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A relaxation method for smooth tomographic reconstruction of binary

axially symmetric objects

M. Bergounioux 1 A. Srour 2

Abstract

In this paper we study a minimization problem which appears in tomographic
reconstruction. The problem is known to be ill posed. The object to reconstruct
is assumed to be binary so that the intensity function belongs to {0, 1}. Therefore
the feasible set is not convex and its interior is empty for most usual topologies. We
propose a relaxed formulation of the problem . We prove existence of solutions and
give optimality conditions.

Keywords: Variational method, Relaxation, Lagrange multipliers, Mathematical pro-
gramming method.

1 Introduction

In this paper we study a minimization problem arising in tomographic reconstruction as
described in [1]. We have to reconstruct a radially symmetric object with a single snapshot.
In addition the image is assumed to be binary. This corresponds to the material density of
the object to reconstruct (there is material or not). The problem is modelled in a standard
way as follows:

(P)







minFo(u) :=
1

2
‖Hu − g‖2

L2(Ω) + λJ(u),

u ∈ D .

where

1. Ω is a bounded open domain in R
2 with a smooth boundary,

2. D = {u ∈ BV (Ω) : u(u − 1) = 0 a.e in Ω}, where BV (Ω) denotes the functions of
bounded variation space defined by

BV (Ω) =
{
u ∈ L1(Ω) : J(u) < ∞

}
,

with

J(u) = sup

{∫

Ω
u(x)div(φ(x))dx : φ ∈ C1

c (Ω, R2), ‖φ‖∞ ≤ 1

}

.

Here C1
c (Ω, R2) denotes the space of the C1 functions with compact support in Ω

with value in R
2.
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Denis Poisson -UMR CNRS 6083, Parc de Grandmont, 37200 Tours. France. E-mail:

ali.srour@univ-tours.fr



1 INTRODUCTION 2

3. H := BHo where B is a linear blur (convolution) operator and Ho is the (linear)
tomographic projection operator that can be written as in [2] :

(Hou)(y, z) = 2

∫ +∞

|y|
u(r, z)

r
√

r2 − y2
dr, (1.1)

for almost all y, z ∈ R.

4. the observed image is g ∈ L2(Ω).

In the sequel, we shall denote ||.|| the L2(Ω)-norm. In the same way, (., .)2 denotes
the L2(Ω)- scalar product, (., .)H1 denotes the H1(Ω)- scalar product and 〈., .〉V ′

,V , the

duality product between V
′

and V , where V is a Banach space and V
′

is the dual space
of V .

Similar problems have been studied by Aubert and Kornprobst in [5], Acar and Vogel
in [3], Vogel and Oman in [13] and Chambolle, Caselles and Alter in [4] . In the case
of convex constraints, we may quote papers by E. Casas, K.Kunisch and C.Pola [9] and
Aubert and Vese [6]. Here, the main difficulty comes from the fact that the feasible domain
D is not convex and it’s interior is empty for most usual topologies. In addition, the total
variation J(u) of a function u in BV (Ω) is not Fréchet differentiable.

Abraham, Bergounioux and Trélat have also considered problem (P) in [2]. They
proved the existence of (at least) a solution of (P) in BV (Ω) and gave first order optimality
conditions. They use a penalization technique to deal with the binary constraint and
considered

(Pε)







min
1

2
‖Hu − g‖2 + λJ(u) +

1

2ε
‖u2 − u‖2,

u ∈ BV (Ω).

where ε > 0. However the optimality system they obtained was not suitable for numerical
purposes and they rather solved the penalized system. In addition, the proposed numer-
ical algorithm is not very performant. The penalization term is difficult to handle and
parameter tuning is quite delicate.

