N

N

The Weakest Failure Detector for Set-Agreement in
Message-Passing Networks

Carole Delporte-Gallet, Hugues Fauconnier, Andreas Tielmann

» To cite this version:

Carole Delporte-Gallet, Hugues Fauconnier, Andreas Tielmann. The Weakest Failure Detector for
Set-Agreement in Message-Passing Networks. 2008. hal-00260000

HAL Id: hal-00260000
https://hal.science/hal-00260000

Preprint submitted on 2 Mar 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00260000
https://hal.archives-ouvertes.fr

The Weakest Failure Detector for Set-Agreement in
Message-Passing Networks

Carole Delporte-Gallet, Hugues Fauconnier, Andreas Tielmann*
LIAFA University of Paris 7 - Denis Diderot

Technical Report

February 28, 2008

Abstract

Reaching agreement is one of the most fundamental problems in
distributed computing. In the set-agreement problem, n processes try
to agree on at most n — 1 different values. This paper determines the
weakest failure detector for set-agreement in message-passing networks
where processes may fail by crashing. The failure detector is called
weak—FS and it returns at every invocation “go” or “wait”. It ensures
that (1) there is at least one process where the output is always “wait”,
and (2) if there is only one correct process, then the output at this
process is eventually “go”.

Keywords: set-agreement, failure detectors

1 Introduction

In the set-agreement problem [4], n processes try to agree on at most n — 1
different values. It has been shown that set-agreement is impossible to be
implemented wait-free in purely asynchronous systems where processes can
fail by crashing [12, 1, 10]. This has lead to many attempts to find the
weakest failure detector! for set-agreement [11, 9, 5]. Recently, Zieliniski
proved that anti-Q2 — a failure detector that outputs id’s of processes and

*Work was supported by grants from Région Ile-de-France.
Yi.e. a primitive that enriches the system and provides the processes with information
about failures that occure during an execution [3].



the id of at least one correct process only finitely many times — is the weakest
failure detector for set-agreement in systems with hardware registers [13].
Furthermore, Zielinski conjectured that failure detector ¥ [6] — the weakest
failure detector to simulate registers — is both, sufficient and necessary to
implement set-agreement. However, Delporte et al. have shown that while
¥ is sufficient, it is not necessary [7]. They present a failure detector o that
is strictly weaker than > and still sufficient to implement set-agreement.

In this paper, we present failure detector weak—FS and show that it is
the weakest failure detector for set-agreement in message passing systems
with any number of faults. It returns at every invocation at every process
“go” or “wait” and it ensures that (1) there is at least one process where the
output is always “wait”, and (2) if there is only one correct process, then
the output at this process is eventually “go” forever.

To prove our result, we first define our model in Section 2 and then
follow the approach of Chandra et al. [2] and first show that weak—FS is
sufficient for set-agreement in Section 3 and then show that it is also nec-
essary in Section 4. One remarkable point about our proof is its simplicity.
Especially compared to the rather large and involved proof of Zielinski [13]
in shared memory systems, it shows that — contrary to a wide belief — results
in message passing systems are sometimes easier to prove.

2 Model and definitions

2.1 Processes and failure detectors

Our system consists of a set II = {p1,...,pn} of n > 2 processes. These
processes communicate totally asynchronously by message passing over a
fully connected network with reliable links and any number of processes may
fail by prematurely halting, i.e. they crash. It is the system of Chandra et
al. [2] which we shortly recall here. For easier reasoning about processes,
we assume that there is a global clock 7. Nevertheless, this clock cannot be
accessed by the processes.

We model the crash failures by the concept of failure patterns which we
denote by F. A failure pattern is a function from time 7 to 2" that specifies
for every time t which processes have crashed until time t. A process p; that
does not crash in a failure pattern F is said to be correct (p; € correct(F)).
Processes that are not correct are called faulty. An environment £ is a set
of possible failure patterns. We allow every environment, i.e. any number
of processes may crash.

A failure detector D is a distributed oracle that provides the processes



with information about failures. For every failure pattern F € £, D(F) is
a set of failure detector histories that are allowed for F. A failure detector
history H is a function from II x 7 to Rp, the failure detector range of D,
i.e. the set of possible outputs.

Following Chandra et al. [2], we define a weakest failure detector for
a certain problem in a given environment to be a failure detector that is
sufficient to implement the problem in this environment and that is also
necessary to implement the problem, i.e. any other failure detector that is
sufficient can simulate it in this environment.

We model an algorithm A as a set of n deterministic automata, one for
every process in the system. A run of A proceeds in steps and at every time
t at most one process executes a step. We assume only fair runs, i.e. every
correct process executes infinitely many steps. A step consists of receiving
a (possibly empty) message, reading a value of a failure detector, changing
the state accordingly, and outputting a (possibly empty) message.

