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A compact topology for Sand Automata* T

Alberto Dennunzio* Pierre Guillon$ Benoit Masson?’

Abstract

In this paper, we exhibit a strong relation between the sand automata
configuration space and the cellular automata configuration space. This
relation induces a compact topology for sand automata, and a new context
in which sand automata are homeomorphic to cellular automata acting
on a specific subshift. We show that the existing topological results for
sand automata, including the Hedlund-like representation theorem, still
hold. In this context, we give a characterization of the cellular automata
which are sand automata, and study some dynamical behaviors such as
equicontinuity. Furthermore, we deal with the nilpotency. We show that
the classical definition is not meaningful for sand automata. Then, we
introduce a suitable new notion of nilpotency for sand automata. Finally,
we prove that this simple dynamical behavior is undecidable.

Keywords: sand automata, cellular automata, dynamical systems, subshifts,
nilpotency, undecidability

1 Introduction
Self-organized criticality (SOC) is a common phenomenon observed in a huge

variety of processes in physics, biology and computer science. A SOC system
evolves to a “critical state” after some finite transient. Any perturbation, no
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matter how small, of the critical state generates a deep reorganization of the
whole system. Then, after some other finite transient, the system reaches a
new critical state and so on. Examples of SOC systems are: sandpiles, snow
avalanches, star clusters in the outer space, earthquakes, forest fires, load bal-
ance in operating systems @, E, E, E, @] Among them, sandpiles models are a
paradigmatic formal model for SOC systems [@,

In [ﬁ], the authors introduced sand automata as a generalization of sandpiles
models and transposed them in the setting of discrete dynamical systems. A
key-point of [E] was to introduce a (locally compact) metric topology to study
the dynamical behavior of sand automata. A first and important result was a
fundamental representation theorem similar to the well-known Hedlund’s theo-
rem for cellular automata [Ld, {]. In [fd, §], the authors investigate sand automata
by dealing with some basic set properties and decidability issues.

In this paper we continue the study of sand automata. First of all, we in-
troduce a different metric on configurations (i.e. spatial distributions of sand
grains). This metric is defined by means of the relation between sand automata
and cellular automata @] With the induced topology, the configuration set
turns out to be a compact (and not only locally compact), perfect and to-
tally disconnected space. The “strict” compactness gives a better topological
background to study the behavior of sand automata (and in general of dis-
crete dynamical systems). In fact, compactness provides a lots of very useful
results which help in the investigation of several dynamical properties , E]
We show that all the topological results from [E] still hold, in particular the
Hedlund-like representation theorem remains valid with the compact topology.
Moreover, with this topology, any sand automaton is homeomorphic to a cel-
lular automaton defined on a subset of its usual domain. We prove that it is
possible to decide whether a given cellular automaton is in fact a sand automa-
ton. Besides, this relation helps to prove some properties about the dynamical
behavior of sand automata, such as the equivalence between equicontinuity and
ultimate periodicity.

Then, we study nilpotency of sand automata. The classical definition of
nilpotency for cellular automata [E, @ is not meaningful, since it prevents any
sand automaton from being nilpotent. Therefore, we introduce a new definition
which captures the intuitive idea that a nilpotent automaton destroys all the
configurations: a sand automaton is nilpotent if all configurations get closer and
closer to a uniform configuration, not necessarily reaching it. Finally, we prove
that this behavior is undecidable.

The paper is structured as follows. First, in Section E, we recall basic defi-
nitions and results about cellular automata and sand automata. Then, in Sec-
tion E, we define a compact topology and we prove some topological results, in
particular the representation theorem. Finally, in Section , nilpotency for sand
automata is defined and proved undecidable.



2 Definitions

For all a,b € Z with a < b, let [a,b] = {a,a+1,...,b} and [a,b] = [a,b] U
{+00, —0}. For a € Z, let [a,+00) = {a,a+ 1,...} \ {+o0}. Let N; be the set
of positive integers. For a vector i € Z?, denote by |i| the infinite norm of .

Let A a (possibly infinite) alphabet and d € N*. Denote by M% the set of
all the d-dimensional matrices with values in A. We assume that the entries
of any matrix U € M? are all the integer vectors of a suitable d-dimensional
hyper-rectangle [1,h1] x -+ X [1,hq) C N%. For any h = (hq,...,hq) € N%, let
M¢ c M be the set of all the matrices with entries in [1,hq] x - -+ % [1, hg). In
the sequel, the vector h will be called the order of the matrices belonging to M¢.
For a given element x € AZd, the finite portion of x of reference position i € Z4
and order h € N% is the matrix M} (z) € M defined as Vk € [1, hq]x---x[1, hg],
M} (z)r, = @ipk—1. For any r € N, let r? (or simply r if the dimension is not
ambiguous) be the vector (r,...,r).

2.1 Cellular automata and subshifts

Let A be a finite alphabet. A CA configuration of dimension d is a function from
74 to A. The set AZ" of all the CA configurations is called the C'A configuration
space. This space is usually equipped with the Tychonoff metric dr defined by

Vm,yeAZd, dT(:c,y):2_k where k:min{|j|:j€Zd,xj7éyj}

The topology induced by dr coincides with the product topology induced by
the discrete topology on A. With this topology, the CA configuration space is a
Cantor space: it is compact, perfect (i.e., it has no isolated points) and totally
disconnected.

For any k € Z® the shift map o* : AZ' 5 AZ" is defined by Vz € AZd,Vi S
VAS ok(ac)i = Tiyk. A function F : A2 5 A2 s said to be shift-commuting if
VkeZt Fook=cFoF.