In this paper we look for different strategies to study problem (P) from a numerical
point of view. In a first step we want to avoid the difficulties mentioned before, namely the
domain non convexity and the cost functional lack of differentiability. We could consider
a problem where the total variation J(u) is replaced by the L2(Ω)-norm of the gradient of
u ∈ H1(Ω). Therefore the underlying space is no longer BV (Ω) but H1(Ω). The resulting
problem would be

(Po)

{

minF (u) :=
1

2
‖Hu − g‖2 +

λ

2
‖∇u‖2,

u ∈ D

Unfortunately, this problem has no solutions except (may be) the two functions identically
equal to 0 or 1. Indeed a binary function cannot belong to H1(Ω) since its gradient (in
the distribution sense) is a measure (it is a Dirac measure along the contours). We could
choose W 1,1(Ω) instead of BV (Ω) and deal with the gradient L1 norm instead of the L2-
norm , but we would like to overcome the lack of differentiability and avoid the use of
subdifferentiability.
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On the other hand, one can get rid of the binary constraint if we consider a relaxed
formulation, that is 0 ≤ u ≤ 1, (u, 1 − u)2 ≤ α, where α > 0 instead of 0 ≤ u ≤
1, (u, 1 − u)2 = 0. The relaxation of the binary constraint is motivated and justified
numerically . Indeed, it is not possible to ensure (u, 1 − u)2 = 0 during computations but
rather | (u, 1 − u)2 | ≤ α where α may be chosen small as wanted, but strictly positive.
One can see (with the same tools as in [2]) that the corresponding relaxed problem

minFo(u) , u ∈ BV (Ω), 0 ≤ u ≤ 1, (u, 1 − u)2 ≤ α ,

has a solution that converges (in BV (Ω)) towards a solution to (P) . However, the problem
of finding first order optimality conditions remains delicate since the total variation is not
differentiable.

So, in a first step we consider a “smooth version ” of the above relaxed problem namely

(Pα)

{

minF (u) :=
1

2
‖Hu − g‖2 +

λ

2
‖∇u‖2,

u ∈ Dα

where α > 0 and Dα is given by

Dα :=
{
u ∈ H1(Ω) | 0 ≤ u ≤ 1 , (u, 1 − u)2 ≤ α

}
(1.2)

Next section is devoted to existence results of solutions to (Pα) . Then we recall some
general mathematical programming results to get some qualification conditions. In section
3, we define a “temporary” penalized problem that allows to decouple the binary constraint
via a virtual control function. We give existence results and establish estimations to pass
to the limit with respect to the penalization parameter. Then we get optimality conditions
for (Pα).

2 The relaxed problem

Now we consider the following relaxed problem

(Pα)

{

minF (u) :=
1

2
‖Hu − g‖2 +

λ

2
‖∇u‖2,

u ∈ Dα

where α > 0 and Dα is given by (1.2). We first recall a important property of operator H

Proposition 2.1 The operator H is continuous from L2(Ω) to L2(Ω).

Proof - [2, Lemma 1]. ✷

We can give an existence result:

Theorem 2.1 Problem (Pα) has at least a solution uα in H1(Ω).

Proof - Let (un)n ∈ H1(Ω) be a minimizing sequence. Since 0 ≤ un ≤ 1, the sequence un

is bounded in L∞(Ω) and in L2(Ω) as well. As ‖∇un‖ is bounded, (un)n is bounded in
H1(Ω) and weakly converges (up to a subsequence) to some uα in H1(Ω). As the functional
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u 7−→ ‖∇u‖ is convex and lower semi-continuous, it is weakly lower semi-continuous and
we have

‖∇uα‖
2 ≤ liminf

n→∞
‖∇un‖

2.

Now, we use the continuity property of H from L2(Ω) to L2(Ω) and the convexity of the
L2(Ω)-norm, to write

‖Huα − g‖2 ≤ liminf
n→∞

‖Hun − g‖2.

So,

inf(Pα) = lim
n→∞

(
1

2
‖Hun − g‖2 +

λ

2
‖∇un‖

2

)

≥
1

2
‖Huα − g‖2 +

λ

2
‖∇uα‖

2. (2.3)

To finish the proof of Theorem 2.1, we must prove that uα ∈ Dα. As the set {u ∈ H1(Ω) :
0 ≤ u ≤ 1} is convex and L2- closed for the strong-topology of L2(Ω), it is weakly L2-
closed as well. So 0 ≤ uα ≤ 1. As un ⇀ uα in H1(Ω) then un → uα strongly in L2(Ω)
and

(un, 1 − un)2 −→ (uα, 1 − uα)2 .

