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In this paper we study a minimization problem which appears in tomographic reconstruction. The problem is known to be ill posed. The object to reconstruct is assumed to be binary so that the intensity function belongs to {0, 1}. Therefore the feasible set is not convex and its interior is empty for most usual topologies. We propose a relaxed formulation of the problem . We prove existence of solutions and give optimality conditions.

Introduction

In this paper we study a minimization problem arising in tomographic reconstruction as described in [START_REF] Abraham | An active curve approach for tomographic reconstruction of binary radially symmetric objects[END_REF]. We have to reconstruct a radially symmetric object with a single snapshot. In addition the image is assumed to be binary. This corresponds to the material density of the object to reconstruct (there is material or not). The problem is modelled in a standard way as follows: 

BV (Ω) = u ∈ L 1 (Ω) : J(u) < ∞ , with 
J(u) = sup Ω u(x)div(φ(x))dx : φ ∈ C 1 c (Ω, R 2 ), φ ∞ ≤ 1 .
Here C 1 c (Ω, R 2 ) denotes the space of the C 1 functions with compact support in Ω with value in R 2 . tomographic projection operator that can be written as in [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary axially symmetric objects[END_REF] :

(H o u)(y, z) = 2 +∞ |y| u(r, z) r r 2 -y 2 dr, (1.1) 
for almost all y, z ∈ R. [START_REF] Alter | Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow[END_REF]. the observed image is g ∈ L 2 (Ω).

In the sequel, we shall denote ||.|| the L 2 (Ω)-norm. In the same way, (., .) 2 denotes the L 2 (Ω)-scalar product, (., .) H 1 denotes the H 1 (Ω)-scalar product and ., . V ′ ,V , the duality product between V ′ and V , where V is a Banach space and V ′ is the dual space of V .

Similar problems have been studied by Aubert and Kornprobst in [START_REF] Aubert | Mathematical problems in image processing[END_REF], Acar and Vogel in [START_REF] Acar | Analysis of bounded variation penalty methods for ill-posed problems[END_REF], Vogel and Oman in [START_REF] Vogel | Iterative methods for total variation denoising[END_REF] and Chambolle, Caselles and Alter in [START_REF] Alter | Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow[END_REF] . In the case of convex constraints, we may quote papers by E. Casas, K.Kunisch and C.Pola [START_REF] Casas | Regularization by functions of bounded variation and applications to image enhancement[END_REF] and Aubert and Vese [START_REF] Aubert | A variational method in image recovery[END_REF]. Here, the main difficulty comes from the fact that the feasible domain D is not convex and it's interior is empty for most usual topologies. In addition, the total variation J(u) of a function u in BV (Ω) is not Fréchet differentiable.

Abraham, Bergounioux and Trélat have also considered problem (P) in [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary axially symmetric objects[END_REF]. They proved the existence of (at least) a solution of (P) in BV (Ω) and gave first order optimality conditions. They use a penalization technique to deal with the binary constraint and considered

(P ε )    min 1 2 Hu -g 2 + λJ(u) + 1 2ε u 2 -u 2 , u ∈ BV (Ω).
where ε > 0. However the optimality system they obtained was not suitable for numerical purposes and they rather solved the penalized system. In addition, the proposed numerical algorithm is not very performant. The penalization term is difficult to handle and parameter tuning is quite delicate.

In this paper we look for different strategies to study problem (P) from a numerical point of view. In a first step we want to avoid the difficulties mentioned before, namely the domain non convexity and the cost functional lack of differentiability. We could consider a problem where the total variation J(u) is replaced by the L 2 (Ω)-norm of the gradient of u ∈ H 1 (Ω). Therefore the underlying space is no longer BV (Ω) but H 1 (Ω). The resulting problem would be

(P o ) min F (u) := 1 2 Hu -g 2 + λ 2 ∇u 2 , u ∈ D
Unfortunately, this problem has no solutions except (may be) the two functions identically equal to 0 or 1. Indeed a binary function cannot belong to H 1 (Ω) since its gradient (in the distribution sense) is a measure (it is a Dirac measure along the contours). We could choose W 1,1 (Ω) instead of BV (Ω) and deal with the gradient L 1 norm instead of the L 2norm , but we would like to overcome the lack of differentiability and avoid the use of subdifferentiability.