A d-dimensional subshift S is a closed subset of the CA configuration space
AZ* which is shift-invariant, i.e. for any k € Z¢, o* (S) C S. Let F € M? and let
S be the set of configurations z € AZ* such that all possible finite portions of x
do not belong to F, i.e. for any i, h € Z, M} (x) ¢ F. The set Sr is a subshift,
and F is called its set of forbidden patterns. Note that for any subshift S, it is
possible to find a set of forbidden patterns F such that S = Sx. A subshift S is
said to be a subshift of finite type (SFT) if S = Sz for some finite set F. The lan-
guage of a subshift S'is £(S) = {U e M?:Jie Z',h e N.,z € S, M. (z) = U}
(for more on subshifts, see [[7 for instance).

A cellular automaton is a quadruple (A, d, r, g), where A is the alphabet also
called the state set, d is the dimension, € N is the radius and g : Mg, — A
is the local rule of the automaton. The local rule g induces a global rule G :
A% 5 AZ" defined as follows,

Vo e A% VieZl, Gz) = g(MiT,(z)) .



Note that CA are exactly the class of all shift-commuting functions which are
(uniformly) continuous with respect to the Tychonoff metric (Hedlund’s theorem
from [[L3]). For the sake of simplicity, we will make no distinction between a CA
and its global rule G.

The local rule g can be extended naturally to all finite matrices in the fol-
lowing way. With a little abuse of notation, for any h € [2r + 1, 4+00)? and any
U € M{, define g(U) as the matrix obtained by the simultaneous application
of g to all the M4, submatrices of U. Formally, g(U) = M} _,.(G(z)), where
x is any configuration such that M,?(ac) =U.

For a given CA, a state s € A is quiescent (resp., spreading) if for all matrices
U € M$, 4 such that Vk € [1,2r+1]%, (resp., 3k € [1,2r+1]?) Uy = s, it holds
that g(U) = s. Remark that a spreading state is also quiescent. A CA is said
to be spreading if it has a spreading state. In the sequel, we will assume that
for every spreading CA the spreading state is 0 € A.

2.2 SA Configurations

A SA configuration (or simply configuration) is a set of sand grains organized in
piles and distributed all over the d-dimensional lattice Z¢. A pile is represented
either by an integer from Z (number of grains), or by the value +oo (source
of grains), or by the value —co (sink of grains), i.e. it is an element of 7 =
7ZJ{—00,+00}. One pile is positioned in each point of the lattice Z?. Formally,
a configuration z is a function from Zj to Z which associates any vector ¢ =
(i1,...,iq) € Z% with the number z; € Z of grains in the pile of position i. When
the dimension d is known without ambiguity we note 0 the null vector of Z9.
Denote by C = Z™" the set of all configurations. A configuration x € C is said to
be constant if there is an integer ¢ € Z such that for any vector i € Z¢, z; = c.
In that case we write x = ¢. A configuration = € C is said to be bounded if there
exist two integers mi, ms € Z such that for all vectors i € 7% my < z; < mo.
Denote by B the set of all bounded configurations.

A measuring device ()" of precision r € N and reference height m € Z is a

function from Z to [—r, 7] defined as follows

B +00 ifn>m+4r,
VneZ, pB'n)=< —oo ifn<m-—r,
n—m  otherwise.

A measuring device is used to evaluate the relative height of two piles, with
a bounded precision. This is the technical basis of the definition of cylinders,
distances and ranges which are used all along this article.

In [ﬂ], the authors equipped C with a metric in such a way that two con-
figurations are at small distance if they have the same number of grains in a
finite neighborhood of the pile indexed by the null vector. The neighborhood is
individuated by putting the measuring device at the top of the pile, if this latter
contains a finite number of grains. Otherwise the measuring device is put at



height 0. In order to formalize this distance, the authors introduced the notion
of cylinder, that we rename top cylinder. For any configuration x € C, for any
r € N, and for any i € Z¢, the top cylinder of z centered in ¢ and of radius r
is the d-dimensional matrix C')(z) € M4, defined on the infinite alphabet

A:Zby

. Zi ifk=r+1,
Yk e [1,2r + l]d, (C’;(x)) =1 B%(Titp—r—1) ifk#r+1andx; #+oo ,
k 0 .
B(Tipk—r—1) otherwise.

In dimension 1 and for a configuration = € C, we have

O (@) = (B5 (Tir ), - 85 (@im1) 4, BT (1) - -+, B (igr)

if x; # +o0, while

C'H (@) = (B2(is)y s B(i1), i, B2(2isn)s - -, BO(wigr))

if z; = to0.
By means of top cylinders, the distance d’ : C x C — R, has been introduced
as follows:

Ve,yeC, d(z,y)=2"" where k= min{r eEN:C?x) # C’g(y)}

Proposition 2.1 ([E, E]) With the topology induced by d’, the configuration
space is locally compact, perfect and totally disconnected.

2.3 Sand automata

For any integer r € N, for any configuration € C and any index i € Z?
with z; # +oo, the range of center i and radius r is the d-dimensional matrix

Ri(z) € M., on the finite alphabet A = [—r,7] U L such that

Vke[l,Qr—i—l]d, (Ri(x))k:{l ifk=r+1,

B (Ti4k—r—1) otherwise.

The range is used to define a sand automaton. It is a kind of top cylinder, where
the observer is always located on the top of the pile x; (called the reference).
It represents what the automaton is able to see at position i. Sometimes the
central L symbol may be omitted for simplicity sake. The set of all possible
ranges of radius 7, in dimension d, is denoted by RY.

