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ADAPTIVE METHODS FOR SEQUENTIAL IMPORTANCE SAMPLING
WITH APPLICATION TO STATE SPACE MODELS

JULIEN CORNEBISE, ÉRIC MOULINES, AND JIMMY OLSSON

Abstract. In this paper we discuss new adaptive proposal strategies for sequential Monte
Carlo algorithms—also known as particle filters—relying on criterions evaluating the quality
of the proposed particles. The choice of the proposal distribution is a major concern and
can dramatically influence the quality of the estimates. Thus, we show how the long-
used coefficient of variation (suggested by Kong et al., 1994) of the weights can be used
for estimating the chi-square distance between the target and instrumental distributions
of the auxiliary particle filter. As a by-product of this analysis we obtain an auxiliary
adjustment multiplier weight type for which this chi-square distance is minimal. Moreover,
we establish an empirical estimate of linear complexity of the Kullback-Leibler divergence
between the involved distributions. Guided by these results, we discuss adaptive designing of
the particle filter proposal distribution, e.g., by means of population Monte Carlo techniques,
and illustrate the methods on several numerical examples.

1. Introduction

Easing the role of the user by tuning automatically the key parameters of sequential Monte
Carlo (SMC) algorithms has been a long-standing topic in the community, notably through
adaptation of the particle sample size or the way the particles are proposed. In this paper
we focus on the latter issue and develop methods for adjusting adaptively the importance
sampling distribution of the particle filter.

Adaptation of the number of particles has been treated by several authors. Legland and
Oudjane (2006) (and later Hu et al., 2008, Section IV) increase the size of the particle sample
is until the total weight mass reaches a positive threshold, avoiding a situation where all
particles are located in regions of the state space having zero posterior probability. Another
approach, suggested by Fox (2003) and refined in (Soto, 2005; Straka and Simandl, 2006),
consists in increasing the sample size until the Kullback-Leibler divergence (KLD) between
the true and estimated target distributions is below a given threshold.

Unarguably, setting an appropriate sample size is a key ingredient of any statistical esti-
mation procedure, and there are cases where the methods mentioned above may be used for
designing this size satisfactorily; however increasing the sample size only is far from being
always sufficient for achieving efficient variance reduction. Indeed, as in any algorithm based
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on importance sampling, a significant discrepancy between the proposal and target distri-
butions may require an unreasonably large number of samples for decreasing the variance
of the estimate under a specified value. For a very simple illustration, consider importance
sampling estimation of the mean m of a normal distribution using as importance distribution
another normal distribution having zero mean and same variance: in this case, the variance
of the estimate grows like exp(m2)/N , N denoting the number of draws, implying that the
sample size required for ensuring a given variance grows exponentially fast with m.

This points to the need for adapting the importance distributions of the particle filter, e.g.,
by adjusting the proposal kernels. Less work has been done on this topic, with the notable
exception of (Pitt and Shephard, 1999) (see also Doucet et al., 2000), in which methods for
approximating the so-called optimal kernel are developed, and, more recently, (Chan et al.,
2003), in which the authors aim at minimizing the expectation of a cost function, such as
the mean square error or the negative of the effective sample size, over a parametric family
of kernels.

Most of the algorithms described above require tools, such as, e.g., the coefficient of
variation (CV) proposed by Kong et al. (1994), for evaluating on-line the quality of the
particle swarm. In this article we justify theoretically (Theorem 4.1(ii)) that the CV can be
used for estimating sequentially the chi-square distance (CSD) between the auxiliary SMC
target and importance distributions. We also propose a new empirical estimate of the KLD
(Theorem 4.1(i)) having, like the CV, a computational complexity which is linear in the
number of particles. Moreover, by examining the derived asymptotic CSD we identify a
type of auxiliary SMC adjustment multiplier weights which minimize this CSD for a given
proposal kernel (Corollary 4.1). In Section 5 we use—and this is the main objective of
the paper—these empirical estimates to design adaptive algorithms to construct particle
approximations. Finally, in the implementation section (Section 6), we apply the proposed
algorithms to approximate the filtering distribution in several state-space models.

2. Some notation and definitions

In the following we assume that all random variables are defined on a common probability
space (Ω,F ,P) and let, for any general state space (Ξ,B(Ξ)), P(Ξ) and B(Ξ) be the sets of
probability measures on (Ξ,B(Ξ)) and measurable functions from Ξ to R, respectively.

A kernel K from (Ξ,B(Ξ)) to some other state space (Ξ̃,B(Ξ̃)) is called finite if K(ξ, Ξ̃) <

∞ for all ξ ∈ Ξ and Markovian if K(ξ, Ξ̃) = 1 for all ξ ∈ Ξ. Moreover, K induces two

operators, one transforming a function f ∈ B(Ξ × Ξ̃) satisfying
∫

Ξ̃
|f(ξ, ξ̃)|K(ξ, dξ̃) < ∞

into another function

ξ 7→ K(ξ, f) ,

∫

Ξ̃

f(ξ, ξ̃)K(ξ, dξ̃)

in B(Ξ); the other transforms a measure ν ∈ P(Ξ) into another measure

A 7→ νK(A) ,

∫

Ξ

K(ξ, A) ν(dξ) (2.1)
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in P(Ξ̃). Furthermore, for any probability measure µ ∈ P(Ξ) and function f ∈ B(Ξ)
satisfying

∫

Ξ
|f(ξ)|µ(dξ) <∞, we write µ(f) ,

∫

Ξ
f(ξ)µ(dξ).

The outer product of the measure γ and the kernel T , denoted by γ ⊗ T , is defined as the
measure on the product space Ξ × Ξ̃, equipped with the product σ-algebra B(Ξ) ⊗ B(Ξ̃),
satisfying

ν ⊗K(A) ,

∫∫

Ξ×Ξ̃

γ(dξ)T (ξ, dξ′)1A(ξ, ξ′) (2.2)

for any A ∈ B(Ξ) ⊗ B(Ξ̃). For a non-negative function f ∈ B(Ξ), we define the measure
γ[f ] ∈ P(Ξ) by

ν[f ](A) , ν(f1A) , (2.3)

for any A ∈ B(Ξ).
Finally, a set C of real-valued functions on Ξ is said to be proper if the following conditions

hold: i) C is a linear space; ii) if g ∈ C and f is measurable with |f | ≤ |g|, then |f | ∈ C; iii)
for all c ∈ R, the constant function f ≡ c belongs to C.

We call a set {ξN,i}MN

i=1 of random variables, referred to as particles and taking values in Ξ,

and nonnegative weights {ωN,i}MN

i=1 a weighted sample on Ξ. Here MN is a (possibly random)
natural number. From (Douc and Moulines, 2005) we adopt the following definition, where

ΩN ,
∑MN

j=1 ωN,j.