On the other hand, one can get rid of the binary constraint if we consider a relaxed formulation, that is 0 ≤ u ≤ 1, (u, 1u) 2 ≤ α, where α > 0 instead of 0 ≤ u ≤ 1, (u, 1u) 2 = 0. The relaxation of the binary constraint is motivated and justified numerically . Indeed, it is not possible to ensure (u, 1u) 2 = 0 during computations but rather | (u, 1u) 2 | ≤ α where α may be chosen small as wanted, but strictly positive. One can see (with the same tools as in [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary axially symmetric objects[END_REF]) that the corresponding relaxed problem

min F o (u) , u ∈ BV (Ω), 0 ≤ u ≤ 1, (u, 1 -u) 2 ≤ α ,
has a solution that converges (in BV (Ω)) towards a solution to (P) . However, the problem of finding first order optimality conditions remains delicate since the total variation is not differentiable.

So, in a first step we consider a "smooth version " of the above relaxed problem namely

(P α ) min F (u) := 1 2 Hu -g 2 + λ 2 ∇u 2 , u ∈ D α
where α > 0 and D α is given by

D α := u ∈ H 1 (Ω) | 0 ≤ u ≤ 1 , (u, 1 -u) 2 ≤ α (1.2)
Next section is devoted to existence results of solutions to (P α ) . Then we recall some general mathematical programming results to get some qualification conditions. In section 3, we define a "temporary" penalized problem that allows to decouple the binary constraint via a virtual control function. We give existence results and establish estimations to pass to the limit with respect to the penalization parameter. Then we get optimality conditions for (P α ).

The relaxed problem

Now we consider the following relaxed problem

(P α ) min F (u) := 1 2 Hu -g 2 + λ 2 ∇u 2 , u ∈ D α
where α > 0 and D α is given by (1.2). We first recall a important property of operator H Proposition 2.1 The operator H is continuous from L 2 (Ω) to L 2 (Ω).

Proof -[2, Lemma 1]. ✷ We can give an existence result:

Theorem 2.1 Problem (P α ) has at least a solution u α in H 1 (Ω). Proof -Let (u n ) n ∈ H 1 (Ω) be a minimizing sequence. Since 0 ≤ u n ≤ 1, the sequence u n is bounded in L ∞ (Ω) and in L 2 (Ω) as well. As ∇u n is bounded, (u n ) n is bounded in H 1 (Ω)
and weakly converges (up to a subsequence) to some u α in H 1 (Ω). As the functional u -→ ∇u is convex and lower semi-continuous, it is weakly lower semi-continuous and we have

∇u α 2 ≤ liminf n→∞ ∇u n 2 .
Now, we use the continuity property of H from L 2 (Ω) to L 2 (Ω) and the convexity of the

L 2 (Ω)-norm, to write Hu α -g 2 ≤ liminf n→∞ Hu n -g 2 .
So,

inf(P α ) = lim n→∞ 1 2 Hu n -g 2 + λ 2 ∇u n 2 ≥ 1 2 Hu α -g 2 + λ 2 ∇u α 2 . (2.3)
To finish the proof of Theorem 2.1, we must prove that

u α ∈ D α . As the set {u ∈ H 1 (Ω) : 0 ≤ u ≤ 1} is convex and L 2 -closed for the strong-topology of L 2 (Ω), it is weakly L 2 - closed as well. So 0 ≤ u α ≤ 1. As u n ⇀ u α in H 1 (Ω) then u n → u α strongly in L 2 (Ω) and (u n , 1 -u n ) 2 -→ (u α , 1 -u α ) 2 . As (u n , 1 -u n ) 2 ≤ α for every n ∈ N, we conclude that (u α , 1 -u α ) 2 ≤ α ✷ The constraint "(u α , 1 -u α ) 2 ≤ α"
is not convex and it is not possible to find the "admissible" directions to compute derivatives. We need a general qualification assumption to derive optimality conditions. We are going to use general mathematical programming problems results and optimal control in Banach spaces.