A sand automaton (SA) is a deterministic finite automaton working on con-
figurations. Each pile is updated synchronously, according to a local rule which
computes the variation of the pile by means of the range. Formally, a SA is a
triple (d,r, f), where d is the dimension, 7 is the radius and f : RY — [—r, 7] is



the local rule of the automaton. By means of the local rule, one can define the
global rule F': C — C as follows

T; if z; = 00

. d J— .
Ve eC,VieZ, F(x);,= { x; + f(RL(x))  otherwise.

Remark that the radius r of the automaton has three different meanings: it rep-
resents at the same time the number of measuring devices in every dimension of
the range (number of piles in the neighborhood), the precision of the measuring
devices in the range, and the highest return value of the local rule (variation of
a pile). It guarantees that there are only a finite number of ranges and return
values, so that the local rule has finite description.

The following example illustrates a sand automaton whose behavior will be
studied in Section E For more examples, we refer to [§]

Example 1 [the automaton A ] This automaton destroys a configuration by
collapsing all piles towards the lowest one. It decreases a pile when there is a
lower pile in the neighborhood (see Figure [Il). Let N = (1,1, fx/) of global rule
F where

_— -1 ifa<Oorb<O,
Va,b e [-1,1], fnx(a,b) = { 0 otherwise.
O
1] [1]
|
T I

Figure 1: Tllustration of the behavior of N.

When no misunderstanding is possible, we identify a SA with its global rule F.
For any k € Z?, we extend the definition of the shift map to C, ¥ : C — C
is defined by Vo € C,Vi € Z%, o*(2); = x4x. The raising map p : C — C is
defined by Vo € C,Vi € Z%, p(z); = x; + 1. A function F : C — C is said to be
vertical-commuting if F'op = po F. A function F' : C — C is infinity-preserving
if for any configuration € C and any vector i € Z4, F(z); = +oc if and only
if x; = 400 and F(z); = —oc if and only if z; = —cc.

Remark that the raising map p is the sand automaton of radius 1 whose local
rule always returns 1. On the opposite, the horizontal shifts ¢; are not sand
automata: they destroy infinite piles by moving them, which is not permitted
by the definition of the global rule.

Theorem 2.1 ([E, E]) The class of SA is exactly the class of shift and vertical-
commuting, infinity-preserving functions F : C — C which are continuous w.r.t.
the metric d’.



3 Topology and dynamics

In this section we introduce a compact topology on the SA configuration space
by means of a relation between SA and CA. With this topology, a Hedlund-
like theorem still holds and each SA turns out to be homeomorphic to a CA
acting on a specific subshift. We also characterize CA whose action on this
subshift represents a SA. Finally, we prove that equicontinuity is equivalent to
ultimate periodicity, and that expansivity is a very strong notion: there exist
no positively expansive SA.

3.1 A compact topology for SA configurations

From [E], we know that any SA of dimension d can be simulated by a suitable CA
of dimension d + 1 (and also any CA can be simulated by a SA). In particular,
a d-dimensional SA configuration can be seen as a (d + 1)-dimensional CA
configuration on the alphabet A = {0,1}. More precisely, consider the function

Zd+l
¢:C—{0,1} defined as follows

VeeC, VieZ'VkeZ, ((x)ur = { 0 otherwise,

A SA configuration z € C is coded by the CA configuration {(z) € {0, 1}Zd+l.
Remark that ¢ is an injective function.

Consider the (d + 1)-dimensional matrix K € M?Hl, ..., 1,2) such that
,,,,, 12 =1and K; 11 = 0. With a little abuse of notation, denote Sx =
S{Ky the subshift of configurations that do not contain the pattern K.

Proposition 3.1 The set ((C) is the subshift Sk .

Proof. Each d-dimensional SA configuration 2z € C is coded by the (d + 1)-
dimensional CA configuration ((z) such that for any i, h € Z4t M} (¢(r)) # K,
then ((C) C Sk. Conversely, we can define a preimage by ¢ for any y € Sk, by
Vi € 74, x; = sup{k : Y@k = 1}. Hence ((C) = Sk. O

Figureﬂ illustrates the mapping ¢ and the matrix K = < 1 > for the dimension

0

d = 1. The set of SA configurations C = ZZ can be seen as the subshift
2

Sk = ¢(C) of the CA configurations set {0, 1}Z .

Definition 3.1 The distance d : C x C — R is defined as follows:

VZL', Y€ Ca d($7y> = dT(g(x)v g(y» .

In other words, the (well defined) distance d between two configurations 2,y € C
is nothing but the Tychonoff distance between the configurations ((z),{(y) in
the subshift Sk. The corresponding metric topology is the {0, 1}Zd+1 product
topology induced on Sk .
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(a) Valid configuration. (b) Invalid configuration.

Figure 2: The configuration from Figure @ is valid, while the configuration
from Figure @ contains the forbidden matrix K: there is a “hole”.

Remark 1 Note that this topology does not coincide with the topology obtained
as countable product of the discrete topology on Z. Indeed, for any i € VAS
the it" projection m; : C — Z defined by m;(z) = x; is not continuous in any
configuration x with x; = +oo. However, it is continuous in all configurations
x such that x; € Z, since Vk € Z,Vx,y € C, conditions m;(x) = k and d(z,y) <
2~ max (1K) imply that m;(y) = k.

By definition of this topology, if one considers ( as a map from C onto Sk,
¢ turns out to be an isometric homeomorphism between the metric spaces C
(endowed with d) and Sk (endowed with dr). As an immediate consequence,
the following results hold.