As (un, 1 − un)2 ≤ α for every n ∈ N, we conclude that (uα, 1 − uα)2 ≤ α ✷

The constraint “(uα, 1 − uα)2 ≤ α” is not convex and it is not possible to find the “ad-
missible” directions to compute derivatives. We need a general qualification assumption
to derive optimality conditions. We are going to use general mathematical programming
problems results and optimal control in Banach spaces.

2.1 A general qualification condition in Banach spaces

The method we use has been mainly developped by Zowe and Kurcyusz [14] and Tröltzsch
[11, 12]. Let us consider real Banach spaces X ,U ,Z1,Z2 and a convex closed “admissible”
set Uad ⊆ U . In Z2 a convex closed cone P is given so that Z2 is partially ordered by

x ≥ y ⇔ x − y ∈ P.

We deal also with:

f : X × U → R , Fréchet- differentiable functional ,

T : X × U → Z1 and G : X × U → Z2 continuously Fréchet-differentiable operators .

Now, let be the mathematical programming problem defined by:

min { f(x, u) | T (x, u) = 0, G(x, u) ≤ 0 , u ∈ Uad } . (2.4)

To shorten the text, we denote the partial Fréchet-derivative of f, T, and G with respect
to x and u by a corresponding index x or u. We suppose that the problem (2.4) has an
optimal solution that we call (xo, uo), and we introduce the sets:

Uad(uo) = { u ∈ U | ∃λ ≥ 0,∃u∗ ∈ Uad, u = λ(u∗ − uo) },
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P(G(xo, uo)) = { z ∈ Z2 | ∃λ ≥ 0,∃p ∈ −P, z = p − λG(xo, uo) },

P+ = { y ∈ Z∗
2 | 〈y, p〉 ≥ 0 ,∀p ∈ P }.

The main result about optimality conditions is the following :

Theorem 2.2 Let uo be an optimal control with corresponding optimal state xo and
suppose that the following regularity condition is fulfilled:

∀(z1, z2) ∈ Z1 ×Z2 the system
T ′(xo, uo)(x, u) = z1,

G′(xo, uo)(x, u) − p = z2,

is solvable with (x, u, p) ∈ X × Uad(uo) × P(G(xo, uo)) .

(2.5)

Then a Lagrange multiplier (y1, y2) ∈ Z ′
1 ×Z ′

2 exists such that

f ′
x(xo, uo) + T ′

x(xo, uo)
∗y1 + G′

x(xo, uo)
∗y2 = 0 , (2.6)

〈
f ′

u(xo, uo) + T ′
u(xo, uo)

∗y1 + G′
u(xo, uo)

∗y2, u − uo

〉

U ′,U
≥ 0 , ∀u ∈ Uad , (2.7)

y2 ∈ P+ , 〈y2, G(xo, uo)〉Z′

2
,Z2

= 0 . (2.8)

Proof - See [14, 11, 12] ✷

To apply this method to (Pα), we introduce a virtual control variable. We can write the
problem (Pα) as,

(Pα)

{
minF (u)
(u, v) ∈ Cα,

where

Cα := {(u, v) ∈ H1(Ω)×H1(Ω) | u ≥ 0, v ≥ 0, u+ v = 1 a.e. on Ω, (u, v)2 ≤ α} . (2.9)

We apply the previous theorem to (Pα) with X = H1(Ω),U = H1(Ω), Z2 = H1(Ω) × R

P = {(u, τ) ∈ H1(Ω) × R | u ≥ 0 a.e. in Ω, τ ≥ 0 } .

In addition T (u, v) = u + v − 1 and f, G are given by

f(u, v) =
1

2
‖Hu − g‖2 +

λ

2
‖∇u‖2,

and
G : H1(Ω) × L2(Ω) → H1(Ω) × R

(u, v) 7→ (−u, (u, v)2 − α) .

In this case f and G are C1 and

G′(uα, vα)(u, v) = (−u, (uα, v)2 + (vα, u)2) .