Definition 2.1. A weighted sample {(ξN,i, ωN,i)}MN

i=1 on Ξ is said to be consistent for the
probability measure ν ∈ P(Ξ) and the proper set C if, for any f ∈ C, as N →∞,

Ω−1
N

MN
∑

i=1

ωN,if(ξN,i)
P−→ ν(f) ,

Ω−1
N max

1≤i≤MN

ωN,i
P−→ 0 .

Alternatively, we will sometimes say that the weighted sample in Definition 2.1 targets the
measure ν.

3. Auxiliary sequential importance sampling

As mentioned in the introduction, the objective of this paper is the development of adap-
tive methods for the auxiliary sequential importance sampling (ASIS) algorithm (originally
proposed by Pitt and Shephard, 1999) which is recalled below.

Suppose that we have at hand a weighted sample {(ξN,i, ωN,i)}MN

i=1 targeting ν ∈ P(Ξ).
We wish to transform this sample into a new weighted particle sample approximating the
probability measure

µ(·) ,
νL(·)
νL(Ξ̃)

=

∫

Ξ
L(ξ, ·) ν(dξ)

∫

Ξ
L(ξ′, Ξ̃) ν(dξ′)

(3.1)



4 J. CORNEBISE, É. MOULINES, AND J. OLSSON

on some other state space (Ξ̃,B(Ξ̃)). Here L is a finite transition kernel from (Ξ,B(Ξ))
to (Ξ̃,B(Ξ̃)). A natural strategy for achieving this is to replace ν in (3.1) by its particle
approximation, yielding

µN(·) ,

MN
∑

i=1

ωN,iL(ξN,i, Ξ̃)
∑MN

j=1 ωN,jL(ξN,j , Ξ̃)

[

L(ξN,i, ·)/L(ξN,i, Ξ̃)
]

as an approximation of µ, and simulate M̃N new particles from this distribution; however,
in many applications direct simulation from µN is infeasible without the application of the
computationally expensive auxiliary accept-reject techniques introduced by Hürzeler and
Künsch (1998) and thoroughly analyzed by Künsch (2005). This difficulty can be overcome

by simulating new particles {ξ̃N,i}M̃N

i=1 from the instrumental mixture distribution

πN(·) ,

MN
∑

i=1

ωN,iψN,i
∑MN

j=1 ωN,jψN,j

R(ξN,i, ·) ,

where {ψN,i}MN

i=1 are positive numbers referred to as adjustment multiplier weights and R is

a Markovian kernel, and associating these particles with weights {dµN/dπN(ξ̃N,i)}M̃N

i=1 . In
this setting, a new particle position is simulated from the stratum R(ξN,i, ·) with probability
proportional to ωN,iψN,i. Haplessly, the Radon-Nikodym derivative dµN/dπN is expensive
to evaluate since this involves summing over MN terms. Thus, we introduce, as suggested
by Pitt and Shephard (1999), an auxiliary variable corresponding to the selected stratum,
and target instead the measure

µaux
N ({i} × A) ,

ωN,iL(ξN,i, Ξ̃)
∑MN

j=1 ωN,jL(ξN,j, Ξ̃)

[

L(ξN,i, A)/L(ξN,i, Ξ̃)
]

on the product space {1, . . . ,MN} × Ξ. Since µN is the marginal distribution of µaux
N

with respect to the particle position, we may sample from µN by simulating instead a set

{(IN,i, ξ̃N,i)}M̃N

i=1 of indices and particle positions from the instrumental distribution

πaux
N ({i} × A) ,

ωN,iψN,i
∑MN

j=1 ωN,jψN,j

R(ξN,i, A)

and assigning each draw (IN,i, ξ̃N,i) the weight

ω̃N,i , ψ−1
N,IN,i

dL(ξN,IN,i
, ·)

dR(ξN,IN,i
, ·)(ξ̃N,i)

(3.2)

being proportional to dµaux
N /dπaux

N (IN,i, ξ̃N,i). Hereafter, we discard the indices and take

{(ξ̃N,i, ω̃N,i)}M̃N

i=1 as an approximation of µ. The algorithm is summarized in Algorithm 1.
Note that setting, for all 1 ≤ i ≤ MN , ψN,i ≡ 1 in Algorithm 1 yields the standard

bootstrap particle filter presented in (Gordon et al., 1993).
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Algorithm 1 Nonadaptive ASIS

Require: {(ξN,i, ωN,i)}MN

i=1 targets ν.

1: Draw {IN,i}M̃N

i=1 ∼M(M̃N , {ωN,jψN,j/
∑MN

ℓ=1 ωN,ℓψN,ℓ}MN

j=1),

2: simulate {ξ̃N,i}M̃N

i=1 ∼
⊗M̃N

i=1 R(ξN,IN,i
, ·),

3: set, for all i ∈ {1, . . . , M̃N},
ω̃N,i ← ψ−1

N,IN,i
dL(ξN,IN,i

, ·)/dR(ξN,IN,i
, ·)(ξ̃N,i) .

4: take {(ξ̃N,i, ω̃N,i)}M̃N

i=1 as an approximation of µ.

We may expect that the efficiency of Algorithm 1 depends highly on the choice of adjust-
ment multiplier weights and proposal kernel. The former issue was dealt with by Douc et
al. (2007b) (see also Olsson et al., 2007) who identified adjustment multiplier weights for
which the increase of asymptotic variance at a single iteration of the algorithm is minimal.
In this article we focus on the latter issue and discuss strategies for adaptive designing of
the proposal kernel. Unlike Douc et al. (2007b), we base our methods on the results of the
next section describing the asymptotic KLD and CSD between the target and importance
distributions of the auxiliary SMC algorithm.

4. Theoretical results

Consider the following assumptions.

(A1) The initial sample {(ξN,i, ωN,i)}MN

i=1 is consistent for (ν,C).

(A2) There exists a function Ψ : Ξ → R
+ such that ψN,i = Ψ(ξN,i); moreover, Ψ ∈

C ∩ L1(Ξ, ν) and L(·, Ξ̃) ∈ C.

Under these assumptions we define for (ξ, ξ̃) ∈ Ξ× Ξ̃ the weight function

Φ(ξ, ξ̃) , Ψ−1(ξ)
dL(ξ, ·)
dR(ξ, ·)(ξ̃) . (4.1)

The following result describes how the consistency property is passed through one step of
the ASIS algorithm. A somewhat less general version of this result was also proved by Douc
et al. (2007b, Theorem 3.1).

Proposition 4.1. Assume (A1, A2). Then the weighted sample {(ξ̃N,i, ω̃N,i)}M̃N

i=1 is consis-

tent for (ν, C̃), where C̃ , {f ∈ L1(Ξ̃, µ), L(·, |f |) ∈ C}.

The result above is a direct consequence of Lemma A.1 and the fact that the set C̃ is
proper.
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Let µ and ν be two probability measures in P(Λ) such that µ is absolutely continuous
with respect to ν. We then recall that the KLD and the CSD are given, respectively, by

dKL(µ||ν) ,

∫

Λ

log[dµ/dν(λ)]µ(dλ) ,

dχ2(µ||ν) ,

∫

Λ

[dµ/dν(λ)− 1]2 ν(dλ) .

