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The aim of this paper is to propose methods that enable us to build new numerical schemes, which preserve the Lie symmetries of the original differential equations. To this purpose, the compound Burgers-Korteweg-de Vries (CBKDV ) equation is considered. The particular case of the Burgers equation is taken as a numerical example, and the resulting semi-invariant scheme is exposed.

1. Introduction. Finite difference equations used to approximate the solutions of a differential equation generally do not respect the symmetries of the original equation, and can lead to inaccurate numerical results. Usually, specific equations are considered, for which the authors build a scheme preserving the symmetries of the original differential equation. Yet, it is more interesting to directly consider a class of differential equations, in order to obtain more general results.

Using the work of Yanenko [START_REF] Yanenko | Group classification of difference schemes for a system of one-dimensional equations of gas dynamics[END_REF] and Shokin [START_REF] Yu | The method of differential approximation[END_REF], who applied the Lie group theory to finite difference equations by means of the differential approximation, in conjunction with the approach of Ames et al. [START_REF] Ames | Optimal numerical algorithms[END_REF], we generalize results developed in [START_REF] Hoarau | Lie group computation of finite difference schemes, Dynamics of Continuous[END_REF], [START_REF] Hoarau | Lie group study of finite difference schemes, Discrete and Continuous Dynamic Systems[END_REF], and expose the invariance condition for a differential approximation of the CBKDV equation. A numerical example, in the particular case of the Burgers equation, is developed.

Notion of symmetry.

2.1. Definitions. Definition 2.1. A r-parameter Lie group is a r-dimensional smooth manifold G r , which has the group properties, such that the group operation of multiplication and inversion are smooth maps.

Especially, a Lie group G r is defined as a group of continuous transformations which act on an open subset of the Euclidean space R k of variables, which change under the action of G r . We presently concentrate on a local group, the transformations of which are close to the identity transformation. Definition 2.2. A r-parameter Lie group G r is a group of point transformations, which acts on X × U , the space of the independent variables and the dependent ones:

Gr = {x * i = φ i (x, u, a); u * j = ϕ j (x, u, a), i = 1, . . . , m; j = 1, . . . , n; a = (a 1 , . . . , ar)} [START_REF] Hoarau | Lie group computation of finite difference schemes, Dynamics of Continuous[END_REF] where x ∈ X ⊂ R m and u ∈ U ⊂ R n .

G r locally satisfies the group axioms: existence of an identity element, associativity, inversibility, closure under the binary composition operation. The transformation corresponding to a zero parameter is the identity transformation.

Expand the transformations by means of a Taylor series at the zero value of the parameter a:

x * i = x i + aα ∂φ i ∂aα a=0 + O(a 2 α ), α = 1, . . . , r u * j = u j + aα ∂ϕ j ∂aα a=0 + O(a 2 α ), α = 1, . . . , r (2) 
The derivatives of φ i and ϕ j with respect to the parameter a α are smooth functions, called infinitesimals of the group G r . Denote by ξ α i and η α j the infinitesimals of G r . The point transformation group G r can be represented by means of the operator L α :

Lα = ξ α i (x, u) ∂ ∂x i + η α j (x, u) ∂ ∂u j , i = 1, . . . , m; j = 1, . . . , n; α = 1, . . . , r (3) 
The operators L α , α = 1, . . . , r are called the infinitesimal operators of G r . {L α , α = 1, . . . , r} represents the set of tangent vectors to the manifold G r , when the zero value is assigned to the parameter a. The set is a basis of the Lie-algebra of the infinitesimal operators of G r , the dimension of which is the same as the one of the Lie group G r . The knowledge of the L α enables us to determine the point transformations of the group G r by solving the equations:

∂x * i ∂aα = ξ α i (x * , u * ), ∂u * j ∂aα = η α j (x * , u * ), i = 1, . . . , m; j = 1, . . . , n; α = 1, . . . , r (4) 
in conjunction with the initial conditions:

x * i a=0 = x i ; u * j a=0 = u j (5) 
Example 2.3. The Galilean transformation group The Galilean transformations correspond to time dependent translations of a reference frame :

G = {T : (x, t, u) → (x * , t * , u * ) = (x + ǫt, t, u + ǫ)}
where ǫ is the translation constant velocity.