Moreover
Vad =

{
v ∈ H1(Ω) : v ≥ 0 a.e

}

and Vad(vα) = {λ(v − vα) : λ ≥ 0, v ∈ Vad} . Finally

P(G(uα, vα)) =
{
(−p + λuα,−γ − λ [(uα, vα) − α))] ∈ H1(Ω) × R

}
,

where p, λ and γ are real positive constants. Let’s write the condition (2.5): for any
(z1, z2, θ) in H1(Ω) × H1(Ω) × R, we must solve the system:
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u + µ(v − vα) = z1,

−u + p − λuα = z2,

(uα, µ (v − vα)) + (u, vα)2 + δ + λ [(uα, vα) − α] = θ,

where (µ, δ, λ, p) ∈ R
4
+, v ∈ Vad, u ∈ H1(Ω). This condition appears to be difficult to

satisfy. Therefore we adopt a different strategy that is to penalize the constraint u+v = 1.

2.2 Penalization of the relaxed problem

From now, we fix α > 0 as small as wanted. We first penalize (Pα) to get an approximate
problem (Pε

α) such that the family of solutions to (Pε
α) converges to a solution to (Pα)

with respect to ε. Once we prove the existence of a solution of (Pε
α), we use the above

techniques and derive penalized optimality conditions. Then we pass to the limit with
respect to ε.
Let us consider the following minimization problem, where (uα, vα := 1 − uα) is a (fixed)
solution to (Pα):

(Pε
α)







minF ε
α(u, v) :=

1

2
‖Hu − g‖2 +

λ

2
‖∇u‖2 +

1

2ε
‖u + v − 1‖2

+
1

2
‖u − uα‖

2
H1 +

1

2
‖v − vα‖

2,

(u, v) ∈ Kα

where
Kα := {(u, v) ∈ H1(Ω) × L2(Ω) | u ≥ 0, v ≥ 0, (u, v)2 ≤ α} (2.10)

The term
1

ε
‖u + v − 1‖2 is the penalization term of the constraint u + v − 1 = 0. The

other terms ‖u − uα‖
2
H1 and ‖v − vα‖

2 are adapted penalization terms which ensure the
strong convergence of the penalized solution towards the desired solution (uα, vα) (see
Barbu [7]).

Theorem 2.3 Problem (Pε
α) admits at least a solution (uε

α, vε
α) ∈ H1(Ω) × L2(Ω).

Proof - Let ε > 0 be fixed and (un, vn) be a minimizing sequence. The sequence (un) is
H1- bounded and (up to a subsequence) weakly converges to some uε

α in H1(Ω). Similarly,
the sequence (vn) is L2-bounded and (up to a subsequence) weakly converges to vε

α. The
functional F ε

α(u, v) : H1(Ω) × L2(Ω) → R is convex and continuous, so it is weakly lower
semi-continuous and

F ε
α(uε

α, vε
α) ≤ lim inf

n→+∞
F ε

α(un, vn) = inf(Pε
α) .

As the Kα is a convex, closed subset of H1(Ω)×L2(Ω) it is also weakly closed. Therefore
(uε

α, vε
α) ∈ Kα. This ends the proof. ✷

Theorem 2.4 When ε converges to 0, the family (uε
α, vε

α) strongly converges to (uα, vα)
in H1(Ω) × L2(Ω).
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Proof - As (uα, vα) is a solution to (Pα) it is always feasible for (Pε
α) and we get

F ε
α(uε

α, vε
α) ≤ F (uα) . (2.11)

Therefore uε
α is H1 bounded and vε

α is L2 bounded independently of ε. So (up to a
subsequence) uε

α weakly converges to u0 in H1(Ω) and vε
α weakly converges to v0 in L2(Ω).

As Kα is weakly closed we get

u0 ≥ 0, v0 ≥ 0, (u0, v0)2 ≤ α. (2.12)

Moreover, (2.11) gives
‖uε

α + vε
α − 1‖2 ≤ 2εF (uα) ,

so that
‖u0 + v0 − 1‖2 ≤ lim inf

ε→0
‖uε

α + vε
α − 1‖2 = 0.