Proposition 3.2 The set C is a compact and totally disconnected space where
the open balls are clopen (i.e. closed and open) sets.

Proposition 3.3 The space C is perfect.

Proof. Choose an arbitrary configuration z € C. For any n € N, let | € Z¢ such
that |I| = n. We build a configuration y € C, equal to x except at site [, defined
as follows

. 1 ifa =0,
vj ez M,y =a; and y = { 0 othlerwise.
By Definition , d(y,z) =27". O

Consider now the following notion.

Definition 3.2 (ground cylinder) For any configuration x € C, for any r €
N, and for any i € Z2, the ground cylinder of = centered on i and of radius r
is the d-dimensional matriz Ci(x) € M$, , defined by

ke [L2r+1]Y,  (Ci(2), = B2(Titr—r-1) -



For example in dimension 1,

Cr(x) = (B (@iz), -, (@), - - B (@isr))

Figure E illustrates top cylinders and ground cylinders in dimension 1. Re-
mark that the content of the two kinds of cylinders is totally different.

- 1 —

_I —

— — — -

= = - =+ ==
JER O ([t I ) R O o A ) A
(a) Top cylinder centered on z; = 4: (b) Ground cylinder, at height 0:

C'i - Cia) -

(+1, —c0, —3,4, —2, =2, +1). (+00, =2, +1, +00, +2, 42, +00).

Figure 3: Illustration of the two notions of cylinders on the same configuration,
with radius 3, in dimension 1.

From Definition @, we obtain the following expression of distance d by
means of ground cylinders.

Remark 2 For any pair of configurations x,y € C, we have
d(z,y) =27% where k=min{r e N:C(z) # C2(y)}

As a consequence, two configurations z,y are compared by putting boxes (the
ground cylinders) at height 0 around the corresponding piles indexed by O.
The integer k is the size of the smallest cylinders in which a difference appears
between = and y. This way of calculating the distance d is similar to the one
used for the distance d’, with the difference that the measuring devices and
the cylinders are now located at height 0. This is slightly less intuitive than
the distance d’, since it does not correspond to the definition of the local rule.
However, this fact is not an issue all the more since the configuration space
is compact and the representation theorem still holds with the new topology

(Theorem P.3)).

3.2 SA as CA on a subshift

Let (X,m1) and (Y, m2) be two metric spaces. Two functions Hy : X — X,
Hy; :' Y — Y are (topologically) conjugated if there exists a homeomorphism
n:X — Y such that Hyon=mno H;.



We are going to show that any SA is conjugated to some restriction of a CA.
Let F' a d-dimensional SA of radius r and local rule f. Let us define the (d+ 1)-
dimensional CA G on the alphabet {0, 1}, with radius 2r and local rule g defined
as follows (see [J for more details). Let M € Mif_&l be a matrix on the finite
alphabet {0, 1} which does not contain the pattern K. If there is a j € [r+1,3r]
such that M(2T+1,...,2T+1,j) =1 and M(2T+1,...,2T+1,j+1) = 0, then let R € Rg
be the range taken from M of radius r centered on (2r + 1,...,2r +1,j). See
figure ] for an illustration of this construction in dimension d = 1.

Figure 4: Construction of the local rule g of the CA from the local rule f of
the SA, in dimension 1. A range R of radius r is associated to the matrix M of
order 4r + 1.

The new central value depends on the height j of the central column plus its
variation. Therefore, define g(M) = 1if j+ f(R) > 0, g(M) =0if j+ f(R) < 0,
or g(M) = M2,41,... 2r+1) (central value unchanged) if there is no such j.

The following diagram commutes:

CL)C

| le (1)

SK—>SK
G

i.e. Go( = (o F. As an immediate consequence, we have the following result.

Proposition 3.4 Any d-dimensional SA F is topologically conjugated to a suit-
able (d + 1)-dimensional CA G acting on Sk.

Being a dynamical submodel, SA share properties with CA, some of which
are proved below. However, many results which are true for CA are no longer
true for SA; for instance, injectivity and bijectivity are not equivalent, as proved
in [f]. Thus, SA deserve to be considered as a new model.

Corollary 3.3 The global rule F' : C — C of a SA is uniformly continuous w.r.t
distance d.

Proof. Let G be the global rule of the CA which simulates the given SA. Since
the diagram (m) commutes and (¢ is a homeomorphism, F = (~! o G o (. Since

G is a continuous map and, by Proposition @, C is compact, then the thesis is
obtained. 0

10



For every a € Z, let P, = 7, '({a}) be the clopen (and compact) set of all
configurations = € C such that zy = a.

Lemma 3.4 Let F : C — C be a continuous and infinity-preserving map. There
exists an integer I € N such that for any configuration x € Py we have |F(xz)o| <
l.

Proof. Since F is continuous and infinity-preserving, the set F'(Pp) is compact
and included in 75 ' (Z). From Remark [l, mo is continuous on the set 7, *(Z)
and in particular it is continuous on the compact F(Py). Hence mo(F(P)) is a
compact subset of Z containing no infinity, and therefore it is included in some
interval [—1,!], where [ € N. O

Theorem 3.5 A mapping F : C — C is the global transition rule of a sand
automaton if and only if all the following statements hold

(i) F is (uniformly) continuous w.r.t the distance d;
(i) F is shift-commuting;
(i4i) F is vertical-commuting;

(iv) F is infinity-preserving.

Proof. Let F be the global rule of a SA. By definition of SA, F' is shift-
commuting, vertical-commuting and infinity-preserving. From Corollary @, F
is also uniformly continuous.