T and its inverse function are continuous. The infinitesimals functions of the group are (ξ ǫ x , ξ ǫ t , η ǫ u ) = (t, 0, 1)

TOWARDS NEW SCHEMES: A LIE-GROUP APPROACHOF THE CBKDV AND ITS DERIVED EQUATIONS 3 2.2. Symmetry properties of differential equations. The notion of symmetry is a tool for generating new solutions of differential equations. Let us review the main aspects of the application of the Lie group theory to differential equations. Consider a system of l th -order differential equations:

F λ x, u, u (k 1 ) , u (k 1 ,k 2 ) , . . . , u (k 1 ...k l ) = 0, λ = 1, . . . , q (6) 
Denote by u (k1...kp) the vector, the components of which are partial derivatives of order p, namely, u

(k1...kp) j = ∂ p uj ∂x k 1 .
..∂x kp j = 1, . . . , n and k 1 , . . . , k p ∈ {1, . . . , m}. Denote by x = (x 1 , . . . , x m ) the independent variables, u = (u 1 , . . . , u n ) the dependent variables, and (x k1 . . . x kp ) a set of elements of the independent variables. Equation ( 6) is a subset of X × U (l) , a prolongation of the space X × U to the space of the partial derivatives of u with respect to x up to order l. X × U (l) , which is a smooth manifold, is called the l-th order jet space of X × U . In order to take into account the derivative terms involved in the differential equation, the action of G r on X × U needs to be prolonged to the space of the derivatives of the dependent variables. Denote by G (l) r a r-parameter Lie group of point transformations acting on an open subset M (l) of the l-th order jet space X × U (l) of the independent variables x, dependent variables u and the partial derivatives of u with respect to x. The l th -prolongation operator of G r is:

L (l) α = ξ α i (x, u) ∂ ∂x i + η α j (x, u) ∂ ∂u j + σ α,(k 1 ) j ∂ ∂u j (k 1 ) + • • • + σ α,(k 1 ...k l ) j ∂ ∂u j (k 1 ...k l ) , (7) 
i = 1, . . . , m; j = 1, . . . , n; α = 1, . . . , r.

The infinitesimal functions ξ α i , η α j , σ α,(k1) j and σ α,(k1...ko) j are given by: where:

ξ α i = ∂φ i ∂aα a=0 , η α j = ∂ϕ j ∂aα a=0 , σ α,(k 1 ) j = Dη α j Dx k 1 - m i=1 ∂u j ∂x i Dξ α i Dx k 1 (8) 
D Dx k = ∂ ∂x k + n j=1 ∂u j ∂x k ∂ ∂u j
Theorem 2.4. The system of l th -order differential equations is invariant under the group G (l) r if and only if it satisfies the following infinitesimal invariance criterion:

L (l) α F λ F λ =0 = 0, α = 1, . . . , r; λ = 1, . . . , q (9) 
3. Lie group of a differential approximation. The symmetry group analysis of the differential approximation uses the techniques of the Lie group theory applied to differential equations. The differential approximations involve step size variable which change under the group action. The technique of symmetry analysis is not directly applied to the finite difference schemes. It is based on the differential approximation, which describes approximately the numerical solution behaviour at a reference point of the mesh. Thus the concept of differential approximation is a local object, which can not systematically detect a mesh change. Despite the local behaviour of the symmetry group analysis, the invariant method based on the differential approximation has enabled one to establish interesting properties of symmetry group of finite difference schemes. The finite difference scheme, which approximates the differential system (6), can be written as:

Λ λ (x, u, h, T u) = 0, λ = 1, . . . , q (10) 
where h = (h 1 , h 2 , . . . , h m ) denotes the space step vector, and T = (T 1 , T 2 , . . . , T m ) the shift-operator along the axis of the independent variables, defined by:

T i [u](x 1 , x 2 , . . . , x i-1 , x i , x i+1 , . . . , xm) = u(x 1 , x 2 , . . . , x i-1 , x i + h i , x i+1 , . . . , xm). (11) 
Definition 3.1. The differential system:

P λ x, u, u (k 1 ) , . . . , u (k 1 ...k l ′ ) = F λ x, u, u (k 1 ) , . . . , u (k 1 ...k l ) + s β=1 m i=1 (h i ) l β R λ i (x, u, u (k 1 ) , . . . , u (k 1 ...k l ′ λ,i ) ), λ = 1, . . . , q; l ′ = max (λ,i) l ′ λ,i (12) 
is called the s th -order differential approximation of the finite difference scheme [START_REF] Kim | Invariantization of numerical schemes using moving frames[END_REF]. In the specific case s = 1, the above system is called the first differential approximation.

The differential system (3) is obtained from the algebraic system (10) by applying Taylor series expansion to the components of T u about the point x = (x 1 , . . . , x m ) and truncating the expansion to a given finite order. Denote by G ′ r a group of transformations acting on an open subset M ′ of X × U × H the space of the independent variables, the dependent variables and the step size variables :

G ′ r = {x * i = φ i (x, u, a); u * j = ϕ j (x, u, a); h * i = ψ i (x, u, h, a), i = 1, . . . , m; j = 1, . . . , n} (13) 
by L α ′ the basis infinitesimal operator of G ′ r :

Lα ′ = ξ α i (x, u) ∂ ∂x i + η α j (x, u) ∂ ∂u j + ζ α i (x, u, h) ∂ ∂h i , α = 1, . . . , r (14) 
where

ζ α i = ∂ψ i ∂aα a=0 , α = 1, . . . , r
and by

G (l ′ ) r
a group of transformation acting on an open subset M (l ′ ) of the space of the independent variables, the dependent variables and the step size variables and the partial derivatives involved in the differential system . The l ′ th -prolongation operator of G ′ r , L

(l ′ )
α can be written as:

L (l ′ ) α = Lα ′ + n j=1 l ′ p=1 σ α,(k 1 ...kp) j ∂ ∂u (k 1 ...kp) j (15) 
Theorem 3.2. The differential approximation (3) is invariant under the group G

(l ′ ) r
if and only if

L (l ′ ) α P λ (x, u, u (k 1 ) , . . . , u (k 1 ...k l ′ ) P λ =0 = 0, α = 1, . . . , r; λ = 1, . . . , q (16) 
or

L (l) α F λ + L (l ′ ) α s β=1 m i=1 (h i ) l β R λ i P λ =0 = 0, α = 1, . . . , r; λ = 1, . . . , q (17) 
4. Determination of the infinitesimal functions. The calculation of Lie groups of differential equations with pencil and paper is tedious and may induce errors. The size of related equations increases with the number of the symmetry variables, and the order of the differential equations. A large amount of packages have been created using software programs with symbolic manipulations, such as Mathematica, MACSYMA, Maple, REDUCE, AXIOM, MuPAD. Schwarz [START_REF] Schwarz | A REDUCE package for determining Lie symmetries of ordinary and partial differential equations[END_REF] wrote algorithms for REDUCE and AXIOM computer algebra systems, Vu and Carminati [START_REF] Vu | Symbolic computation and differential equations: Lie symmetries[END_REF] worked on DESOLVE, a Maple program, Herod [START_REF] Herod | MathSym: a Mathematica program for computing Lie symmetries[END_REF] and Baumann [START_REF] Baumann | Lie symmetries of differential equations: A mathematica program to determine Lie symmetries[END_REF] developed Mathematica programs.