We will use the following quantities to compute empirical estimates of the KLD and CSD
between µaux

N and πaux
N . Indeed, define

E({ω̃N,i}M̃N

i=1 ) , Ω̃−1
N

M̃N
∑

i=1

ω̃N,i log
(

M̃N Ω̃−1
N ω̃N,i

)

,

CV2({ω̃N,i}M̃N

i=1 ) , M̃N Ω̃−2
N

M̃N
∑

i=1

ω̃2
N,i − 1 .

The criterion E is the negated Shannon entropy of the importance weights. The Shannon
entropy is maximal when all the weights are equal and minimal when all of the weights
are zero except one. The criterion CV2 is the square of the coefficient of variation of the
importance weights, which was suggested by Kong et al. (1994) as a means for detecting
weight degeneracy. If all the weights are equal, then CV2 is equal to zero. On the other
hand, if all the weights are zero except for one, then the coefficient of variations is equal to
M̃N − 1 which is its maximum value.

The next theorem, which is the main result of this section and whose proof is found in
the appendix shows that relates E and CV2 to two measures of the discrepancy between the
proposal distribution and the target distribution, namely, the KLD for the E criterion and
the CSD for the CV2 criterion.

Theorem 4.1. Assume (A1, A2). Then the following holds as N →∞.

i) If L(·, | logΦ|) ∈ C ∩ L1(Ξ, ν), then
∣

∣

∣
dKL(µaux

N ||πaux
N )− E({ω̃N,i}M̃N

i=1 )
∣

∣

∣

P−→ 0 .

In addition,

dKL(µaux
N ||πaux

N )
P−→ ηKL(Ψ) , ν ⊗ L{log[Φν(Ψ)/νL(Ξ̃)]}/νL(Ξ̃) , (4.2)

ii) If L(·,Φ) ∈ C, then
∣

∣

∣
dχ2(µaux

N ||πaux
N )− CV2({ω̃N,i}M̃N

i=1 )
∣

∣

∣

P−→ 0 .

In addition,

dχ2(µaux
N ||πaux

N )
P−→ ηχ2(Ψ) , ν(Ψ) ν ⊗ L(Φ)/[νL(Ξ̃)]2 − 1 . (4.3)
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The expressions appearing in the RHS of Eqs. (4.2) and (4.3) may be interpreted as the
KLD and CSD between probability distributions. Indeed, consider the following probability
measures on the product space

(

Ξ× Ξ̃, B(Ξ)⊗ B(Ξ̃)
)

ν ⊗ L
νL(Ξ̃)

(A) =

∫∫

Ξ×Ξ̃
ν(dξ)L(ξ, dξ′)1A(ξ, ξ′)

∫∫

Ξ×Ξ̃
ν(dξ)L(ξ, dξ′)

, (4.4)

ν[Ψ]⊗ R
ν(Ψ)

(A) =

∫∫

Ξ×Ξ̃
ν(dξ)Ψ(ξ)R(ξ, dξ′)1A(ξ, ξ′)

∫∫

Ξ×Ξ̃
ν(dξ)Ψ(ξ)R(ξ, dξ′)

, (4.5)

where A ∈ B(Ξ) ⊗ B(Ξ̃) and the outer product ⊗ of a measure and a kernel is defined in
(2.2).

Proposition 4.2. Assume (A1, A2). Then the following holds.

i) The limiting Kullback-Leibler divergence in (4.2) is the KLD between the probability

distributions ν ⊗ L/νL(Ξ̃) and ν[Ψ]⊗ ν(Ψ)/ν(Ψ), that is,

ηKL(Ψ) = dKL

(

ν ⊗ L
νL(Ξ̃)

∥

∥

∥

∥

ν[Ψ]⊗ R
ν(Ψ)

)

.

ii) The limiting chi-square distance in (4.3) is the CSD between the probability distribu-
tions ν ⊗ L/νL(Ξ̃) and ν[Ψ]⊗ ν(Ψ)/ν(Ψ), that is,

ηχ2(Ψ) = dχ2

(

ν ⊗ L
νL(Ξ̃)

∥

∥

∥

∥

ν[Ψ]⊗R
ν(Ψ)

)

.

The expressions of the limiting measures in Proposition 4.2 then allow for deriving the
adjustment multipliers weights Ψ which minimize the corresponding discrepancy measures.
The next corollary provides the adjustment multiplier weight function minimizing, for a
given proposal kernel R, the asymptotic KLD and CSD. In the KLD case, the best that we

can do is to choose Ψ such that the two marginal distributions ν⊗L

νL(Ξ̃)
(·× Ξ̃) and ν[Ψ]⊗R

ν(Ψ)
(·× Ξ̃)

are equal on the space (Ξ,B(Ξ)). This is a direct consequence of the so-called chain rule
for entropy (see Cover and Thomas, 1991, Theorem 2.2.1). The optimization is slightly less
obvious for the chi-square distance, yet an explicit expression for the adjustment multiplier
weights can be found in this case. Again the proof is found in the appendix.

Corollary 4.1. Assume (A1, A2). Then the following holds.

i) If L(·, | logΦ|) ∈ C ∩ L
1(Ξ, ν), then arg minΨ ηχ2(Ψ) = Ψ∗

KL,R, where

Ψ∗
KL,R(ξ) , L(ξ, Ξ̃) .

ii) If L(·,Φ) ∈ C, then arg minΨ ηχ2(Ψ) = Ψ∗
χ2,R

, where

Ψ∗
χ2,R(ξ) ,

√

∫

Ξ̃

dL(ξ, ·)
dR(ξ, ·)(ξ̃)L(ξ, dξ̃) .
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It is worthwhile to notice that the optimal adjustment weights for the KLD do not de-
pend on the proposal kernel R. The minimal value ηKL(Ψ∗

KL,R) of the limiting KLD is the

conditional relative entropy between ν ⊗ L/νL(Ξ̃) and ν[Ψ]⊗ ν(Ψ)/ν(Ψ).

In both cases, letting R(·, A) = L(·, A)/L(·, Ξ̃) yields, as we may expect, the chi-square

optimal adjustment multiplier weight function Ψ∗
KL,R(·) = Ψ∗

χ2,R
(·, Ξ̃) = L(·, Ξ̃), resulting in

uniform importance weights ω̃N,i ≡ 1.