Conversely, let F' be a continuous map which is shift-commuting, vertical-
commuting, and infinity-preserving. By compactness of the space C, F' is also
uniformly continuous. Let [ € N be the integer given by Lemma @ Since F' is
uniformly continuous, there exists an integer r € N such that

Vo,y €C Cla) = Cly) = O (F(x) = C(F(y)) -

We now construct the local rule f : R — [—r,7] of the automaton. For any
input range R € R%, set f(R) = F(x)y, where z is an arbitrary configuration of
Py such that Vk € [1,2r + 1], k # r+1, 8%(2x—r—1) = Ri. Note that the value of
f(R) does not depend on the particular choice of the configuration x € Py such
that Vk # 7+ 1, 8%(p_r_1) = Ri. Indeed, Lemma B.4 and uniform continuity
together ensure that for any other configuration y € Py such that Vk # r + 1,
B2(yr—r—1) = Rk, we have F(y)o = F(z)o, since B2(F(x)o) = B (F(y)o) and
|F(y)o| <. Thus the rule f is well defined.

We now show that F' is the global mapping of the sand automaton of radius
r and local rule f. Thanks to @), it is sufficient to prove that for any x € C
and for any i € Z¢ with |z;| # oo, we have F(z); = x; + f (Ri(x)). By ([i1) and
(fid), for any i € Z¢ such that |z;| # oo, it holds that

F(x); = [ “ioo ! (F(o' o p i )))]Z
=i+ [0 (Floop™"(2))];
:w[F(Z @),

11



Since o o p~%i(x) € Py, we have by definition of f
F(z)i =2+ [ (R)(0" 0 p~"(2)))
Moreover, by definition of the range, for all k € [1,2r + 1]‘7l7

RY(o" 0 p= ()i = B (07 0 p7 (i) = B@igk — 1) = BT (wisn)
hence R%(0% o p~*i(z)) = Ri(z), which leads to F(z); = z; + f (R.(z)). O

We now deal with the following question: given a (d + 1)-dimensional CA,
does it represent a d-dimensional SA, in the sense of the conjugacy expressed
by diagram ? In order to answer to this question we start to express the
condition under which the action of a CA G can be restricted to a subshift Sz,
i.e., G(Sx) C Sx (if this fact holds, the subshift S is said to be G-invariant).

Lemma 3.6 Let G and S be a CA and a subshift of finite type, respectively.
The condition G(Sx) C Sr is satisfied iff for any U € L(SF) and any H € F
of the same order than g(U), it holds that g(U) # H.

Proof. Suppose that G(Sz) C Sz. Choose arbitrarily H € F and U € L(Sx),
with ¢(U) and H of the same order. Let & € Sz containing the matrix U. Since
G(z) € Sg, then g(U) € L(Sx), and so g(U) # H. Conversely, if z € Sz and
G(x) ¢ S, then there exist U € L(Sr) and H € F with g(U) = H. O

The following proposition gives a sufficient and necessary condition under which
the action of a CA G on configurations of the G-invariant subshift Sx = C
preserves any column whose cells have the same value.

Lemma 3.7 Let G be a (d+1)-dimensional CA with state set {0,1} and Sk be
the subshift representing SA configurations. The following two statements are
equivalent:

(i) for any x € Sk with x(,... 04 = 1 (resp., T(o,...04) = 0) for all i € Z, it
holds that G(x),....0.) = 1 (resp., G(x)(,....0.) = 0) for all i € Z.

(ii) for any matric U € M.,y N L(Sk) with Ugiq, ry10) = 1 (resp.,
Urtt,...r1,6) = 0) and any k € [1,2r + 1], it holds that g(U) = 1 (resp.,
g(U)=0).

Proof. Suppose that (1) is true. Let U € M4, N L(Sk) be a matrix with
Utrst,...r+1,0) = 1 and let z € Sk be a configuration such that z, . 0 =1
for all i € Z and M, (x) = U. Since G(x)(,.. 04 = 1 for all i € Z, and
M3, .4 (x) = U, then g(U) = 1. Conversely, let # € Sk with 2,04 =1 for
all i € Z. By shift-invariance, we obtain G(z)(o,...,0,s) = 1 for all i € Z. O

Lemmas @ and @ immediately lead to the following conclusion.

Proposition 3.5 It is decidable to check whether a given (d + 1)-dimensional
CA corresponds to a d-dimensional SA.
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3.3 Some dynamical behaviors

SA are very interesting dynamical systems, which in some sense “lie” between
d-dimensional and d + 1-dimensional CA. Indeed, we have seen in the previ-
ous section that the latter can simulate d-dimensional SA, which can, in turn,
simulate d-dimensional CA. For the dimension d = 1, a classification of CA in
terms of their dynamical behavior was given in [@] Things are very different
as soon as we get into dimension d = 2, as noted in [[d, [[§]. The question is
now whether the complexity of the SA model is closer to that of the lower or
the higher-dimensional CA.