2.2 Set-Agreement

The problem of set-agreement consists for every process p; with some pro-
posal value v; to decide a value and to satisfy the following three properties:

Agreement: At most n — 1 different values are decided.

Validity: Every value that has been decided must have been a proposal
value of some process.

Termination: Eventually, every correct process decides a value.

2.3 Failure detector weak—FS

We now define failure detector weak—FS (see [8] for a defintion of failure
detector FS). The failure detector outputs one of the two values “wait”
and “go”. The intuition behind this is that if the output at some process is
“wait”, then there is another process alive, i.e. it makes sense to wait for
messages of other processes. To be usefull for set-agreement, we demand
that

e at least one process has always output “wait” (nevertheless, it might
crash), and

e if only one process is correct, then its failure detector output should
eventually be “go” forever.



By convention, we assume that if a process has crashed, its failure detector
output is “wait” forever. More formally:

Definition 1. The range of weak—FS is { “wait”, “go”}. For every en-
vironment &, for every failure pattern F € &£, and every history H €
weak—FS(F):

Ip; € IL,Vt, H(p;i, t) # “go” (1)
A correct(F) = {p;} = 3t,Vt' > t, H(p;, t') = “go” (2)

3 The sufficient part

To show that failure detector weak—FS is sufficient to solve set-agreement
in our model, we give an algorithm that implements set-agreement with
weak—FS in Figure 1. For simplicity of the presentation, we assume that a
process does not react on interrupts (of a new message or a failure detector
change) while it processes another interrupt.

To ensure that at most n — 1 proposal values are decided, every process
tries to agree with another process on one value. To achieve this, initially
some processes send their values. To prevent a circular value exchange, i.e.
a situation where the proposal values are simply permuted, the values are
only sent to processes with a higher id. This means, that process p; sends its
value to everybody, process p; to all processes from p;1+1 to p,, and process
P, to nobody.

If some process receives one of these values, it sends a special message
decided with its decision value and decides. In this way, as long as there is
another correct process, every correct process decides either due to one of
the messages that was initially sent or, if it does not receive such a message
(e.g., because it has a lower id than the other correct processes), it decides
due to a decided messages of one of this other processes. Note that it may be
possible that a process receives its initial value back in a decided message,
but if so, the sender of the decided message does not decide its own proposal
value.

To deal with crashes, we only execute these steps if the output of our
failure detector is “wait”. But in the case of only one correct process in
the system, we do not want to wait for messages of other processes forever.
Therefore, if the output of the failure detector changes to “go” — and by
its property (2) it will in the case of only one correct process eventually
do so — we simply decide our own proposal value. We can do this without
violating agreement, because by property (1) there will always be one process



that does not decide due to a “go” output, and as we have argued before,
processes that decide due to a message exchange eliminate at least one value.

Algorithm for process p;:
1 to propose(v):

2 initially:

3 send (v) to all p; with j > ¢;

1+ on receive (v') or (decided,v') do:

5 send (decided,v') to all;

6 decide v'; halt; (x decision D1 )
7 on weak—FS = “go” do:

8 send (decided, v) to all;

9 decide v; halt; (% decision D2 x)

Figure 1: Implementing set-agreement with weak—FS.

Theorem 1. The algorithm in Figure 1 implements set-agreement in every
environment &.

Proof. We first prove the agreement property of set-agreement. We assume
a run where all processes decide and every processes p; has a distinct initial
value v;. Without this assumption, agreement is trivially met.

By property (1) of the definition of weak—FS, not all processes can have
decided by decision D2. This means, that it is sufficient to show that if at
least one process decides by D1, then at most n — 1 values are decided.

If some process p; decides by D1, then it either decides due to a message
(decided,v") of another process or due to a message (v') sent initially by
another process. We distinguish between the two cases where p; decides v,
and where it does not.

Case 1: The only possibility that the decided value v’ is equal to p;’s value
v; is that a process p; with j > 7 has received p;’s initial message and
decided v;. Therefore, p; and p; decide the same value and at most
n — 1 values are decided.

Case 2: If v/ is not equal to v;, then the only possibility that v; is decided
is if a process pp with k& > i has received v; from p;. If so, then in an



analogous manner, the only possibility that vy is decided is if another
process with a higher id has received it. Since process p, does not
send its value to anybody, this recursion eventually stops and at least
one value is never decided.

Validity is trivially satisfied, since only proposal values are sent.

To show termination, we again distinguish two cases: the case when
there exist at least two correct processes in a run with a failure pattern
F € &, and when this is not the case.

Case 1: If there are at least 2 correct processes, then eventually, the one
with the higher id receives the message of the other one, sends the
decided message and decides. All processes that have not yet decided
eventually receive this decided message and also decide.

Case 2: If there is only 1 correct process, then by property (2) of weak—FS,
this process eventually decides by decision D2.