5. Adaptive importance sampling

5.1. ASIS adaptation by minimization of estimated KLD and CSD over a para-
metric family. In the light of Theorem 4.1, a natural strategy for adaptive design of πaux

N

is to minimize the empirical estimate E (or CV2) of the KLD (or CSD) under considera-
tion over all proposal kernels belonging to some parametric family {Rθ}θ∈Θ. Thus, assume
that there exists a random noise variable ǫ, having distribution λ on some measurable space
(Λ,B(Λ)), and a family {Fθ}θ∈Θ of mappings from Ξ × Λ to Ξ̃ such that we are able to

simulate ξ̃ ∼ Rθ(ξ, ·), for ξ ∈ Ξ, by simulating ǫ ∼ λ and letting ξ̃ = Fθ(ξ, ǫ). We denote by
Φθ the importance weight function associated with Rθ and set Φθ ◦Fθ(ξ, ǫ) , Φθ(ξ, Fθ(ξ, ǫ)).

In this setting, assume that (A1) holds and suppose that we have simulated, as in the first

step of Algorithm 1, indices {IN,i}M̃N

i=1 and noise variables {ǫN,i}M̃N

i=1 ∼ λ⊗M̃N . Now, keeping
these indices and noise variables fixed, we can form an idea of how the KLD varies with θ

via the mapping θ 7→ E({Φθ ◦ Fθ(ξN,IN,i
, ǫN,i)}M̃N

i=1 ). Similarly, the CSD can be studied by

using CV2 instead of E . This suggests an algorithm in which the particles are reproposed

using Rθ∗ , where θ∗ = arg minθ∈Θ E({Φθ ◦ Fθ(ξN,IN,i
, ǫN,i)}M̃N

i=1 ). The minimum θ∗ exists if,
e.g., the parameter space Θ is compact and the mapping θ 7→ Φθ ◦ Fθ(ξ, ǫ) is continuous for
all (ξ, ǫ), or when Θ is finite. The algorithm is summarized below, and its modification for
minimization of the empirical CSD is straightforward.

Algorithm 2 Adaptive ASIS

Require: (A1)

1: Draw {IN,i}M̃N

i=1 ∼M(M̃N , {ωN,jψN,j/
∑MN

ℓ=1 ωN,ℓψN,ℓ}MN

j=1),

2: simulate {ǫN,i}M̃N

i=1 ∼ λ⊗M̃N ,

3: θ∗ ← arg minθ∈Θ E({Φθ ◦ Fθ(ξN,IN,i
, ǫN,i)}M̃N

i=1 ),

4: set ξ̃N,i
∀i← Fθ∗(ξN,IN,i

, ǫN,i) and ω̃N,i
∀i← Φθ∗(ξN,IN,i

, ξ̃N,i),

5: let {(ξ̃N,i, ω̃N,i)}M̃N

i=1 approximate µ.

Remark 5.1. In order to correctly deal with particles having null weights when implementing
the empirical estimate of the KLD in practice, one should ensure that the convention 0 log 0 =
0 is supported by the compiler or enforced by the user.
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Remark 5.2. A slight modification of Algorithm 2, lowering the added computational burden,
is to apply the adaptation mechanism only when the estimated KLD (or CSD) is above a
chosen threshold κ, that is replacing

θ∗ ← arg minθ∈Θ E({Φθ ◦ Fθ(ξN,IN,i
, ǫN,i)}M̃N

i=1 )

in Algorithm 2 by

if E({Φθ0
◦ Fθ0

(ξN,IN,i
, ǫN,i)}M̃N

i=1 ) ≥ κ then

θ∗ ← arg minθ∈Θ E({Φθ ◦ Fθ(ξN,IN,i
, ǫN,i)}M̃N

i=1 ),
else

θ∗ ← θ0,
end if

where the parameter θ0 ∈ Θ corresponds to the proposal kernel used when the adaptation
operation is put on standby. Here the threshold value κ may be designed by, e.g., estimating
prefatorily the KLDs over a relatively long simulated observation record and relating these
empirical values to the ratios between the MSE values of the nonadaptive filter and those
of the adaptive filter. More specifically, say that we want the adaptation mechanism to be
automatically activated when this may decrease the error by a factor α; we then identify all
time steps in the calibration record for which the MSE ratios exceed α and let κ take the
minimal value among the corresponding empirical KLD estimates.

Remark 5.3. It is possible to establish a law of large numbers as well as a central limit
theorem for the algorithm above, similarly to what has been done for the nonadaptive auxiliary
particle filter by Douc et al. (2007b) and Olsson et al. (2007). More specifically, suppose
that M̃N/MN → ℓ ∈ [0,∞] as N →∞ and that the initial sample {(ξN,i, ωN,i)}MN

i=1 satisfies,
for all f belonging to a given class A of functions, the central limit theorem

aNΩ−1
N

MN
∑

i=1

ωN,i[f(ξN,i)− µ(f)]
D−→ N [0, σ2(f)] ,

where the sequence {aN}N is such that aNMN → β ∈ [0,∞) as N → ∞ and σ : A → R
+

is a functional. Then the sample {(ξ̃N,i, ω̃N,i)}MN

i=1 produced in Algorithm 2 is asymptotically

normal for a class of functions Ã in the sense that, for all f ∈ Ã,

Ω̃−1
N

M̃N
∑

i=1

ω̃N,i[f(ξ̃N,i)− µ(f)]
D−→ N [0, σ̃2(f)] ,

where

σ̃2(f) , βℓ−1ν(ΨRθ∗{·,Φ2
θ∗

[f − µ(f)]})ν(Ψ)/[νL(Ξ̃)]2 + σ2(L{·, [f − µ(f)]})/[νL(Ξ̃)]2

and θ∗ minimizes the asymptotic KLD. The complete proof of this result is however omitted
for brevity.
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5.2. ASIS adaptation by means of population Monte Carlo methods. Another
route to effective adaptive particle proposition goes via the D-kernel population Monte Carlo
(DPMC) algorithm presented in (Douc et al., 2007a) (and being a refinement of the basic
population Monte Carlo algorithm introduced by Cappé et al., 2004) in which the weights
of a proposal mixture comprising D stratas are adapted towards a better fit with the target
distribution. Applying the DPMC method in our context will yield an algorithm in which,
as soon as the empirical KLD is indicating a large discrepancy between µaux

N and πaux
N , each

proposed pair (IN,i, ξ̃N,i) is reproposed according to
∑D

d=1 αdQd((IN,i, ξ̃N,i), ·), that is, a mix-

ture of Markovian kernels {Qd}Dd=1 on the product space {1, . . . ,MN} × Ξ̃. In practice (cf.
Algorithm 3) only the particle components are moved, while the index transitions follow
the identity kernel. After this, the updated pairs are resampled multinomially with respect
to weights proportional to the Radon-Nikodym derivative dµaux

N /d[
∑D

d=1 αdQd((IN,i, ξ̃N,i), ·)]
evaluated at the pairs. The procedure is repeated, say, T times and at each step the mix-
ture weights {αd}Dd=1 are updated to favour kernels Qd associated with a high acceptance
probability at the preceding DPMC resampling operation. More specifically, we set αd pro-
portional to the survival rate of the corresponding Qd. There is nothing that prevents us
from using a number mN of index-particle pairs within the DPMC adaptation loop which
is larger than M̃N . Referring to the theoretical results obtained by Douc et al. (2007a), we
may expect (a proof is in progress) that this scheme, as the number of DPMC samples and
iterations increases, provides us with a set of mixture weights minimizing the KLD between
the measures µaux

N ⊗µaux
N and µaux

N ⊗
∑D

d=1 αdQd. The algorithmic details are presented in the
scheme below, in which we assume that the indices evolve according to the identity kernel
within the DPMC adaptation loop. We also assume that L and the Qd’s (which here describe
the DPMC transitions of the particle positions only) admit densities (denoted by the same

symbols) with respect to a common reference measure on Ξ̃.