Let (X,m) be a metric space and let H : X — X be a continuous appli-
cation. An element z € X is an equicontinuity point for H if for any & > 0,
there exists § > 0 such that for all y € X, m(x,y) < ¢ implies that Vn € N,
m(H"(x), H*(y)) < . The map H is equicontinuous if for any £ > 0, there
exists § > 0 such that for all z,y € X, m(x,y) < § implies that Vn € N,
m(H"(x), H"(y)) < e. If X is compact, H is equicontinuous iff all elements of
X are equicontinuity points. An element x € X is ultimately periodic for H if
there exist two integers n > 0 (the preperiod) and p > 0 (the period) such that
H"P(x) = H"(z). H is ultimately periodic if there exist n > 0 and p > 0 such
that H"*P = H™. H is sensitive (to the initial conditions) if there is a constant
e > 0 such that for all points z € X and all § > 0, there is a point y € X and an
integer n € N such that m(x,y) < § but m(F"(x), F"(y)) > €. H is positively
expansive if there is a constant € > 0 such that for all distinct points x,y € X,
there exists n € N such that m(H"(x), H"(y)) > .

The topological conjugacy between a SA and some CA acting on the special
subshift Sk helps to adapt some properties of CA. In particular, the following
characterization of equicontinuous CA can be adapted from Theorem 4 of [[Lg].

Proposition 3.6 If F is a SA, then the following statements are equivalent:
1. F s equicontinuous.
2. F' is ultimately periodic.

8. All configurations of C are ultimately periodic for F.

Proof. B=B: For any n > 0 and p > 0, let D, , = {z: F"t?(z) = F"(x)}.
Remark that C =, ,ery Dn,p is the union of these closed subsets. As C is com-
plete of nonempty interior, by the Baire Theorem, there are integers n, p € N for
which the set D,, ;, has nonempty interior. Hence the conjugate image ¢(D,, ;)
has nonempty interior too, and it can easily be seen that it is a subshift. It

is known that the only subshift with nonempty interior is the full space; hence
Dy, =C.

=P obvious.

=l Let F be ultimately periodic with F"*? = F™ for some n > 0, p > 0.
Since F,F2, ..., F"*P~1 are uniformly continuous maps, for any € > 0 there
exists § > 0 such that for all z,y € C with d(z,y) < 0, it holds that Vg € N,
g <n+p,d(Fi(z), F(y)) < e. Since for any t € N F"* is equal to some F? with
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q < n —+ p, the map F' is equicontinuous.

ﬂig: For the sake of simplicity, we give the proof for a given one-dimensional
equicontinuous SA F. Let G be the global rule of the two-dimensional CA
whose action on Sk is conjugated to F. By Definition @, and since the
diagram [l commutes, the map G : Sg — Sk is equicontinuous w.r.t. drp.

So, for € = 1, there exists [ € N such that for all z,y € Sk, if M2_1:-1(5”) =
Mz_lirl(y), then for all t € N, G*(z)o = G*(y)o. Consider now configurations
¢(c), where ¢ € {—00,+00}? has either the form (..., —o00, —00, +00,+00,...)
or (...,4+00, 400, —00, —00, . ..). Since every ((c) are ultimately periodic (with
preperiod n = 0 and period p = 1) and G is equicontinuous, for any k € Z?2
and any y € Sk with Mé“ljrll(y) = Mfljrll(((c)), it holds that the sequence
{G'(y)k}ten is ultimately periodic. For any U € L(Sk) N M3, 4, let 2V be
the configuration such that Mz_lirl(:c) =U, 2435 = 0if =1 < i <[ and
J > I, and z(; jy = 1 otherwise. Except for the finite central region, xY
made by the repetition of a finite number of matrices appearing inside con-
figurations ((c). Hence, 2V is an ultimately periodic configuration with some
preperiod ny and period py. Then, for any y € Sk with M;lﬂrl(y) = U, the
sequence {G*(y)o}ten is ultimately periodic with preperiod ny and period py.
Set n = max{ny : U € L(Sk)NM3, 1} and p =lem{py : U € L(Sk)NM3 4}
where lcm is the least common multiple. Thus, for any configuration z € Sk,
we have that G"(z)p = G"P(z)p. By shift-invariance, we obtain Vk € Z2,
G"(2)r = G"P(2);. Concluding, G is ultimately periodic and then F' is too. UJ

is

1] is presented a classification of CA into four classes: equicontinuous
CA, non equicontinuous CA admitting an equicontinuity configuration, sensitive
but not positively expansive CA, positively expansive CA. This classification is
no more relevant in the context of SA since the class of positively expansive
SA is empty. This result can be related to the absence of positively expansive
two-dimensional CA (see [[Ld]), though the proof is much different.

In

Proposition 3.7 There are no positively expansive SA.

Proof. Let F a SA and § = 27 > 0. Take two distinct configurations z,y € C
such that Vi € [—k,k|,x; = y; = +o0o. By infinity-preservingness, we get
Vn € N,Vi € [k, k], F"(z); = F"(y); = +00, hence d(F"(z), F™(y)) <9d. O

An important open question in the dynamical behavior of SA is the existence
of non-sensitive SA without any equicontinuity configuration. An example for
two-dimensional CA is given in [@], but their method can hardly be adapted
for SA. This could lead to a classification of SA into four classes: equicon-
tinuous, admitting an equicontinuity configuration (but not equicontinuous),
non-sensitive without equicontinuity configurations, sensitive.

Another issue is the decidability of these classes. In [ﬂ], the undecidability
of SA ultimate periodicity was proved on the particular subsets of finite and
periodic configurations. It follows directly that equicontinuity on these subsets
is undecidable. The question is still open for the whole configuration space C.
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4 The nilpotency problem

In this section we give a definition of nilpotency for SA. Then, we prove that
nilpotency behavior is undecidable (Theorem [.5).

4.1 Nilpotency of CA

Here we recall the basic definitions and properties of nilpotent CA. Nilpotency
is among the simplest dynamical behavior that an automaton may exhibit. In-
tuitively, an automaton defined by a local rule and working on configurations
(either C or AZd) is nilpotent if it destroys every piece of information in any
initial configuration, reaching a common constant configuration after a while.
For CA, this is formalized as follows.