The authors have implemented a Mathematica package [START_REF] Hoarau | Lie group computation of finite difference schemes, Dynamics of Continuous[END_REF], for the determination of the Lie group of the differential approximation of one dimensional model equations. Theorems 2.4 and 3.2, respectively give the algorithmic procedure for the determination of Lie group of any differential system and differential approximation. The theorem infinitesimal invariance criteria involved the independent variables x, the dependent ones u, products of the partial derivatives of u with respect to x, the unknown infinitesimal functions ξ α i , and η α j , i = 1, . . . , m; j = 1, . . . , n and their partial derivatives with respect to x and u. The partial derivatives of the infinitesimal functions with respect to x and u come from the coefficients of prolonged Lie algebra vector field [START_REF] Ames | Optimal numerical algorithms[END_REF]. Equations ( 9) and ( 17) are simplified by means of the conditions ( 6) and ( 3). This simplification manipulation eliminates some derivatives of u. These equations are then solved algebrically with respect to the partial derivatives of the dependent variables, handled as independent variables. Denote by w the vector, the components of which are these variables. Since the whole equation holds for all the w components, each coefficient in front of the products of the w components has to be zero. This leads to a linear overdetermined system of partial differential equation, with respect to the infinitesimal functions, called the determining equations of the Lie group of the related differential system . The solution of the overdetermined system can be found either by using elementary methods of the theory of linear partial differential equations or by using a polynomial form for the infinitesimals. The last technique provides a linear system of algebraic equations with respect to the polynomial coefficients. But it can not find infinitesimals with transcendal functions. The resolution of the determining equations yields explicitly the expression of ξ α i , η α j , α = 1, . . . , r, i = 1, . . . , m, j = 1, . . . , n. Then relations (4) and ( 5) provide the calculation of group transformations from the infinitesimal expression.

5. Symmetries of the CBKDV equation. The invariance condition of theorem 2.4, which enables us to obtain the expression of the infinitesimal operators, can be written as:

L(2) α F ut+αuux+βu 2 ux+µuxx-suxxx=0 = 0, α = 1, . . . , r; (18) 
Equation ( 18) provides an overdetermined system of linear partial differential equations for the infinitesimal functions. Solving these equations, by means of a symbolic calculus tool (Mathematica), provides the expression of the infinitesimal functions of a two-parameter group:

ξ α 1 = a 0 , ξ α 2 = b 0 , η α = 0
where a 0 , b 0 are constants. The two-dimensional Lie algebra of the group G is generated by the following operators:

L 1 = ∂ ∂x , L 2 = ∂ ∂t
which respectively correspond to:

• the space translation : (x, t, u, ν) -→ (x + x 0 , t, u, ν);

• the time translation : (x, t, u, ν) -→ (x, t + t 0 , u, ν);

x 0 , t 0 are constants.

It is important to note that, in the case of particular cases of the CBKDV equation, when, for instance, some of the coefficients are equal to zero, more symmetries can be obtained.

6. The specific case of the Burgers equation. Yanenko [START_REF] Yanenko | Group classification of difference schemes for a system of one-dimensional equations of gas dynamics[END_REF] and Shokin [START_REF] Yu | The method of differential approximation[END_REF] symmetry analysis is applied to finite difference schemes for solving the Burgers equation. Thus, the symmetries of the Burgers equation, which are finally broken by the finite difference discretization, are determined. The techniques exposed in [START_REF] Yu | The method of differential approximation[END_REF] and [START_REF] Yanenko | Group classification of difference schemes for a system of one-dimensional equations of gas dynamics[END_REF] enable one to construct differential approximations, which preserve the symmetries of the original differential system. We call the related finite difference scheme a semi-invariant scheme, in so far as the invariance condition is weaker than the one of the other invariance methods, defined as direct invariance methods. Indeed, the approach in [START_REF] Yu | The method of differential approximation[END_REF] and [START_REF] Yanenko | Group classification of difference schemes for a system of one-dimensional equations of gas dynamics[END_REF] does not deal with the invariance of the algebraic equations, which govern the mesh evolution.