We conclude with the lower semi-continuity of the functional that

1

2
‖Hu0 − g‖2 +

λ

2
‖∇u0‖

2 +
1

2
‖v0 − vα‖

2 +
1

2
‖u0 − uα‖

2
H1

≤ F ε
α(uε

α, vε
α) ≤ F (uα) =

1

2
‖Huα − g‖2 +

λ

2
‖∇uα‖

2. (2.13)

As u0 and v0 are also feasible for (Pα) we have

1

2
‖Huα − g‖2 +

λ

2
‖∇uα‖

2 ≤
1

2
‖Hu0 − g‖2 +

λ

2
‖∇u0‖

2. (2.14)

We use (2.13) and (2.14), we conclude easily that u0 = uα, then

1

2
‖Hu0 − g‖2 +

λ

2
‖∇u0‖

2 = inf(Pα).

This implies also strong convergence of uε
α to uα in H1(Ω) and vε

α to vα in L2(Ω) since

‖uε
α − uα‖

2
H1 + ‖vε

α − vα‖
2 ≤ ‖Huα − g‖2 + λ‖∇uα‖

2 − ‖Huε
α − g‖2

L2(Ω) − λ‖∇uε
α‖

2,

and
lim
ε→0

(
‖Huε

α − g‖2 + ‖∇uε
α‖

2
)

= |Huα − g‖2 + ‖∇uα‖
2.

We just proved that the only cluster point is (uα, vα): the whole family (uε
α, vε

α) (strongly)
converges to (uα, vα) as ε → 0. ✷

Now, we apply Theorem 2.2 to problem (Pε
α) with X = H1(Ω), Z2 = H1(Ω) × R and P

as in the previous subsection. Now, we set U = L2(Ω), T = 0, f = F ε
α and

G : H1(Ω) × L2(Ω) → H1(Ω) × R

(u, v) 7→ (−u, (u, v)2 − α) .

Functions f and G are C1 and

G′(uε
α, vε

α)(u, v) = (−u, (uε
α, v)2 + (vε

α, u)2) .
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Here Vad =
{
v ∈ L2(Ω) : v ≥ 0 a.e

}
,

Vad(v
ε
α) = {λ(v − vε

α) : λ ≥ 0, v ∈ Vad} ,

and
P(G(uε

α, vε
α)) =

{
(−p + λuε

α,−γ − λ [(uε
α, vε

α)2 − α)] ∈ H1(Ω) × R
}

,

where p, λ and γ are real positive constants.
Let’s write the condition (2.5): for any (z, w) in H1(Ω)×L2(Ω), we must solve the system:

−u + p − λuε
α = z,

(uε
α, µ (v − vε

α))2 + (u, vε
α)2 + δ + λ[(uε

α, vε
α)2 − α] = w,

where (µ, δ, λ, p) ∈ R
4
+, v ∈ Vad, u ∈ H1(Ω). Taking u from the first equation into the

second one we have to solve:

(uε
α, µ(v − vε

α))2 + (p, vε
α)2 + δ − λα = w + (z, vε

α)2 := ρ,

with µ, δ, λ ≥ 0, p ≥ 0, v ∈ Vad. We see that we may take: µ = 1, v = vε
α, p = 0, and







λ = 0, δ = ρ, if ρ ≥ 0,

λ = − ρ
α
, δ = 0, if ρ ≤ 0.

So the condition (2.5) is always satisfied. Since f, G are Fréchet-differentiable, we can
apply Theorem 2.2: there exists yε

α ∈ (H1)
′

(Ω) and rε
α ∈ R such that

∀u ∈ H1(Ω) (H⋆Huε
α − g, u − uε

α)2 + λ (∇uε
α,∇(u − uε

α))2 + (uε
α − uα, u − uε

α)H1+

(vε
α − vα, v − vε

α)2 + 1
ε
(uε

α + vε
α − 1, u − uε

α)2 +

rε
α (u − uε

α, vε
α) + 〈yε

α,−u + uε
α〉(H1)′,H1 = 0,

∀v ∈ Vad

1

ε
(uε

α + vε
α − 1, v − vε

α)2 + rε
α (uε

α, v − vε
α)2 ≥ 0,

rε
α ≥ 0, rε

α ((uε
α, vε

α)2 − α) = 0,

and for all u ∈ H1(Ω) such that u ≥ 0, we have

〈yε
α, u〉(H1)′,H1 ≥ 0, 〈yε

α, uε
α〉(H1)′,H1 = 0.