Remark 5.4. Similarily to what is pointed out in Remark 5.2, the additional computational
work implied by the DPMC adaptation can be lightened by entering the DPMC loop (lines
5–13 in the scheme above) only when the empirical KLD exceeds a chosen threshold κ.

6. Application to state space models

For an illustration, we apply our methods to optimal filtering in state space models of type

Xk+1 = fk(Xk,Wk+1) , k ≥ 0 ,

Yk = hk(Xk, Vk) , k ≥ 0 ,

where {fk}∞k=0 and {hk}∞k=0 are sets of known R-valued functions, {Wk}∞k=1 and {Vk}∞k=0

are mutually independent sets of standard normal-distributed variables such that Wk+1 is
independent of {(Xi, Yi)}ki=0 and Vk is independent of Xk and {(Xi, Yi)}k−1

i=0 . In this setting,

we wish to approximate the filter distributions, that is, the posterior distributions φk(·) ,

P(Xk ∈ ·|Y0, . . . , Yk), k ≥ 0, which in general lack closed form expressions. By the filtering
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Algorithm 3 AIS with PMC-adaptation

Require: (A1)
1: Run steps 1 to 3 of Algorithm 1,

2: if E({ω̃N,i}M̃N

i=1 ) ≥ κ then

3: set αd

∀d← 1/D,

4: draw {JN,i}mN

i=1 ∼M(mN , {ω̃N,jΩ̃
−1
N }M̃N

j=1),
5: for t = 1, . . . , T do
6: draw {KN,i}mN

i=1 ∼M(mN , {αd}Dd=1),

7: draw {ξ̃′N,i}mN

i=1 ∼
⊗mN

i=1 QKN,i
(ξ̃N,JN,i

, ·),
8: set IN,i

∀i← IN,JN,i
,

9: update

ω̃′
N,i

∀i← ωN,IN,i
L(ξN,IN,i

, ξ̃′N,i)/

D
∑

d=1

αdQd(ξ̃N,JN,i
, ξ̃′N,i) ,

10: set ξ̃N,i
∀i← ξ̃′N,i,

11: update

αd

∀d← Ω̃′−1
N

mN
∑

i=1

ω̃′
N,i1KN,i

(d) ,

12: draw {JN,i}mN

i=1 ∼M(mN , {ω̃′
N,jΩ̃

′−1
N }mN

j=1),
13: end for
14: let {(ξ̃′N,i, ω̃

′
N,i)}mN

i=1 approximate µ,
15: else
16: let {(ξ̃N,i, ω̃N,i)}M̃N

i=1 approximate µ.
17: end if

recursion it holds that

φk+1(A) =

∫∫

A×R
g(xk+1, Yk+1)Q(xk, dxk+1)φk(dxk)

∫∫

R×R
g(xk+1, Yk+1)Q(xk, dxk+1)φk(dxk)

, (6.1)

where Q is the transition kernel of the unobservable chain {Xk}∞k=0 and g(x, ·) is the density
of the distribution P(Yk ∈ ·|Xk = x), that is, the distribution of the observation Yk given
the hidden state Xk = x. From (6.1) we conclude that this filtering problem can, with

Ξ = Ξ̃ = R, ν = φk, µ = φk+1, and Lk(x,A) =
∫

A
g(x′, Yk+1)Q(x, dx′), be perfectly cast

into the framework of Section 3, rendering sequential particle approximation of the filter
measures possible. At each time step we propose new particles according to the dynamics
of the hidden chain, that is, Rk = Q.

6.1. Nonlinear autoregressive model observed in noise. As a first example we consider
a first order (possibly nonlinear) autoregression observed in noise, for which fk(x, w) =
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m(x) + σw(x)w and hk(x, v) = x+ σvv. Note that the bivariate Markov chain {(Xk, Yk)}∞k=0

is time homogenous since neither fk nor hk vary with k in this case. For a model of this type
the optimal adjustment multiplier weight function Ψ∗

χ2,Q can be expressed on closed form:

Ψ∗
χ2,Q(x) ∝

√

2σ2
v

2σ2
w(x) + σ2

v

exp

(

−Y
2
k+1

σ2
v

+
m(x)

2σ2(x) + σ2
v

[2Yk+1 −m(x)]

)

(6.2)

We will study the following two special cases of the model in question:

• mk(x) ≡ 0, σw(x) =
√

β0 + β1x2

This is the classical Gaussian autoregressive conditional heteroscedasticity (ARCH)
model observed in noise (see Bollerslev et al., 1994). In this case an experiment
was conducted where we compared: (i) a plain nonadaptive particle filter for which
Ψ ≡ 1, that is, the bootstrap particle filter of Gordon et al. (1993), (ii) a non-
adaptive auxiliary filter based on the chi-square optimal weights Ψ∗

χ2,Q
, and adaptive

bootstrap filters with uniform adjustment multiplier weights using direct minimiza-
tion of (iii) the empirical CSD and (iv) the empirical KLD (Algorithm 2). Here
the CV2 and E were minimized over the family of kernels obtained by scaling the
variance of Q, so that ξk+1

N,i = Fθ(ξ
k
N,Ik

N,i

,Wk+1), with Fθ(ξ, w) = θ
√

β0 + β1ξ2w and

θ ∈ Θ , (0, 8]. This experiment was repeated for impetuously varying as well as close
to constant volatilities of the hidden process, corresponding to the parameter vectors
(β0, β1, σ

2
v) = (0.1, 2, 0.1) and (β0, β1, σ

2
v) = (0.5, 0.1, 0.25), respectively. In order to

design a challenging test of the adaptation procedures we replaced the simulated ob-
servations at k = 7 by outliers located at distances 50β0 and 6β0 from the mean level
(zero) of {Xk}∞k=0 in the two cases, respectively. For these observation records, each
particle filter approximated 400 filter means using 5,000 particles. The mean square
errors in the figures are based on reference values obtained using a bootstrap particle
filter with as many as 500,000 particles. The outcome is plotted in Figures 1(a) and
1(b), from which it is evident that the two adaptive particle filters outperform the
other two in the case of a slowly varying volatility. In this case the optimal weight
function in (6.2) is almost constant at all time steps, making the two nonadaptive
filters close to equivalent. In the case of impetuously varying observations, the auxil-
iary filter based on optimal weights perform almost as well as the adaptive filters. It
is also to be noted that the adaptive filters based on CV2 and E perform equivalently.
The values, presented in Table 1, of the optimal parameters θ∗ associated with these
filters at different time steps show that the adaptively chosen proposal kernels are
close to identical for the two approaches.