A general qualification condition in Banach spaces

The method we use has been mainly developped by Zowe and Kurcyusz [START_REF] Zowe | Regularity and stability for the mathematical programming problem in banach spaces[END_REF] and Tröltzsch [START_REF] Tröltzsch | A modification of the Zowe and Kurcyusz regularity condition with application to the optimal control of Noether operator equations with constraints on the control and the state[END_REF][START_REF] Tröltzsch | Optimality conditions for parabolic control problems and applications[END_REF]. Let us consider real Banach spaces X , U, Z 1 , Z 2 and a convex closed "admissible" set U ad ⊆ U. In Z 2 a convex closed cone P is given so that Z 2 is partially ordered by

x ≥ y ⇔ x -y ∈ P.
We deal also with:

f : X × U → R , Fréchet-differentiable functional , T : X × U → Z 1 and G : X × U → Z 2 continuously Fréchet-differentiable operators .
Now, let be the mathematical programming problem defined by:

min { f (x, u) | T (x, u) = 0, G(x, u) ≤ 0 , u ∈ U ad } . (2.4)
To shorten the text, we denote the partial Fréchet-derivative of f, T, and G with respect to x and u by a corresponding index x or u. We suppose that the problem (2.4) has an optimal solution that we call (x o , u o ), and we introduce the sets:

U ad (u o ) = { u ∈ U | ∃λ ≥ 0, ∃u * ∈ U ad , u = λ(u * -u o ) }, P(G(x o , u o )) = { z ∈ Z 2 | ∃λ ≥ 0, ∃p ∈ -P, z = p -λG(x o , u o ) }, P + = { y ∈ Z * 2 | y, p ≥ 0 , ∀p ∈ P }.
The main result about optimality conditions is the following : Theorem 2.2 Let u o be an optimal control with corresponding optimal state x o and suppose that the following regularity condition is fulfilled:

∀(z 1 , z 2 ) ∈ Z 1 × Z 2 the system T ′ (x o , u o )(x, u) = z 1 , G ′ (x o , u o )(x, u) -p = z 2 , is solvable with (x, u, p) ∈ X × U ad (u o ) × P(G(x o , u o )) . (2.5) Then a Lagrange multiplier (y 1 , y 2 ) ∈ Z ′ 1 × Z ′ 2 exists such that f ′ x (x o , u o ) + T ′ x (x o , u o ) * y 1 + G ′ x (x o , u o ) * y 2 = 0 , (2.6) 
f ′ u (x o , u o ) + T ′ u (x o , u o ) * y 1 + G ′ u (x o , u o ) * y 2 , u -u o U ′ ,U ≥ 0 , ∀u ∈ U ad , (2.7 
)

y 2 ∈ P + , y 2 , G(x o , u o ) Z ′ 2 ,Z 2 = 0 . (2.8) 
Proof -See [START_REF] Zowe | Regularity and stability for the mathematical programming problem in banach spaces[END_REF][START_REF] Tröltzsch | A modification of the Zowe and Kurcyusz regularity condition with application to the optimal control of Noether operator equations with constraints on the control and the state[END_REF][START_REF] Tröltzsch | Optimality conditions for parabolic control problems and applications[END_REF]] ✷ To apply this method to (P α ), we introduce a virtual control variable. We can write the problem (P α ) as,

(P α ) min F (u) (u, v) ∈ C α ,
where

C α := {(u, v) ∈ H 1 (Ω) × H 1 (Ω) | u ≥ 0, v ≥ 0, u + v = 1 a.e. on Ω, (u, v) 2 ≤ α} . (2.9)
We apply the previous theorem to (P α ) with