We set

pε
α = H⋆Huε

α − g, qε
α =

1

ε
(uε

α + vε
α − 1). (2.15)

Theorem 2.5 The solution (uε
α, vε

α) of problem (Pε
α) satisfies the following optimality

system

∀u ∈ H1(Ω) (pε
α + qε

α, u − uε
α)2 + λ (∇uε

α,∇(u − uε
α))2 + rε

α (u − uε
α, vε

α)2

+ (uε
α − uα, u − uε

α)H1 + (vε
α − vα, v − vε

α)2 ≥ 0,
(2.16a)

∀v ∈ Vad (qε
α, v − vε

α)2 + rε
α (uε

α, v − vε
α)2 ≥ 0, (2.16b)

rε
α ∈ R

+, rε
α((uε

α, vε
α)2 − α) = 0, (2.16c)

∀u ∈ H1(Ω), u ≥ 0 〈yε
α, u〉(H1)′,H1 ≥ 0, 〈yε

α, uε
α〉(H1)′,H1 = 0. (2.16d)
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3 Optimality system for (Pα)

Now we like to pass to the limit in the above inequalities and we need estimates for qε
α, rε

α

and pε
α. To find estimates with respect to ε, we use [8] techniques. We already know that,

if ε tends to zero, uε
α converges to uα strongly in H1(Ω) . The continuity properties of H

and H⋆ from L2(Ω) to L2(Ω) [2] imply that

pε
α = H⋆(Huε

α − g) → H⋆(Huα − g) = pα strongly in L2(Ω),

and pε
α is bounded independently of ε in L2(Ω).

3.1 Estimate on r
ε
α

Let us choose (u, v) ∈ H1(Ω)×L2(Ω) such that u ≥ 0, v ≥ 0 a.e and add relations (2.16a)
and (2.16b), to obtain

(qε
α,−(u + v − 1))2 − rε

α[(uε
α, v)2 + (vε

α, u)2] + 2rε
α (uε

α, vε
α)2 ≤

(∇uε
α,∇(uε

α − u))2 + (pε
α, uε

α − u)2 − ε‖qε
α‖

2 + (uε
α − uα, u − uε

α)H1 + (vε
α − vα, v − vε

α)2 ≤

(∇uε
α,∇(uε

α − u))2 + (pε
α, uε

α − u)2 + (uε
α − uα, u − uε

α)H1 + (vε
α − vα, v − vε

α)2 .

As pε
α, vε

α are L2 bounded and uε
α is H1 bounded (with respect to ε), the left side is

uniformly bounded with respect to ε by a constant C(u,v) which only depends on u, v.
Moreover relation (2.16c) implies

rε
α [(uε

α, vε
α)2 − α] = 0,

so that we finally obtain:

(qε
α,−(u + v − 1))2 − rε

α [(uε
α, v)2 + (vε

α, u)2] + 2rε
αα ≤ C(u,v). (3.17)

Now, we distinguish two cases:
First case: assume (uα, vα)2 < α. As (uε

α, vε
α)2 → (uα, vα)2 in R, there exists ε0 such that

∀ε ≤ ε0, (uε
α, vε

α)2 < α,

and relation (2.16c) implies that rε
α = 0. So the limit value is rα = 0.

Second case: (uα, vα)2 = α. We cannot conclude immediately and need the following
Lemma.

Lemma 3.1 Let α be such that (uα, vα) = α. Then, there exist ū ∈ H1(Ω), ū ≥ 0 and
v̄ ∈ Vad such that

ū + v̄ − 1 = 0 and (ū, vα)2 + (v̄, uα)2 < 2α.