O]

4 The necessary part

Following the approach of Chandra et al. [2], we show that failure detector
weak—FS is necessary to solve set-agreement in our model by providing
an algorithm that emulates the output of weak—FS given any algorithm A
and failure detector D, such that A using D solves set-agreement. Figure 2
presents such an algorithm.

The idea for the emulation of weak—FS is that if all messages that are
sent by algorithm A get delayed for a very long time, the safety properties
of set-agreement still have to hold, while for the case that only one process
is correct, even the liveness properties have to hold, i.e. the algorithm has
to terminate. Therefore, every process executes A with D, omits to send
any messages to other processes that are generated by algorithm A, and
outputs “wait” until A terminates. In this way, property (1) of weak—FS is
always fulfilled, because otherwise the executions at all processes would have
terminated without ever receiving a message and therefore agreement could
not have been guaranteed. But nevertheless, if there is only one correct
process p;, the algorithm A executed at p; has to terminate and property
(2) of weak—FS is also guaranteed.

The output of our emulation of weak—FS is provided through a special
variable output.



Algorithm for process p;:

1 output := “wait”;
2 execute A using D with value ¢, but omit sending messages to others;
3 if A has terminated, then output := “go”;

Figure 2: Implementing weak—FS with an algorithm A and a failure detec-
tor D that solve set-agreement.

Theorem 2. The algorithm in Figure 2 implements weak—FS in every
environment &.

Proof. Assume there exists a run r, where the algorithm in Figure 2 does not
fulfill property (1) of weak—FS with a failure pattern F € £. This means,
that in run r, for every process, there exists a time when output = “go”,
i.e. the execution of algorithm A has terminated at all processes without
receiving any message from other processes at all.

Let ¢ be the time when A has terminated at all processes in run r. Then,
it is possible to construct a valid run 7’ of A with the same failure pattern F,
where all messages to other processes get delayed to a time after ¢, and all
processes have terminated A at time t. Since A fulfills the validity property
of set-agreement and failure detector D is not allowed to output information
about the state of other processes, the decision value at every process p; can
only be its proposal value 7. A contradiction to the agreement property of
set-agreement! Therefore, property (1) of weak—FS is always satisfied.

If correct(F) = {p;} for a failure pattern F € &, then it is possible to
construct a run where no faulty process is able to send a message and there-
fore eventually, by the termination property of set-agreement, algorithm A
has to terminate at p; and the output changes to “go”. Therefore, property
(2) is also satisfied. O

Corollary 1. weak—FS is the weakest failure detector for set-agreement in
message passing systems in all environments.

Proof. We have shown in Theorem 1 that weak—FS is sufficient and in
Theorem 2 that it is necessary for set-agreement in all environments. O



5

Summary

We have found the weakest failure detector for set-agreement in message-
passing networks where processes may fail by crashing. The failure detector
is called weak—FS and it returns at every invocation “go” or “wait”. It
ensures that (1) there is at least one process where the output is always
“wait”, and (2) if there is only one correct process, then the output at this
process is eventually “go” forever.

References

1]

Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result
for t-resilient asynchronous computations. In STOC, pages 91-100,
1993.

Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The
weakest failure detector for solving consensus. J. ACM, 43(4):685-722,
1996.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM, 43(2):225-267,
1996.

Soma Chaudhuri. More choices allow more faults: Set consensus prob-
lems in totally asynchronous systems. Inf. Comput., 105(1):132-158,
July 1993.

Wei Chen, Jialin Zhang, Yu Chen, and Xuezheng Liu. Weakening failure
detectors for k -set agreement via the partition approach. In DISC,
pages 123-138, 2007.

C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Shared memory
vs message passing, 2003.

Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui.
Sharing information is harder than agreeing. Technical report, LIAFA
Paris 7 and EPFL, 2008.

Rachid Guerraoui. Non-blocking atomic commit in asynchronous
distributed systems with failure detectors. Distributed Computing,
15(1):17-25, 2002.



[9]

Rachid Guerraoui, Maurice Herlihy, Petr Kouznetsov, Nancy Lynch,
and Calvin Newport. On the weakest failure detector ever. In PODC
'07: Proceedings of the twenty-sizth annual ACM symposium on Prin-
ciples of distributed computing, pages 235243, New York, NY, USA,
2007. ACM.

Maurice Herlihy and Nir Shavit. The topological structure of asyn-
chronous computability. Journal of the ACM, 46(6):858-923, 1999.

Michel Raynal and Corentin Travers. In search of the holy grail: Look-
ing for the weakest failure detector for wait-free set agreement. In
OPODIS, pages 3—19, 2006.

Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is
impossible: The topology of public knowledge. SIAM J. Comput.,
29(5):1449-1483, 2000.

Piotr Zieliniski. Anti-€: the weakest failure detector for set-agreement.
Technical report, UCAM-CL-TR-694, 2007.



