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Lee-wave drag, namely the wave drag on an obstacle fixed in a stratified flow, is an important feature
of geophysical fluid dynamics, with application for example to subgrid-scale dissipation in meso-scale
numerical simulation. We consider the weakly and strongly stratified limits, corresponding respectively
to high and small internal Froude numbersF. The analysis is developed for the simplest obstacle, a
sphere of radiusa, and the simplest flow, of uniform velocityU at infinity, in an unbounded uniformly
stratified fluid of buoyancy frequencyN, with F = U/(Na).

Greenslade (2000) has recently summarized the available experimental data (Mason 1977; Lofquist &
Purtell 1984) and proposed two asymptotic models. WhenF � 1 the flow is essentially that, irrotational,
of a homogeneous fluid, wave generation acting as a small perturbation; the obstacle may be represented
by the same distribution of monopoles as for irrotational flow, with wave drag
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whereγ is the Euler constant (Gorodtsov & Teodorovich 1982). WhenF � 1 the flow is essentially
horizontal, wave generation being due to small regions, of heightaF, with vertical motion, located at
the top and bottom of the obstacle (Huntet al.1997); based on geometrical considerations and on fits to
experimental data, Greenslade (2000) obtained

CD ≈ 0.73F3/2 (Mason fit) or 0.86F3/2 (Lofquist & Purtell fit) for F � 1.

We argue that, in the strongly stratified régime, in spite of the inherent non-linearity of the flow,
wave generation is indeed a linear process, the small regions at the top (respectively bottom) of the
sphere acting as flat paraboloidal obstacles, of heightaF and much larger length 2a(2F)1/2, lying on
horizontal surfaces — the so-called dividing streamsurfaces — below (respectively above) which the
motion is purely horizontal (figure 1). The representation of such obstacles is a horizontal distribution
of monopoles of strength proportional to the local streamwise slope, with drag
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≈ 0.96F3/2 for F � 1.

The mathematical analysis involves the expression of the drag as a weighted double integral of the
distribution’s spectrum squared, and the asymptotic evaluation of this integral by Mellin–Barnes theory.
The same representation can be used for calculating the waves themselves.
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Figure 1. Upper wave generation region forF � 1, in the streamwise vertical plane through the centre of the sphere.
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