Proof - It is enough to prove that there exists ū ∈ H1(Ω) such that 0 ≤ ū ≤ 1 and

∫

Ω
ū(x)(1 − uα(x)) dx +

∫

Ω
(1 − ū(x))uα(x) dx < 2α. (3.18)
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From now, we denote

∫

Ω
u(x)v(x)dx =

∫

Ω
uv for all (u, v) ∈ L2(Ω) × L2(Ω). Since

∫

Ω
uα(1 − uα) = α, we have

∫

Ω
ū(1 − uα) +

∫

Ω
(1 − ū)uα < 2α ⇔

∫

Ω
ū − 2

∫

Ω
ūuα −

∫

Ω
uα + 2

∫

Ω
u2

α < 0

⇔

∫

Ω
ū(1 − 2uα) −

∫

Ω
uα(1 − 2uα) < 0

⇔

∫

Ω
(ū − uα)(1 − 2uα) < 0

⇔

∫

Ω
(uα − ū)(2uα − 1) < 0.

For every x ∈ Ω, we set

ū(x) =







1 if uα(x) ≥
3

4
,

0 if uα(x) ≤
1

4
,

2uα(x) −
1

2
if

1

4
≤ uα(x) ≤

3

4
.

It is clear that 0 ≤ ū ≤ 1 and ū ∈ H1(Ω) [10, Theorem 7.8]

∫

Ω
(uα − ū)(2uα − 1) =

∫

{uα≤
1

4
}
(uα − ū)(2uα − 1)

︸ ︷︷ ︸

I1

+

∫

{uα≥
3

4
}
(uα − ū)(2uα − 1)

︸ ︷︷ ︸

I2

+

∫

{ 1

4
≤uα≤

3

4
}
(uα − ū)(2uα − 1)

︸ ︷︷ ︸

I3

.

We start with I1:

I1 =

∫

{uα≤
1

4
}
(uα − ū)(2uα − 1) =

∫

{uα≤
1

4
}
uα(2uα − 1) < 0,

since uα ≥ 0 and 2uα − 1 < 0 in {uα ≤ 1
4}. Similarly

I2 =

∫

{uα≥
3

4
}
(uα − ū)(2uα − 1) =

∫

{uα≥
3

4
}
(uα − 1)(2uα − 1) < 0

since uα ≤ 1 and 2uα − 1 ≥ 0. At last

I3 =

∫

{ 1

4
≤uα≤

3

4
}
(uα − ū)(2uα − 1) =

∫

{ 1

4
≤uα≤

3

4
}

−1

2
(2uα − 1)2 ≤ 0.

✷

This Lemma provides test functions (ū, v̄) which do not depend on ε and

(ū, vε
α)2 + (v̄, uε

α)2 → (ū, vα)2 + (v̄, uα)2 < 2α.
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Therefore, there exist ρ ∈]0, 2α[ and ε0 such that

∀ε ≤ ε0, (ū, vε
α)2 + (v̄, uε

α)2 ≤ 2α − ρ. (3.19)

Now, we use (3.17) and (3.19): ∀ε ≤ ε0, we have

rε
α [2α − (2α − ρ)2] ≤ rε

α [2α − (ū, vε
α)2 + (v̄, uε

α)2] ≤ C(ū,v̄).

So

∀ε ≤ ε0 rε
α ≤

C(ū,v̄)

ρ
,

where C(ū,v̄) is a positive constant that depends only on ū and v̄ . We have proved the
following

Proposition 3.1 Let α be fixed. There exists Cα > 0 and ε0,α > 0 such that

∀ε ≥ ε0,α 0 ≤ rε
α ≤ Cα .