X = H 1 (Ω), U = H 1 (Ω), Z 2 = H 1 (Ω) × R P = {(u, τ ) ∈ H 1 (Ω) × R | u ≥ 0 a.e. in Ω, τ ≥ 0 } . In addition T (u, v) = u + v -1 and f, G are given by f (u, v) = 1 2 Hu -g 2 + λ 2 ∇u 2 ,
and

G : H 1 (Ω) × L 2 (Ω) → H 1 (Ω) × R (u, v) → (-u, (u, v) 2 -α) .
In this case f and G are C 1 and

G ′ (u α , v α )(u, v) = (-u, (u α , v) 2 + (v α , u) 2 ) . Moreover V ad = v ∈ H 1 (Ω) : v ≥ 0 a.e and V ad (v α ) = {λ(v -v α ) : λ ≥ 0, v ∈ V ad } . Finally P(G(u α , v α )) = (-p + λu α , -γ -λ [(u α , v α ) -α))] ∈ H 1 (Ω) × R ,
where p, λ and γ are real positive constants. Let's write the condition (2.5): for any

(z 1 , z 2 , θ) in H 1 (Ω) × H 1 (Ω) × R,
we must solve the system:

u + µ(v -v α ) = z 1 , -u + p -λu α = z 2 , (u α , µ (v -v α )) + (u, v α ) 2 + δ + λ [(u α , v α ) -α] = θ, where (µ, δ, λ, p) ∈ R 4 + , v ∈ V ad , u ∈ H 1 (Ω)
. This condition appears to be difficult to satisfy. Therefore we adopt a different strategy that is to penalize the constraint u+v = 1.

Penalization of the relaxed problem

From now, we fix α > 0 as small as wanted. We first penalize (P α ) to get an approximate problem (P ε α ) such that the family of solutions to (P ε α ) converges to a solution to (P α ) with respect to ε. Once we prove the existence of a solution of (P ε α ), we use the above techniques and derive penalized optimality conditions. Then we pass to the limit with respect to ε. Let us consider the following minimization problem, where (u α , v α := 1u α ) is a (fixed) solution to (P α ):

(P ε α )          min F ε α (u, v) := 1 2 Hu -g 2 + λ 2 ∇u 2 + 1 2ε u + v -1 2 + 1 2 u -u α 2 H 1 + 1 2 v -v α 2 , (u, v) ∈ K α where K α := {(u, v) ∈ H 1 (Ω) × L 2 (Ω) | u ≥ 0, v ≥ 0, (u, v) 2 ≤ α} (2.10)
The term 1 ε u + v -1 2 is the penalization term of the constraint u + v -1 = 0. The other terms uu α 2 H 1 and vv α 2 are adapted penalization terms which ensure the strong convergence of the penalized solution towards the desired solution (u α , v α ) (see Barbu [7]).

Theorem 2.3 Problem (P ε α ) admits at least a solution (u ε α , v ε α ) ∈ H 1 (Ω) × L 2 (Ω).
Proof -Let ε > 0 be fixed and (u n , v n ) be a minimizing sequence. The sequence (u n ) is H 1 -bounded and (up to a subsequence) weakly converges to some u ε α in H 1 (Ω). Similarly, the sequence (v n ) is L 2 -bounded and (up to a subsequence) weakly converges to v ε α . The functional F ε α (u, v) : H 1 (Ω) × L 2 (Ω) → R is convex and continuous, so it is weakly lower semi-continuous and

F ε α (u ε α , v ε α ) ≤ lim inf n→+∞ F ε α (u n , v n ) = inf(P ε α ) .
As the K α is a convex, closed subset of H 1 (Ω) × L 2 (Ω) it is also weakly closed. Therefore (u ε α , v ε α ) ∈ K α . This ends the proof. ✷ Theorem 2.4 When ε converges to 0, the family