The differential equation has provided important characteristics for numerical schemes, in the study of numerical stability, dissipation and dispersive property. In [START_REF] Yu | The method of differential approximation[END_REF], [START_REF] Yanenko | Group classification of difference schemes for a system of one-dimensional equations of gas dynamics[END_REF] and [START_REF] Ames | Optimal numerical algorithms[END_REF], the differential approximation has been revealed as a practical and recevable tool for symmetry analysis of finite difference scheme.

A comparison is made between the numerical solutions of the Burgers equation for some standard schemes and the semi-invariant one.

6.1. Symmetries of the Burgers equation. The Burgers equation, which is a particular case of the CBKDV equation, with α = 1, β = 0, s = 0, µ = -ν, can be written as:

F (x, t, u, ν, ux, ut, uxx) = ut + u ux -ν uxx = 0 ( 19 
)
where ν ≥ 0 is the dynamic viscosity.

Let us denote by G a group of continuous transformations of the Burgers equation acting on an open subset M of the space the independent variables (x, t), the dependent variable u, and the viscosity ν. The viscosity is taken as a symmetry variable in order to enable us to take into account variations of the Reynolds number. The six-dimensional Lie algebra of the group G is generated by the following operators:

L 1 = ∂ ∂x , L 2 = ∂ ∂t , L 3 = x ∂ ∂x + 2t ∂ ∂t -u ∂ ∂u L 4 = xt ∂ ∂x + t 2 ∂ ∂t + (-ut + x) ∂ ∂u , L 5 = t ∂ ∂x + ∂ ∂u , L 6 = -t ∂ ∂t + u ∂ ∂u + ν ∂ ∂ν (20) 
which respectively correspond to:

• the space translation : (x, t, u, ν) -→ (x + ǫ 1 , t, u, ν);

• the time translation : (x, t, u, ν) -→ (x, t + ǫ 2 , u, ν);

• the dilatation : (x, t, u, ν) -→ (ǫ 3 x, ǫ 2 3 t, ǫ -1 3 u, ν);

• the projective transformation : (x, t, u, ν) -→

x 1-ǫ 4 t , t 1-ǫ 4 t , xǫ 4 + u(1 -ǫ 4 t), ν ; • the Galilean transformation : (x, t, u, ν) -→ (x + ǫ 5 t, t, u + ǫ 5 , ν); • the dilatation : (x, t, u, ν) -→ (x, ǫ -1 6 t, ǫ 6 u, ǫ 6 ν).

(ǫ i ) i=1,...,6 are constants. As expected, the Burgers equation, as a particular form of the CBKDV equation, admits more symmetries, yieldind a richer Lie algebra.

Symmetries of first differential approximations.

Denote by h the mesh size, τ the time step, N x the number of mesh points, N t the number of time steps, and u n i , i ∈ {0, . . . , N t }, n ∈ {0, . . . , N x } the discrete approximation of u(ih, nτ ). In order to shorten the size of the finite difference scheme expressions, we use the following notations introduced by Hildebrand in [START_REF] Hildebrand | Introduction to Numerical Analysis[END_REF]:

δ(u n i ) = u n i+ 1 2 -u n i-1 2 h , µ(u n i ) = u n i+ 1 2 + u n i-1 2 2 δ + (u n i ) = u n i+1 -u n i h , δ -(u n i ) = u n i -u n i-1 h , E α u n i = u n i+α
The Burgers equation can be discretized by means of:

• the FTCS (forward-time and centered-space) scheme:

u n+1 i -u n i τ + µδ h u 2 2 n i -ν δ 2 h 2 u n i = 0
• the Lax-Wendroff scheme:

u n+1 i -u n i τ + µδ h u 2 2 n i -ν δ 2 h 2 u n i + A n i = 0
where:

A n i = - τ 2h 2 E 1 2 u n i δ + u 2 2 n i -E -1 2 u n i δ -u 2 2 n i - ν 2 τ 2 δ 4 h 4 u n i + ντ 2h 3 E 1 2 u n i δ 2 (E 1 2 u n i ) -E -1 2 u n i δ 2 (E -1 2 u n i ) + ντ 2 µδ 3 h 3 u 2 2 n i
• the Crank-Nicolson scheme:

u n+1 i -u n i τ + µδ h u 2 2 n+1 i + u 2 2 n i -ν δ 2 h 2 [u n+1 i + u n i ] = 0
The linear stability properties and the related orders of approximation are:

• the FTCS scheme: S ≤ 1 2 , CF L ≤ 1, CF L 2 ≤ 2S; O(τ, h 2 )
• the Lax-Wendroff scheme:

S * ≤ 1 2 , CF L ≤ 1; O(τ 2 , h 2 )
• the Crank-Nicolson scheme: unconditional stability; O(τ 2 , h 2 ) where CF L = aτ h , S = ντ h 2 and S * = ν + ahCF L 2 τ h 2 . Consider u i n as a function of the time step τ , and of the mesh size h, expand it at a given order by means of its Taylor series, and neglect the o(τ α ) and o(h β ) terms, where α and β depend on the order of the schemes. This yields the differential representation of the finite difference equation. The following differential representations are obtained:

• for the FTCS scheme:

ut + 1 2 (u 2 )x -ν uxx + τ 2 g 2 + h 2 12 (u 2 )xxx - νh 2 12 uxxxx = 0
• for the Lax-Wendroff scheme:

ut + 1 2 (u 2 )x -ν uxx + τ 2 6 g 3 + h 2 12 (u 2 )xxx - νh 2 12 uxxxx = 0
• for the Crank-Nicolson scheme:

ut + 1 2 (u 2 )x -νuxx + τ 2 g 3 6 + 1 4 (g 2 1 + ug 2 )x - ν 4 (g 2 )xx + h 2 12 (u 2 )xxx - νh 2 12 uxxxx = 0
where

g 1 = -u 2 2 x + νuxx, g 2 = -g 1 u x + ν g 1 xx , g 3 = -g 2 u -g 2 1 x + ν g 2 xx
Denote by G ′ the group of transformations of a first differential approximation acting on an open subset M ′ of the space of the independent variables (x, t) and the dependent variable u, the step size variables (h, τ ) and the viscosity ν.

The l ′ th -prolongation of G ′ can be written as:

L ′(l ′ ) α = ξ α 1 ∂ ∂x + ξ α 2 ∂ ∂t + η α ∂ ∂u + l ′ p=1 σ α,(k 1 ...kp) j ∂ ∂u (k 1 ...kp) j + ζ α 1 ∂ ∂h + ζ α 2 ∂ ∂τ + θ α ∂ ∂ν (21) 
where l ′ has been defined in definition 3.1. Theorem 3.2 enables us to obtain the necessary and sufficient condition of invariance of the first differential approximation P:

L ′(l ′ ) α P P=0 = 0 (22) 
Theorem 3.2 is applied to the differential representations of the above schemes.

The resolution of the determining equations of each first differential approximation yields the 4-parameter group (see [START_REF] Hoarau | Lie group computation of finite difference schemes, Dynamics of Continuous[END_REF]):

ξ α 1 = a + b x, ξ α 2 = c + (2b -d) t, η α = (-b + d) u (23) 
ζ α 1 = b h, ζ α 2 = (2b -d) τ , θ α = eν
The 4-dimensional Lie algebra of G ′ is generated by:

L 1 = ∂ ∂x , L 2 = ∂ ∂t , L ′ 3 = x ∂ ∂x + 2t ∂ ∂t -u ∂ ∂u + h ∂ ∂h + 2τ ∂ ∂τ L ′ 4 = -t ∂ ∂t + u ∂ ∂u -τ ∂ ∂τ + ν ∂ ∂ν (24) 
These operators are respectively related to:

• the space translation : (

• the time translation : (

• the dilatation : (

-→ (ǫ 3 x, ǫ 2 3 t, ǫ -1 3 u, ǫ 3 h, ǫ x, t, u, h, τ, ν) 
• the dilatation : (x, t, u, h, τ, ν) -→ (x, ǫ -1

4 t, ǫ 4 u, h, ǫ -1 4 τ, ǫ 4 ν);
where (ǫ i ) i=1,...,4 are constants.