• m(x) = ϕx, σw(x) ≡ σ
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Table 1. Mean values of the optimal parameter θ∗ over time for the CSD-
based as well as the KLD-based versions of Algorithm 2. The model under
consideration was the ARCH model with informative observations and each
value is based on 400 runs of each filter. The corresponding MSE are plotted
in Figure 1(b)

Adaptation method k = 1 k = 2 k = 3 k = 4 k = 5

CSD-based 1.49 0.59 1.18 0.92 1.50
KLD-based 1.46 0.57 1.13 0.87 1.46

Adaptation method k = 6 k = 7 k = 8 k = 9 k = 10

CSD-based 0.81 2.90 0.67 0.70 1.74
KLD-based 0.76 2.85 0.62 0.66 1.69

A similar trial was conducted also for a standard linear/Gaussian model, and this
time we involved (i) a standard boostrap filter, adaptive bootstrap filters minimizing
(ii) the empirical CSD and (iii) the empirical KLD, and (iv) a bootstrap filter using
DPMC adaptation. For this model, exact posterior filter means can be obtained
using the Kalman filter, and these exact values were used as reference when com-
puting mean square errors. For the DPMC-based adaptive filter, we let the Qd’s be
independence samplers located at grid points md = −3 + 0.1d, where 1 ≤ d ≤ 60;
more specifically, we let Qd(x, x

′) = exp(−(x′ − md)
2/0.2)/

√
0.1π. The number of

DPMC adaptation iterations was T = 30. Also in this example the CV2 and E
were minimized over the family of kernels obtained by scaling the variance of the
prior kernel Q. We set the model parameters to (ϕ, σ2

v , σ
2
w) = (0.9, 0.01, 0.1), yield-

ing informative observations, and the observation record under consideration was
(Y0, , . . . , Y4) = (0.69 0.39 0.34 3 0.54); here an outlier was placed at k = 3. The re-
sult is displayed in Fig 1(c) from which it is clear that the three adaptation strategies
lead to drastic improvements of the SMC filter mean estimates vis-à-vis the bootstrap
filter. Again, the mean square errors were based on 400 runs of each filter (using still
5,000 particles).

6.2. Growth model. We now turn to the univariate growth model, discussed by Kitagawa
(1987), where the observations are nonlinear in the hidden state. More specifically, hk(x, v) =
bx2 + σvv and fk(x, w) = ak(x) + σww, with

ak(x) = α0x+ α1
x

1 + x2
+ α2 cos(1.2k) , k ≥ 0 ,

where (α0, α1, α2, b, σ
2
w, σ

2
v) = (0.5, 25, 8, 0.05, 1, 1), corresponding to the non-informative case

discussed in (Cappé et al., 2005, pp. 230–231). The initial state is known and set toX0 = 0.1.
For this model the optimal weights given in Corollary 4.1 lack closed form expressions.
The filters run were same as in the previous example. The CV2 and E were once again
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Figure 1. Plot of MSE performances (on log-scale) of the bootstrap filter (�),
the auxiliary filter based on optimal weights (◦), adaptive filters minimizing
the empirical KLD (∗) and CSD (×), and DPMC-based adaptive filter (△).
In figures (a) and (b) the ARCH model is considered, while the model in (c)
is linear/Gaussian. The MSE values are computed using 5,000 particles and
400 runs for each algorithm.

minimized by scaling the variance of Q, so that Fk,θ(ξ, w) = ak(ξ) + θσww for all k ≥ 0 and

θ ∈ Θ , (0, 6]. The DPMC kernels were similar to those used for the linear/Gaussian model,
that is, Qd(x, x

′) = exp(−(x′−md)
2)/
√

2π withmd = 0.5(d−1) and 1 ≤ d ≤ 40. The number
of DPMC adaptation iterations was still T = 30. For an observation record containing the
outlying observation Y7 = bX2

7 + 10σv, the MSEs were estimated over 400 runs of the filters,
each filter using 5,000 particles. As displayed in Fig 2, the filters minimizing directly the
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Figure 2. Plot of MSE performances (on log-scale) of the bootstrap filter
(�), adaptive filters minimizing the empirical KLD (∗) as well as CSD (×),
and DPMC-based adaptive filter (△) for the growth model in the presence of
an outlying observation at time 7.

empirical CSD and KLD robustify equally well the filter to the outlying observation. Also
the DPMC-based filter exhibits a similar performance, even though its efficiency may benefit
from a more sensible choice of D-kernel mixture.

Of special interest in practice are the cases where the state space dynamics (Q, g) used for
filtering differ from that generating the input observations. We thus tested the adaptive algo-
rithms on the growth model where the observations were simulated under (α0, α1, α2, b, σ

2
w, σ

2
v)

= (0.5, 25, 8, 0.05, 1, 1), but where the evolution of the particles followed the dynamics de-
termined by the vector (α0, α1, α2, b, σ

2
w, σ

2
v) = (5, 25, 8, 0.1, 1, 1), that is, with heavily pertu-

bated leading parameters of the state and observation equations. As displayed in Figure 3,
the general improvement obtained by optimization over the simple parametric family used
in the previous is blatant, reducing the MSE by up a factor 158 (at time step k = 3). The
behaviour at the extreme time step k = 6 can be explained by the rather limited selection of
proposal kernels offered by the parametric family in this case; actually, it does not provide
any kernel being better suited for this extreme situation than the prior kernel Q. This is also
confirmed by the values of the optimal adjustment parameters θ∗ figured in Table 2, which
are, on an average, close to one at this time step. However, Algorithm 2 is utterly generic
and allows for significantly more sophisticated families of kernels. The study of this aspect
is however beyond the scope of this paper and will be the subject of future work.

Appendix A. Proofs

A.1. Proof of Theorem 4.1. We first prove an introductory lemma.
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Figure 3. Plot of MSE performances (on log-scale) of the bootstrap filter
(�) and adaptive filters minimizing the empirical KLD (∗) as well as CSD (×)
for input observations generated under pertubated parameters in the growth
model. The MSE values are computed using 5,000 particles and 200 runs of
each algorithm.

Table 2. Mean values of the optimal parameter θ∗ over time for the CSD-
based as well as the KLD-based versions of Algorithm 2. The model under
consideration was the Growth model and each value is based on 200 runs of
each filter, corresponding to Figure 3.