(u ε α , v ε α ) strongly converges to (u α , v α ) in H 1 (Ω) × L 2 (Ω).
Proof -As (u α , v α ) is a solution to (P α ) it is always feasible for (P ε α ) and we get

F ε α (u ε α , v ε α ) ≤ F (u α ) . (2.11)
Therefore u ε α is H 1 bounded and v ε α is L 2 bounded independently of ε. So (up to a subsequence) u ε α weakly converges to u 0 in H 1 (Ω) and v ε α weakly converges to v 0 in L 2 (Ω). As K α is weakly closed we get

u 0 ≥ 0, v 0 ≥ 0, (u 0 , v 0 ) 2 ≤ α.
(2.12)

Moreover, (2.11) gives

u ε α + v ε α -1 2 ≤ 2εF (u α ) , so that u 0 + v 0 -1 2 ≤ lim inf ε→0 u ε α + v ε α -1 2 = 0.
We conclude with the lower semi-continuity of the functional that

1 2 Hu 0 -g 2 + λ 2 ∇u 0 2 + 1 2 v 0 -v α 2 + 1 2 u 0 -u α 2 H 1 ≤ F ε α (u ε α , v ε α ) ≤ F (u α ) = 1 2 Hu α -g 2 + λ 2 ∇u α 2 .
(2.13)

As u 0 and v 0 are also feasible for (P α ) we have

1 2 Hu α -g 2 + λ 2 ∇u α 2 ≤ 1 2 Hu 0 -g 2 + λ 2 ∇u 0 2 . (2.14)
We use (2.13) and (2.14), we conclude easily that u 0 = u α , then

1 2 Hu 0 -g 2 + λ 2 ∇u 0 2 = inf(P α ).
This implies also strong convergence of

u ε α to u α in H 1 (Ω) and v ε α to v α in L 2 (Ω) since u ε α -u α 2 H 1 + v ε α -v α 2 ≤ Hu α -g 2 + λ ∇u α 2 -Hu ε α -g 2 L 2 (Ω) -λ ∇u ε α 2 ,
and lim

ε→0 Hu ε α -g 2 + ∇u ε α 2 = |Hu α -g 2 + ∇u α 2 .
We just proved that the only cluster point is (u α , v α ): the whole family (u ε α , v ε α ) (strongly) converges to (u α , v α ) as ε → 0.

✷ Now, we apply Theorem 2.2 to problem (P ε α ) with X = H 1 (Ω), Z 2 = H 1 (Ω) × R and P as in the previous subsection. Now, we set U = L 2 (Ω), T = 0, f = F ε α and

G : H 1 (Ω) × L 2 (Ω) → H 1 (Ω) × R (u, v) → (-u, (u, v) 2 -α) .
Functions f and G are C 1 and

G ′ (u ε α , v ε α )(u, v) = (-u, (u ε α , v) 2 + (v ε α , u) 2 ) .
Here

V ad = v ∈ L 2 (Ω) : v ≥ 0 a.e , V ad (v ε α ) = {λ(v -v ε α ) : λ ≥ 0, v ∈ V ad } , and P(G(u ε α , v ε α )) = (-p + λu ε α , -γ -λ [(u ε α , v ε α ) 2 -α)] ∈ H 1 (Ω) × R
, where p, λ and γ are real positive constants. Let's write the condition (2.5): for any (z, w) in H 1 (Ω) × L 2 (Ω), we must solve the system:

-u + p -λu ε α = z, (u ε α , µ (v -v ε α )) 2 + (u, v ε α ) 2 + δ + λ[(u ε α , v ε α ) 2 -α] = w, where (µ, δ, λ, p) ∈ R 4 + , v ∈ V ad , u ∈ H 1 (Ω).
Taking u from the first equation into the second one we have to solve:

(u ε α , µ(v -v ε α )) 2 + (p, v ε α ) 2 + δ -λα = w + (z, v ε α ) 2 := ρ, with µ, δ, λ ≥ 0, p ≥ 0, v ∈ V ad .
We see that we may take:

µ = 1, v = v ε α , p = 0, and      λ = 0, δ = ρ, if ρ ≥ 0, λ = -ρ α , δ = 0, if ρ ≤ 0.
So the condition (2.5) is always satisfied. Since f, G are Fréchet-differentiable, we can apply Theorem 2.2: there exists y ε α ∈ (H 1 ) ′ (Ω) and

r ε α ∈ R such that ∀u ∈ H 1 (Ω) (H ⋆ Hu ε α -g, u -u ε α ) 2 + λ (∇u ε α , ∇(u -u ε α )) 2 + (u ε α -u α , u -u ε α ) H 1 + (v ε α -v α , v -v ε α ) 2 + 1 ε (u ε α + v ε α -1, u -u ε α ) 2 + r ε α (u -u ε α , v ε α ) + y ε α , -u + u ε α (H 1 ) ′ ,H 1 = 0, ∀v ∈ V ad 1 ε (u ε α + v ε α -1, v -v ε α ) 2 + r ε α (u ε α , v -v ε α ) 2 ≥ 0, r ε α ≥ 0, r ε α ((u ε α , v ε α ) 2 -α) = 0
, and for all u ∈ H 1 (Ω) such that u ≥ 0, we have

y ε α , u (H 1 ) ′ ,H 1 ≥ 0, y ε α , u ε α (H 1 ) ′ ,H 1 = 0. We set p ε α = H ⋆ Hu ε α -g, q ε α = 1 ε (u ε α + v ε α -1). (2.15) Theorem 2.5 The solution (u ε α , v ε α ) of problem (P ε α ) satisfies the following optimality system ∀u ∈ H 1 (Ω) (p ε α + q ε α , u -u ε α ) 2 + λ (∇u ε α , ∇(u -u ε α )) 2 + r ε α (u -u ε α , v ε α ) 2 + (u ε α -u α , u -u ε α ) H 1 + (v ε α -v α , v -v ε α ) 2 ≥ 0, (2.16a 
)

∀v ∈ V ad (q ε α , v -v ε α ) 2 + r ε α (u ε α , v -v ε α ) 2 ≥ 0, (2.16b) 
r ε α ∈ R + , r ε α ((u ε α , v ε α ) 2 -α) = 0, (2.16c) ∀u ∈ H 1 (Ω), u ≥ 0 y ε α , u (H 1 ) ′ ,H 1 ≥ 0, y ε α , u ε α (H 1 ) ′ ,H 1 = 0.
(2.16d)

3 Optimality system for (P α )

Now we like to pass to the limit in the above inequalities and we need estimates for q ε α , r ε α and p ε α . To find estimates with respect to ε, we use [START_REF] Bergounioux | Optimal control of an obstacle problem[END_REF] techniques. We already know that, if ε tends to zero, u ε α converges to u α strongly in H 1 (Ω) . The continuity properties of H and H ⋆ from L 2 (Ω) to L 2 (Ω) [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary axially symmetric objects[END_REF] imply that

p ε α = H ⋆ (Hu ε α -g) → H ⋆ (Hu α -g) = p α strongly in L 2 (Ω),
and p ε α is bounded independently of ε in L 2 (Ω).