3.2 Estimates on q
ε
α

Once we have rε
α estimate, we use relation (3.17) to obtain

∀u ∈ H1(Ω) such that u ≥ 0, ∀v ∈ L2(Ω), v ≥ 0 − (qε
α, u + v − 1)2 ≤ C(u,v). (3.20)

Let us choose χ ∈ L∞(Ω) such that ‖χ‖∞ ≤ 1, set uχ = 0 and vχ = 1 +
χ

2
in relation

(3.20) to obtain

∀χ ∈ L∞(Ω), ‖χ‖L∞(Ω) ≤ 1, (qε
α, χ)2 ≤ Cχ ≤ C.

where C is a positive constant independent of χ. Indeed, from the previous computation
it iis easy to check that Cχ does not depend on χ as soon as ‖χ‖∞ ≤ 1. So qε

α is bounded
in (L∞)

′

(Ω) i.e. in M(Ω) by a constant independent of ε. Here M(Ω) denotes the space
of radon measures on Ω.

From the previous estimates on rε
α and qε

α, there exist rα in R and qα ∈ M(Ω) such

that rε
α → rα in R and qε

α
∗
⇀ qα weakly-star in M(Ω).

3.3 (Pα) optimality system

We may pass to the limit in the penalized optimality system :

Theorem 3.1 Assume uα is a solution to (Pα) and vα = 1−uα. There exists a Lagrange
multiplier (qα, rα) ∈ M(Ω) × R

+ such that for all u ∈ H1(Ω) ∩ L∞(Ω), u ≥ 0 and for all
v ∈ Vad ∩ L∞(Ω) we have

(H∗(Huα − g), u − uα)2 + 〈qα, u + v − 1〉M,L∞ + λ (∇uα,∇(u − uα))2
+rα [(u − uα, vα)2 + (uα, v − vα)2] ≥ 0,

(3.21a)

rα [(uα, vα)2 − α] = 0. (3.21b)
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Proof - Let be u ∈ H1(Ω) ∩ L∞(Ω), u ≥ 0 and v ∈ Vad ∩ L∞(Ω). We add (2.16a) and
(2.16b) :

(pε
α, u − uε

α)2 + (qε, u + v − 1)2 − (qε, u
ε
α + vε

α − 1)2 + rε
α [(uε

α, v − vε
α)2 (u − uε

α, vε
α)2]

+ (uε
α − uα, u − uε

α)H1 + (vε
α − vα, v − vε

α)2 + λ (∇uε
α,∇(u − uε

α)) ≥ 0.

As − (qε
α, uε

α + vε
α − 1) = −ε||qε||

2 is always negative, we have

(pε
α, u − uε

α)2 + (qε
α, u + v − 1) + λ (∇uε

α,∇(u − uε
α))

+ (uε
α − uα, u − uε

α)H1 + (vε
α − vα, v − vε

α) + rε
α [(u − uε

α, vε
α)2 + (uε

α, v − vε
α)] ≥ 0.

Passing to the limit in the above relations gives the result. ✷

The above system may be decoupled taking respectively u = uα and v = vα:

Corollary 3.1 Assume uα is a solution to (Pα) and vα = 1−uα. There exists a Lagrange
multiplier (qα, rα) ∈ M(Ω) × R

+ such that

∀u ∈ H1(Ω) ∩ L∞(Ω) such that u ≥ 0

(H∗(Huα − g) + rαvα, u − uα)2 + λ (∇uα,∇(u − uα))2 + 〈qα, u − uα〉M,L∞ ≥ 0,
(3.22a)

∀v ∈ Vad ∩ L∞(Ω) 〈qα, v − vα〉M,L∞ + rα (uα, v − vα)2 ≥ 0, (3.22b)

rα [(uα, vα)2 − α] = 0. (3.22c)

4 Conclusion

We have obtained optimality conditions for the relaxed problem. However it is impossible
to get convergence results as α → 0. Indeed the binary constraint does not allow H1

functions and the limit function would not fit the functional framework. A generalization
is to consider in a first step W 1,1 functions and use the gradient L1 instead of the L2-norm.
A regularization process is necessary but still possible (via Moreau-Yosida approximation)
and we believe that the same techniques remain applicable. For the general case (BV

norm) we need different tools, for instance sharp non smooth analysis. However, the
relaxed H1 formulation is suitable for numerical purpose. As we get the optimality system
satisfied by solutions of (Pα), next issue is to perform computations to solve it.
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