Adaptation method k = 1 k = 2 k = 3 k = 4 k = 5

CSD-based 1.13 2.79 3.19 1.04 1.10
KLD-based 1.08 2.84 3.21 1.03 1.15

Adaptation method k = 6 k = 7 k = 8 k = 9 k = 10

CSD-based 1.03 3.43 1.92 1.22 1.01
KLD-based 1.07 3.36 1.93 1.15 1.00

Lemma A.1. Assume (A1, A2) and let C∗ , {f ∈ B(Ξ × Ξ̃) : L(·, |f |) ∈ C ∩ L1(Ξ, ν)}.
Then, for all f ∈ C∗, as N →∞,

Ω̃−1
N

M̃N
∑

i=1

ω̃N,if(ξN,IN,i
, ξ̃N,i)

P−→ ν ⊗ L(f)/νL(Ξ̃)

Proof. It is enough to prove that

M̃−1
N

M̃N
∑

i=1

ω̃N,if(ξN,IN,i
, ξ̃N,i)

P−→ ν ⊗ L(f)/ν(Ψ) . (A.1)
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for all f ∈ C∗; indeed, since the function f ≡ 1 belongs to C∗ under (A2), the result

of the lemma will follow from (A.1) by Slutsky’s theorem. Define the measure ϕ(A) ,

ν(Ψ1A)/ν(Ψ), with A ∈ B(Ξ). By applying Theorem 1 in Douc and Moulines (2005) we
conclude that the weighted sample {(ξN,i, ψN,i)}MN

i=1 is consistent for (ϕ, {f ∈ L1(Ξ, ϕ) :
Ψ|f | ∈ C}). Moreover, by Theorem 2 in the same paper this is also true for the uniformly

weighted sample {(ξN,IN,i
, 1)}M̃N

i=1 (see the proof of Theorem 3.1 in Douc et al. (2007b) for
details). By definition, for f ∈ C∗, ϕ ⊗ R(Φ|f |) ν(Ψ) = ν ⊗ L(|f |) < ∞ and ΨR(·,Φ|f |) =
L(·, |f |) ∈ C. Hence, we conclude that R(·,Φ|f |) and thus R(·,Φf) belong to the proper set
{f ∈ L1(Ξ, ϕ) : Ψ|f | ∈ C}. This implies the convergence

M̃−1
N

M̃N
∑

i=1

E

[

ω̃N,if(ξN,IN,i
, ξ̃N,i)

∣

∣

∣
FN

]

= M̃−1
N

M̃N
∑

i=1

R(ξN,IN,i
,Φf)

P−→ ϕ⊗ R(Φf) = ν ⊗ L(f)/ν(Ψ) , (A.2)

where FN , σ({ξN,IN,i
}M̃N

i=1 ) denotes the σ-algebra generated by the selected particles. It
thus sufficies to establish that

M̃−1
N

M̃N
∑

i=1

{

E

[

ω̃N,if(ξN,IN,i
, ξ̃N,i)

∣

∣

∣
FN

]

− ω̃N,if(ξN,IN,i
, ξ̃N,i)

}

P−→ 0 , (A.3)

and we do this, following the lines of the proof of Theorem 1 in Douc and Moulines (2005),
by verifying the two conditions of Theorem 11 in the same work. We first conclude that the

sequence {M̃−1
N

∑M̃N

i=1 E[ω̃N,i|f(ξN,IN,i
, ξ̃N,i)||FN ]}N is tight since it tends to ν⊗L(|f |)/ν(Ψ) in

probability (cf. (A.2)). Thus, the first condition is satisfied. To verify the second condition,
take ǫ > 0 and consider, for any C > 0, the decomposition

M̃−1
N

M̃N
∑

i=1

E

[

ω̃N,i|f(ξN,IN,i
, ξ̃N,i)|1{ω̃N,i|f(ξN,IN,i

,ξ̃N,i)|≥ǫ}

∣

∣

∣
FN

]

≤ M̃−1
N

M̃N
∑

i=1

R
(

ξN,IN,i
,Φ|f |1{Φ|f |≥C}

)

+ 1{ǫM̃N <C}M̃
−1
N

M̃N
∑

i=1

E

[

ω̃N,i|f(ξN,IN,i
, ξ̃N,i)|

∣

∣

∣
FN

]

.

Since R(·,Φf) belongs to the proper set {f ∈ L1(Ξ, ϕ) : Ψ|f | ∈ C}, so does the function

R(·,Φ|f |1{Φ|f | ≥ C}). Thus, since the indicator 1{ǫM̃N < C} tends to zero, we conclude
that the upper bound above has the limit ϕ⊗R(Φ|f |1{Φ|f | ≥ C}); however, by dominated
convergence this limit can be made arbitrarily small by increasing C. Hence

M̃−1
N

M̃N
∑

i=1

E

[

ω̃N,i|f(ξN,IN,i
, ξ̃N,i)|1{ω̃N,i|f(ξN,IN,i

,ξ̃N,i)|≥ǫ}

∣

∣

∣
FN

]

P−→ 0 ,
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which verifies the second condition of Theorem 11 in Douc and Moulines (2005). Thus, (A.3)
follows. 2

Proof of Theorem 4.1. We start with i). In order to establish the limit

dKL(µaux
N ||πaux

N )
P−→ ν ⊗ L{log[Φν(Ψ)/νL(Ξ̃)]}/νL(Ξ̃) , (A.4)

as N → ∞, recall the definition (given in Section 4) of the KLD and write, for any index
m ∈ {1, . . . , M̃N},

dKL(µaux
N ||πaux

N ) =

MN
∑

i=1

Eµaux

N

[

log Φ(ξN,IN,m
, ξ̃N,m)

∣

∣

∣
IN,m = i

]

µaux
N ({i} × Ξ̃)

+ log

[

∑MN

j=1 ωN,jψN,j
∑MN

ℓ=1 ωN,ℓL(ξN,ℓ, Ξ̃)

]

, (A.5)

where Eµaux

N
denotes the expectation associated with the random measure µaux

N . For each
term of the sum in (A.5) we have

Eµaux

N

[

log Φ(ξN,IN,m
, ξ̃N,m)

∣

∣

∣
IN,m = i

]

µaux
N ({i} × Ξ̃) =

ωN,iL(ξN,i, log Φ)
∑MN

j=1 ωN,iL(ξN,j, Ξ̃)
,

and by using the consistency of {(ξN,i, ωN,i)}MN

i=1 (under (A1)) we obtain the limit

MN
∑

i=1

Eµaux

N

[

log Φ(ξN,IN,m
, ξ̃N,m)

∣

∣

∣
IN,m = i

]

µaux
N ({i} × Ξ̃)

P−→ ν ⊗ L(log Φ)/νL(Ξ̃) ,

where we used that L(·, | log Φ|) ∈ C by assumption, implying, since C is proper, L(·, log Φ) ∈
C. Moreover, under (A2), by the continuous mapping theorem,

log

[

∑MN

j=1 ωN,jψN,j
∑MN

ℓ=1 ωN,ℓL(ξN,ℓ, Ξ̃)

]

P−→ log[ν(Ψ)/νL(Ξ̃)] ,

which establishes (A.4). We prove that E({ω̃N,i}M̃N

i=1 ) tends to the same limit as dKL(µaux
N ||πaux

N ).
However, applying directly Lemma A.1 for f = log Φ (which belongs to C∗ by assumption)
and the limit (A.1) for f ≡ 1 yields, by the continuous mapping theorem,

E({ω̃N,i}M̃N

i=1 ) = Ω̃−1
N

M̃N
∑

i=1

ω̃N,i log ω̃N,i + log(M̃N Ω̃−1
N )

P−→ ν ⊗ L(log Φ)/νL(Ξ̃) + log[ν(Ψ)/νL(Ξ̃)]

= ν ⊗ L{log[Φν(Ψ)/νL(Ξ̃)]}/νL(Ξ̃) .

