error, for the four
numerical scheme, upon the frame.

7. Conclusion. Starting from the general CBKDV equation, we have set methods
that enable us to build new numerical schemes. The application to the Burgers
equation can be seen as a restricted case of the CBKDV equation.
The invariance method based on the differential approximation does not enable us
to build schemes, which are rigorously invariant under the action of the group of the
original equations. Like in the case of classical finite difference methods for aerody-
namics, the method based on the differential approximation breaks the symmetries,
which act on the independent variables, and transform the geometrical properties
of the mesh. This symmetry action is observed for the Galilean transformation and
has been applied for the numerical resolution of the Burgers equation. Under the
action of the Galilean transformation, a non-invariant discretization leads to the
loss of the mesh orthogonality.
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Figure 2. Evolution in time of the L2 norm of the error in (F1), (F2), (F3) when

Reh =, CFL =

If, on the one hand, the method based on the differential approximation would
provide the exact invariance if the higher order terms of the numerical error were
considered, it would yield, on the other hand, a scheme too complicated to be
implemented. In order to preserve rigorously the symmetries, we need to use direct
methods of symmetry analysis of finite difference schemes, which take into account
the transformation of all the finite difference variables and preserve the geometrical
properties of the mesh.

REFERENCES

[1] E. Hoarau, Cl. David, Lie group computation of finite difference schemes, Dy-
namics of Continuous, Discrete and Impulsive Systems (Series A), 14(2007),
180–184.

[2] E. Hoarau, Cl. David, P. Sagaut, T.-H. Lê, Lie group study of finite difference
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