The above finite difference equations are preserved by the space translation, the time translation and both dilatations. Approximating the Burgers equation by the above finite difference equations results in the loss of the projective and Galilean transformations.

6.3.

A semi-invariant scheme. Two analogous methods provide a direct symmetry analysis of finite difference schemes and can lead to the definition of adapted evolutionary meshes, whose geometrical structure is preserved by the entire group. The first direct method has been introduced by Dorodnitsyn [START_REF] Dorodnitsyn | Transformation groups in the net spaces[END_REF] and is based on Lie algebra techniques, using the infinitesimal operators. The second method has been introduced by Olver [START_REF] Olver | Geometric foundations of numerical algorithms and symmetry[END_REF] and is based on the theory of the Cartan moving frame. The method proposed by Yanenko [START_REF] Yanenko | Group classification of difference schemes for a system of one-dimensional equations of gas dynamics[END_REF] and Shokin [START_REF] Yu | The method of differential approximation[END_REF] consists of a symmetry study of the differential approximation. Although the last method is not fully exact, the numerical results in [START_REF] Yu | The method of differential approximation[END_REF] and [START_REF] Ames | Optimal numerical algorithms[END_REF] has proved its effectiveness. The scheme proposed below is associated to an uniform orthogonal mesh. We propose to approximate the Burgers equation by the finite difference scheme:

u n+1 i -u n i τ + 1 h µδ - µδ 3 6 u 2 2 n i -ν 1 h 2 δ 2 - δ 4 12 (u n i ) -h Ω n i+ 1 2 δ + -Ω n i-1 2 δ -u n i = 0 (25)
where Ω n i = Ω(x i , t n , u n i ) is defined next so that the related differential representation is preserved by the symmetries of the Burgers equation. The scheme has second-order accuracy in space and first-order accuracy in time. The derivatives (u 2 ) x and u xx are approximated by fourth order accuracy difference expressions:

µδ h - µδ 3 6h (u n i ) = ux - h 4 30 u 5x n i + O(h 6 ), δ 2 h 2 - δ 4 12h 2 (u n i ) = uxx - h 4 90 u 6x n i + O(h 6 ) (26)
The truncation error of the difference scheme (25) can be written as:

ǫ = τ 2 utt -h 2 Ωux x + O(τ 2 ) + O(h 4 )
u tt is replaced by an expression involving partial derivatives with respect to x, by using the Burgers equation. Replacing the obtained expression in the truncation error leads to:

ǫ = Cux x - ντ 2 uuxx x - ντ 2 
u 2 2 xxx + ν 2 τ 2 uxxxx + O(τ 2 ) + O(h 4 )
where C = τ 2 u 2h 2 Ω. It is convenient for the calculation of C that the truncation error is reduced to:

ǫ = Cux x + O(τ 2 ) + O(h 4 )
The related finite difference scheme is the following first order accuracy in time and second order accuracy in space:

u n+1 i -u n i τ + 1 h µδ - µδ 3 6 u 2 2 n i -ν 1 h 2 δ 2 - δ 4 12 (u n i ) -h Ω n i+ 1 2 δ + -Ω n i-1 2 δ -u n i + ντ 2 u n i+ 1 2 µδ 2 h 2 (u n i+ 1 2 ) -u n i-1 2 µδ 2 h 2 (u n i-1 2 ) - ν 2 τ 2 δ 4 h 4 u n i + ντ 2 µδ 3 h 3 u 2 2 n i = 0 ( 27 
)
and the differential approximation can be written as:

P(x, t, u, ν, ux, ut, uxx) = ut + u ux -ν uxx + (Cux)x = 0 (28) 
The von Neumann stability analysis of scheme ( 27) under a linearized form provides the following necessary conditions for S, CF L and Ω τ = Ωτ :

CF L 2 -2S -2Ωτ ≤ 0, 0 ≤ (4S)/3 -2S 2 + Ωτ ≤ 1/2 ( 29 
)
If Ω is sufficiently close to zero, these conditions become then sufficient for the linear formulation.