This completes the proof of i).
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To prove ii) we first show that

dχ2(µaux
N ||πaux

N )
P−→ ν(Ψ)νL(Φ)/[νL(Ξ̃)]2 − 1 . (A.6)

Indeed, recall the definition of the CSD and write, for any index m ∈ {1, . . . , M̃N},

dχ2(µaux
N ||πaux

N ) = Eµaux

N

[

dµaux
N

dπaux
N

(ξN,IN,m
, ξ̃N,m)

]

− 1

=

MN
∑

i=1

Eµaux

N

[

dµaux
N

dπaux
N

(ξN,IN,m
, ξ̃N,m)

∣

∣

∣

∣

IN,m = i

]

µaux
N ({i} × Ξ̃)− 1 .

Here

Eµaux

N

[

dµaux
N

dπaux
N

(ξN,IN,m
, ξ̃N,m)

∣

∣

∣

∣

IN,m = i

]

µaux
N ({i} × Ξ̃)

= ωN,iL(ξN,i,Φ)

[

MN
∑

j=1

ωN,iL(ξN,j, Ξ̃)

]−2 MN
∑

j=1

ωN,iψN,i ,

and using the consistency of {(ξN,i, ωN,i)}MN

i=1 yields the limit

MN
∑

i=1

Eµaux

N

[

dµaux
N

dπaux
N

(ξN,IN,m
, ξ̃N,m)

∣

∣

∣

∣

IN,m = i

]

µaux
N ({i} × Ξ̃)

P−→ ν(Ψ)νL(Φ)/[νL(Ξ̃)]2 .

which proves (A.6).

Finally, we prove that CV2({ω̃N,i}M̃N

i=1 ) tends to the same limit as dχ2(µaux
N ||πaux

N ). Indeed,
since Φ belongs to C∗ by assumption, we obtain, by applying Lemma A.1 together with
(A.1),

CV2({ω̃N,i}M̃N

i=1 ) = (M̃N Ω̃−1
N )Ω̃−1

N

M̃N
∑

i=1

ω̃2
N,i − 1

P−→ ν(Ψ)νL(Φ)/[νL(Ξ̃)]2 − 1 . (A.7)

From this ii) follows. 2

A.2. Proof of Proposition 4.2. We denote by q(ξ, ξ′) the Radon-Nikodym derivative of

the probability measure ν ⊗ L/νL(Ξ̃) with respect to ν ⊗ R, where the outer product ⊗ of
measure and a kernel is defined in (2.2):

q(ξ, ξ′) ,

dL(ξ,·)
dR(ξ,·)

(ξ′)
∫∫

Ξ×Ξ̃
ν(dξ)L(ξ, dξ′)

, (A.8)
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and by p(ξ) the Radon-Nikodym derivative of the probability measure ν[Ψ]⊗ R/ν(Ψ) with
respect to ν ⊗R:

p(ξ) =
Ψ(ξ)

ν(Ψ)
. (A.9)

Using these notations and the definition (4.1) of the weight function Φ, we have

Φ(ξ, ξ′)ν(Ψ)

νL(Ξ̃)
=
ν(Ψ) dL(ξ,·)

dR(ξ,·)
(ξ′)

Ψ(ξ)νL(Ξ̃)
= q(ξ, ξ′)/p(ξ) ,

which implies that

νKL(Ψ) =

∫∫

Ξ×Ξ̃

ν(dξ)R(ξ, dξ′) q(ξ, ξ′) log [q(ξ, ξ′)/p(ξ)] .

This relation establishes the first assertion (4.2). Similarly, we may write

νχ2(Ψ) =

∫∫

Ξ×Ξ̃
ν(Ψ)R(ξ, dξ′)

[

dL(ξ,·)
dR(ξ,·)

(ξ′)
]2

Ψ−1(ξ)

[νL(Ξ̃)]2
− 1

=

∫∫

Ξ×Ξ̃

ν(dξ)R(ξ, dξ′) q2(ξ, ξ′)/p(ξ)− 1 ,

which shows (4.2).

A.3. Proof of Corollary 4.1. Denote by q(ξ) ,
∫

Ξ̃
R(ξ, dξ′) q(ξ, ξ′) the marginal density

of the measure

A ∈ B(Ξ) 7→ ν ⊗ L
νL(Ξ̃)

(A× Ξ̃)

on (Ξ,B(Ξ)). We denote by q(ξ′|ξ) = q(ξ, ξ′)/q(ξ) the conditional distribution. By the chain
rule of entropy (the entropy of a pair of random variables is the entropy of one plus the

conditional entropy of the other), we may split the KLD between the measures ν⊗L/νL(Ξ̃)
and ν[Ψ]⊗ ν(Ψ)/ν(Ψ) as follows,

ηKL(Ψ) =

∫

Ξ

ν(dξ) q(ξ) log[q(ξ)/p(ξ)] +

∫∫

Ξ×Ξ̃

ν(dξ)R(ξ, dξ′) q(ξ, ξ′) log(ξ|ξ′) .

The second term in the RHS of the previous equation does not depend on the adjustment
multiplier weight Ψ. The first term is canceled if we set p = q, i.e., if

Ψ(ξ)

ν(Ψ)
=

∫

Ξ̃

R(ξ, dξ′) q(ξ, ξ′) = L(ξ, Ξ̃)/νL(Ξ̃)

which establishes Assertion (4.1).
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Consider now Assertion (4.1). Note first that
∫∫

Ξ×Ξ̃

ν(dξ)R(ξ, dξ′) q2(ξ, ξ′)/p(ξ)− 1

=

∫

Ξ

ν(dξ) g2(ξ)/p(ξ)− 1

= ν2(g)

[
∫

Ξ

ν(dξ)
g2(ξ)

p(ξ)ν2(g)
− 1

]

+ ν2(g)− 1 , (A.10)

where

g2(ξ) =

∫

Ξ̃

R(ξ, dξ′) q2(ξ, ξ′) .

The first term in the RHS of (A.10) is the CSD between the probability distributions with
densities g/ν(g) and Ψ/ν(Ψ) with respect to ν. The second term does not depend on Ψ. The
optimal value of the adjustment multiplier weight is obtained by canceling the first term.
This establishes assertion (4.1).
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