Estimate on r ε α

Let us choose (u, v) ∈ H 1 (Ω) × L 2 (Ω) such that u ≥ 0, v ≥ 0 a.e and add relations (2.16a) and (2.16b), to obtain

(q ε α , -(u + v -1)) 2 -r ε α [(u ε α , v) 2 + (v ε α , u) 2 ] + 2r ε α (u ε α , v ε α ) 2 ≤ (∇u ε α , ∇(u ε α -u)) 2 + (p ε α , u ε α -u) 2 -ε q ε α 2 + (u ε α -u α , u -u ε α ) H 1 + (v ε α -v α , v -v ε α ) 2 ≤ (∇u ε α , ∇(u ε α -u)) 2 + (p ε α , u ε α -u) 2 + (u ε α -u α , u -u ε α ) H 1 + (v ε α -v α , v -v ε α ) 2 . As p ε α , v ε α are L 2 bounded
and u ε α is H 1 bounded (with respect to ε), the left side is uniformly bounded with respect to ε by a constant C (u,v) which only depends on u, v. Moreover relation (2.16c) implies

r ε α [(u ε α , v ε α ) 2 -α] = 0,
so that we finally obtain:

(q ε α , -(u + v -1)) 2 -r ε α [(u ε α , v) 2 + (v ε α , u) 2 ] + 2r ε α α ≤ C (u,v) . (3.17) 
Now, we distinguish two cases:

First case: assume (u α , v α ) 2 < α. As (u ε α , v ε α ) 2 → (u α , v α ) 2 in R, there exists ε 0 such that ∀ε ≤ ε 0 , (u ε α , v ε α ) 2 < α,
and relation (2.16c) implies that r ε α = 0. So the limit value is r α = 0. Second case: (u α , v α ) 2 = α. We cannot conclude immediately and need the following Lemma.

Lemma 3.1 Let α be such that (u α , v α ) = α. Then, there exist ū ∈ H 1 (Ω), ū ≥ 0 and v ∈ V ad such that ū + v -1 = 0 and (ū,

v α ) 2 + (v, u α ) 2 < 2α.
Proof -It is enough to prove that there exists ū ∈ H 1 (Ω) such that 0 ≤ ū ≤ 1 and

Ω ū(x)(1 -u α (x)) dx + Ω (1 -ū(x))u α (x) dx < 2α. (3.18)
Therefore, there exist ρ ∈]0, 2α[ and ε 0 such that

∀ε ≤ ε 0 , (ū, v ε α ) 2 + (v, u ε α ) 2 ≤ 2α -ρ. (3.19)
Now, we use (3.17) and (3.19): ∀ε ≤ ε 0 , we have

r ε α [2α -(2α -ρ) 2 ] ≤ r ε α [2α -(ū, v ε α ) 2 + (v, u ε α ) 2 ] ≤ C (ū,v) . So ∀ε ≤ ε 0 r ε α ≤ C (ū,v) ρ ,
where C (ū,v) is a positive constant that depends only on ū and v . We have proved the following Proposition 3.1 Let α be fixed. There exists C α > 0 and ε 0,α > 0 such that

∀ε ≥ ε 0,α 0 ≤ r ε α ≤ C α .
3.2 Estimates on q ε α Once we have r ε α estimate, we use relation (3.17) to obtain

∀u ∈ H 1 (Ω) such that u ≥ 0, ∀v ∈ L 2 (Ω), v ≥ 0 -(q ε α , u + v -1) 2 ≤ C (u,v) . (3.20) Let us choose χ ∈ L ∞ (Ω) such that χ ∞ ≤ 1, set u χ = 0 and v χ = 1 + χ 2 in relation (3.20) to obtain ∀χ ∈ L ∞ (Ω), χ L ∞ (Ω) ≤ 1, (q ε α , χ) 2 ≤ C χ ≤ C.
where C is a positive constant independent of χ. Indeed, from the previous computation it iis easy to check that C χ does not depend on χ as soon as χ ∞ ≤ 1. So q ε α is bounded in (L ∞ ) ′ (Ω) i.e. in M(Ω) by a constant independent of ε. Here M(Ω) denotes the space of radon measures on Ω.

From the previous estimates on r ε α and q ε α , there exist r α in R and q α ∈ M(Ω) such that r ε α → r α in R and q ε α * ⇀ q α weakly-star in M(Ω).