6.4. Numerical application. The artificial viscosity term (Cu x ) x is build so as to preserve the symmetries of the Burgers equation. C is function of (x, t, u, τ, h).

The Burgers equation is solved numerically for the semi-invariant scheme, and the classical schemes mentioned above. The numerical solutions are determined in the frame (F 1), with an uniform and orthogonal mesh, in the frame (F 2) and (F 3), which are respectively obtained with the Galilean transformation (x, t, u, ν) -→ (x + 0.25 t, t, u + 0.25, ν) and a higher translation velocity (x, t, u, ν) -→ (x + 0.5 t, t, u + 0.5, ν). In (F 2) and (F 3) the orthogonality of the mesh is not preserved. The parameters, which control the numerical stability, i.e. the CFL number and the cell Reynolds number, are preserved by the Galilean transformation. Any change of the frame does not modify their value. These parameters satisfy the linear stability conditions, which are sufficient for all the numerical applications realized below. The linear numerical stability is satisfied, though the discretization parameters of the CFL and the cell Reynolds numbers are situated on the boundary between the region where the solutions rapidly blow up and the one where the solutions remain bounded for certain time steps. The introduction of an additional error due to the loss of the Galilean transformation leads to the numerical solution blow-up. We notice the dependence of numerical error, for the semi-invariant scheme, upon the frame. The change of the frame causes the apparition of slight oscillations. Figures 2 display the time evolution, of the L 2 norm of the error, for the above numerical schemes, in the same frames. This time, a wavy solution is initially introduced. The CFL number and the cell Reynolds number are respectively equal to 0.2 and 0.06. We clearly notice the dependence of numerical error, for the four numerical scheme, upon the frame.

Conclusion.

Starting from the general CBKDV equation, we have set methods that enable us to build new numerical schemes. The application to the Burgers equation can be seen as a restricted case of the CBKDV equation. The invariance method based on the differential approximation does not enable us to build schemes, which are rigorously invariant under the action of the group of the original equations. Like in the case of classical finite difference methods for aerodynamics, the method based on the differential approximation breaks the symmetries, which act on the independent variables, and transform the geometrical properties of the mesh. This symmetry action is observed for the Galilean transformation and has been applied for the numerical resolution of the Burgers equation. Under the action of the Galilean transformation, a non-invariant discretization leads to the loss of the mesh orthogonality. If, on the one hand, the method based on the differential approximation would provide the exact invariance if the higher order terms of the numerical error were considered, it would yield, on the other hand, a scheme too complicated to be implemented. In order to preserve rigorously the symmetries, we need to use direct methods of symmetry analysis of finite difference schemes, which take into account the transformation of all the finite difference variables and preserve the geometrical properties of the mesh.

∂

  o u j ∂x i ∂x k 1 . . . ∂x k o-1 Dξ α i Dx ko , o = 2, . . . , l

Figures 1 Figure 1 .

 11 Figures 1 display the time evolution, of the L 2 norm of the error, for the above numerical schemes, in the different frames. A shock wave type solution is initially introduced. The CFL and the cell Reynolds number are respectively equal to 4 and 0.5. Non-invariant schemes are sensitive to the change of frame. Thus, the numerical error of the FTCS scheme oscillates after the application of a translation with a velocity of 0.25. It increases sharply after a translation with a velocity of 0.5.
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 2 Figure 2. Evolution in time of the L 2 norm of the error in (F1), (F2), (F3) when Re h =, CF L =
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