Definition 4.1 (CA nilpotency [10, [[4]) A CA G is nilpotent if
Jecd, INeN Ve A?, ¥Ya>N, G'(z)=c.

Remark that in a similar way to the proof of Proposition @, Definition
can be restated as follows: a CA is nilpotent if and only if it is nilpotent for all
initial configurations.

Spreading CA have the following stronger characterization.

Proposition 4.1 ([B]) A CA G, with spreading state 0, is nilpotent iff for
every x € A% there exists n € N and i € Z¢ such that G"(x); =0 (ie. 0
appears in the evolution of every configuration).

The previous result immediately leads to the following equivalence.

Corollary 4.2 A CA of global rule G, with spreading state 0, is nilpotent if
and only if for all configurations x € AZd, lim,, o d7(G™(x),0) = 0.

Recall that the CA nilpotency is undecidable . Remark that the proof
of this result also works for the restricted class of spreading CA.

Theorem 4.3 ([[[4]) For a given state s, it is undecidable to know whether a
cellular automaton with spreading state s is nilpotent.

4.2 Nilpotency of SA

A direct adaptation of Definition @ to SA is vain. Indeed, assume F'is a SA of
radius r. For any k € Z¢, consider the configuration 2% € B defined by xf§ = k
and ¥ = 0 for any i € Z%\{0}. Since the pile of height k may decrease at most
by 7 during one step of evolution of the SA, and the other piles may increase at
most by r, z* requires at least [k/27] steps to reach a constant configuration.
Thus, there exists no common integer n such that all configurations z* reach
a constant configuration in time n. This is a major difference with CA, which
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is essentially due to the unbounded set of states and to the infinity-preserving
property.

Thus, we propose to label as nilpotent the SA which make every pile ap-
proach a constant value, but not necessarily reaching it ultimately. This nilpo-
tency notion, inspired by Proposition Q, is formalized as follows for a SA F:

JeeZ, Verel, lim d(F"(x),c)=0.
n—oo
Remark that ¢ shall not be taken in the full state set Z, because allowing in-
finite values for ¢ would not correspond to the intuitive idea that a nilpotent
SA “destroys” a configuration (otherwise, the raising map would be nilpotent).
Anyway, this definition is not satisfying because of the vertical commutativity:
two configurations which differ by a vertical shift reach two different configura-
tions, and then no nilpotent SA may exist. A possible way to work around this
issue is to make the limit configuration depend on the initial one:
VeelC, 3FceZ, lim d(F"(x),c) =0 .
n—oo

Again, since SA are infinity-preserving, an infinite pile cannot be destroyed
(nor, for the same reason, can an infinite pile be built from a finite one). There-
fore nilpotency has to involve the configurations of ZZd, i.e. the ones without
infinite piles. Moreover, every configuration = € 72" made of regular steps (i.e.
in dimension 1, for all i € Z, x; — x;—1 = x;41 — ;) is invariant by the SA rule
(possibly composing it with the vertical shift). So it cannot reach nor approach
a constant configuration. Thus, the larger reasonable set on which nilpotency

might be defined is the set of bounded configurations 5. This leads to the
following formal definition of nilpotency for SA.

Definition 4.4 (SA nilpotency) A SA F is nilpotent if and only if

Ve e B, dceZ, lim d(F"(x),c) =0 .

n—oo

The following proposition shows that the class of nilpotent SA is nonempty.
Proposition 4.2 The SA N from Exampleﬂ is nilpotent.

Proof. Let x € B, let i € Z such that for all j € Z, x; > x;. Clearly, after
Tip1 — ; steps, Fi T ()i = F ™" (2); = x;. By immediate induction,
we obtain that for all j € Z there exists n; € N such that F\/ (z); = x;, hence
limy, 00 d(FRr (), 2:) = 0. O

Similar nilpotent SA can be constructed with any radius and in any dimen-
sion.
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4.3 Undecidability

The main result of this section is that SA nilpotency is undecidable (Theo-
rem @), by reducing the nilpotency of spreading CA to it. This emphasizes
the fact that the dynamical behavior of SA is very difficult to predict. We think
that this result might be used as the reference undecidable problem for further
questions on SA.

Problem Nil
INSTANCE: a SA A= (d,r, \);
QUESTION: is A nilpotent?

Theorem 4.5 The problem Nil is undecidable.

Proof. This is proved by reducing Nil to the nilpotency of spreading cellular
automata. Remark that it is sufficient to show the result in dimension 1. Let S
be a spreading cellular automaton S = (A4, 1, s, g) of global rule G, with finite
set of integer states A C N containing the spreading state 0. We simulate S with
the sand automaton A = (1,r = max(2s, max A), f) of global rule F' using the
following technique, also developed in [E] Let £ : AZ — B be a function which
inserts markers every two cells in the CA configuration to obtain a bounded
SA configuration. These markers allow the local rule of the SA to know the
absolute state of each pile and behave as the local rule of the CA. To simplify
the proof, the markers are put at height 0 (see Figure ﬂ)

7 | O(marker) ifiisodd ,
Yy EeALVIE L, ((y)i= { Yi/2 otherwise.
This can lead to an ambiguity when all the states in the neighborhood of size
4s + 1 are at state 0, as shown in the picture. But as in this special case the
state 0 is quiescent for g, this is not a problem: the state 0 is preserved, and
markers are preserved.