(P α ) optimality system

We may pass to the limit in the penalized optimality system : Theorem 3.1 Assume u α is a solution to (P α ) and v α = 1u α . There exists a Lagrange multiplier (q α , r α ) ∈ M(Ω) × R + such that for all u ∈ H 1 (Ω) ∩ L ∞ (Ω), u ≥ 0 and for all v ∈ V ad ∩ L ∞ (Ω) we have

(H * (Hu α -g), u -u α ) 2 + q α , u + v -1 M,L ∞ + λ (∇u α , ∇(u -u α )) 2 +r α [(u -u α , v α ) 2 + (u α , v -v α ) 2 ] ≥ 0, (3.21a) r α [(u α , v α ) 2 -α] = 0. (3.21b) Proof -Let be u ∈ H 1 (Ω) ∩ L ∞ (Ω), u ≥ 0 and v ∈ V ad ∩ L ∞ (Ω).
We add (2.16a) and (2.16b) :

(p ε α , u -u ε α ) 2 + (q ε , u + v -1) 2 -(q ε , u ε α + v ε α -1) 2 + r ε α [(u ε α , v -v ε α ) 2 (u -u ε α , v ε α ) 2 ] + (u ε α -u α , u -u ε α ) H 1 + (v ε α -v α , v -v ε α ) 2 + λ (∇u ε α , ∇(u -u ε α )) ≥ 0. As -(q ε α , u ε α + v ε α -1) = -ε||q ε || 2 is always negative, we have (p ε α , u -u ε α ) 2 + (q ε α , u + v -1) + λ (∇u ε α , ∇(u -u ε α )) + (u ε α -u α , u -u ε α ) H 1 + (v ε α -v α , v -v ε α ) + r ε α [(u -u ε α , v ε α ) 2 + (u ε α , v -v ε α )] ≥ 0.
Passing to the limit in the above relations gives the result. ✷ The above system may be decoupled taking respectively u = u α and v = v α : Corollary 3.1 Assume u α is a solution to (P α ) and v α = 1-u α . There exists a Lagrange multiplier (q α , r α ) ∈ M(Ω) × R + such that ∀u ∈ H 1 (Ω) ∩ L ∞ (Ω) such that u ≥ 0 (H * (Hu αg) + r α v α , uu α ) 2 + λ (∇u α , ∇(uu α )) 2 + q α , uu α M,L ∞ ≥ 0, (3.22a) 

∀v ∈ V ad ∩ L ∞ (Ω) q α , v -v α M,L ∞ + r α (u α , v -v α ) 2 ≥ 0, (3.22b 

Conclusion

We have obtained optimality conditions for the relaxed problem. However it is impossible to get convergence results as α → 0. Indeed the binary constraint does not allow H 1 functions and the limit function would not fit the functional framework. A generalization is to consider in a first step W 1,1 functions and use the gradient L 1 instead of the L 2 -norm. A regularization process is necessary but still possible (via Moreau-Yosida approximation) and we believe that the same techniques remain applicable. For the general case (BV norm) we need different tools, for instance sharp non smooth analysis. However, the relaxed H 1 formulation is suitable for numerical purpose. As we get the optimality system satisfied by solutions of (P α ), next issue is to perform computations to solve it.
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 22 Ω) + λJ(u), u ∈ D . where 1. Ω is a bounded open domain in R 2 with a smooth boundary, 2. D = {u ∈ BV (Ω) : u(u -1) = 0 a.e in Ω}, where BV (Ω) denotes the functions of bounded variation space defined by
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 12 H := BH o where B is a linear blur (convolution) operator and H o is the (linear)

  )r α [(u α , v α ) 2α] = 0. (3.22c)

From now, we denote

For every x ∈ Ω, we set

It is clear that 0 ≤ ū ≤ 1 and ū ∈ H 1 (Ω) [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 7.8]

.

We start with I 1 :

(u α -1)(2u α -1) < 0 since u α ≤ 1 and 2u α -1 ≥ 0. At last

✷ This Lemma provides test functions (ū, v) which do not depend on ε and