Figure 5: Illustration of the function £ used in the simulation of the spreading
CA S by A. The thick segments are the markers used to distinguish the states
of the CA, put at height 0. There is an ambiguity for the two piles indicated
by the arrows: with a radius 2, the neighborhoods are the same, although one
of the piles is a marker and the other the state 0.
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The local rule f is defined as follows, for all ranges R € R},

0 if R72S+1,R,25+3, oy R4 Ry, .oy Ros—1 € A ,
f(R)=< g(R_as+a,R_9s42+a,...,R_o+a,a,Ry+a,...,Res+a)—a
if R 9541 =R _9s43=+=Ros_1=0a<0 and —a € A .

2)
The first case is for the markers (and state 0) which remain unchanged, the
second case is the simulation of g in the even piles. As proved in [f, for any
y € AZ it holds that £(G(y)) = F(£(y)). The images by f of the remaining
ranges will be defined later on, first a few new notions need to be introduced.

A sequence of consecutive piles (z;,...,z;) from a configuration z € B is
said to be walid if it is part of an encoding of a CA configuration, i.e. z; =
Tigo = -+ = X (these piles are markers) and for all k& € N such that 0 < k <
(j —1)/2, itok+1 — x; € A (this is a valid state). We extend this definition to
configurations, when i = —co and j = 400, i.e. x € p®o&(A?) for a given ¢ € Z
(x € B is valid if it is the raised image of a CA configuration). A sequence (or
a configuration) in nvalid if it is not valid.

First we show that starting from a valid configuration, the SA A is nilpotent
if and only if S is nilpotent. This is due to the fact that we chose to put the
markers at height 0, hence for any valid encoding of the CA 2 = p© o {(y), with
ye A and c € Z,

lim dp(G"(y),0) =0 if and only if  lim d(F"(z),c) =0 .

It remains to prove that for any invalid configuration, A is also nilpotent. In
order to have this behavior, we add to the local rule f the rules of the nilpotent
automaton A for every invalid neighborhood of width 4s + 1. For all ranges
R € R} not considered in Equation (f),

| -1 ifR,<0orR_,41<0or---orR, <0,
F(R) = { 0 otherwise. (3)

Let « € B be an invalid configuration. Let k& € Z be any index such that
Vi € Z, x; > x. Let i,7 € Z be respectively the lowest and greatest indices
such that ¢ < k < j and (a;,...,z;) is valid (¢ may equal j). Remark that
for all n € N, (F™(2);,...,F™(z);) remains valid. Indeed, the markers are by
construction the lowest piles and Equations () and () do not modify them.
The piles coding for non-zero states can change their state by Equation (E),
or decrease it by 1 by Equation (E), which in both cases is a valid encoding.
Moreover, the piles x;—1 and x4 will reach a valid value after a finite number
of steps: as long as they are invalid, they decrease by 1 until they reach a value
which codes for a valid state. Hence, by induction, for any indices a,b € Z,
there exists N, such that for all n > N, the sequence (F™(z)q,. .., F™(x)s)
is valid.

In particular, after N_on,—1 2841 step, there is a valid sequence of length
4Nr + 3 centered on the origin (here, N is the number of steps needed by S to
reach the configuration 0, given by Definition @) Hence, after N_onyony + N
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steps, the local rule of the CA S applied on this valid sequence leads to 3
consecutive zeros at positions —1,0, 1. All these steps are illustrated on Figure ﬂ

0 i
L] 0
1
1
1
1
| [
| 1 1
| 1 1
- N_onr+1, 281
I I .
i |
|><!><!><| Noonrszonres T N
| |
Lo / time

Figure 6: Destruction of the invalid parts. The lowest valid sequence (in gray)
extends until it is large enough. Then after N other steps the 3 central piles
(hatched) are destroyed because the rule of the CA is applied correctly.

Similarly, we prove that for all n > N_ony—panr+k + IV, the sequence
(F™(z)—k,...,F™(x)) is a constant sequence which does not evolve. There-
fore, there exists ¢ € Z such that lim,, . d(F™(z),c) = 0. We just proved that
A is nilpotent, i.e. lim, . d(F"™(z),c) = 0 for all x € B, if and only if S is
nilpotent (because of the equivalence of definitions given by Corollary @), SO
Nil is undecidable (Proposition [L.3). O

5 Conclusion

In this article we have continued the study of sand automata, by introducing a
compact topology on the SA. In this new context of study, the characterization
of SA functions of [E, ] still holds. Moreover, a topological conjugacy of any
SA with a suitable CA acting on a particular subshift might facilitate future
studies about dynamical and topological properties of SA, as for the proof of the
equivalence between equicontinuity and ultimate periodicity (Proposition B.g).

Then, we have given a definition of nilpotency. Although it differs from the
standard one for CA, it captures the intuitive idea that a nilpotent automaton
“destroys” configurations. Even though nilpotent SA may not completely de-
stroy the initial configuration, they flatten them progressively. Finally, we have
proved that SA nilpotency is undecidable (Theorem @) This fact enhances
the idea that the behavior of a SA is hard to predict. We also think that this
result might be used as a fundamental undecidability result, which could be
reduced to other SA properties.
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Among these, deciding dynamical behaviors remains a major problem. More-
over, the study of global properties such as injectivity and surjectivity and
their corresponding dimension-dependent decidability problems could help un-
derstand if d-dimensional SA look more like d-dimensional or d + 1-dimensional
CA. Still in that idea is the open problem of the dichotomy between sensitive
SA and those with equicontinuous configurations. A potential counter-example
would give a more precise idea of the dynamical behaviors represented by SA.
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