
HAL Id: hal-00259836
https://hal.science/hal-00259836

Submitted on 6 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deploying on the Grid with DeployWare
Areski Flissi, Jérémy Dubus, Nicolas Dolet, Philippe Merle

To cite this version:
Areski Flissi, Jérémy Dubus, Nicolas Dolet, Philippe Merle. Deploying on the Grid with Deploy-
Ware. Eighth IEEE International Symposium on Cluster Computing and the Grid, May 2008, France.
pp.177-184, �10.1109/CCGRID.2008.59�. �hal-00259836�

https://hal.science/hal-00259836
https://hal.archives-ouvertes.fr

Deploying on the Grid with DeployWare

Areski Flissi, Jérémy Dubus, Nicolas Dolet and Philippe Merle
GOAL/ADAM Team - INRIA & LIFL, UMR 8022 USTL - CNRS

{areski.flissi,jeremy.dubus}@lifl.fr,
{nicolas.dolet,philippe.merle}@inria.fr

59650 Villeneuve d’Ascq, FRANCE

Abstract

In this paper, we present DeployWare to address the de-
ployment of distributed and heterogeneous software systems
on large scale infrastructures such as grids. Deployment of
software systems on grids raises many challenges like 1)
the complexity to take into account orchestration of all the
deployment tasks and management of software dependen-
cies, 2) the heterogeneity of both physical infrastructures
and software composing the system to deploy, 3) the val-
idation to early detect errors before concrete deployments
and 4) scalability to tackle thousands of nodes. To address
these challenges, DeployWare provides a metamodel that
abstracts concepts of the deployment, a virtual machine that
executes deployment processes on grids from DeployWare
descriptions, and a graphical console that allows to manage
deployed systems, at runtime. To validate our approach, we
have experimented DeployWare with a lot of software tech-
nologies, such as CORBA and SOA-based systems, on one
thousand of nodes of Grid’5000, the french experimental
grid infrastructure.

1 Introduction and Challenges

Grid computing [12] reality raises many challenges such
as parallel computing, middleware, scheduling, peer to peer
software for grids, security, administration of large scale,
distributed and heterogeneous platforms and deployment.
Deployment of distributed systems on grids is now a major
research topic. This activity most of the time has to be done
by system administrators, as users are not necessarily com-
puter science researchers or engineers. But, deployment on
grid infrastructures is a nightmare, even for system adminis-
trators. It can be defined as a set of tasks to orchestrate, such
as connections to remote nodes, installation/uninstallation
of middleware, software, useful libraries, and applications,
configuration of nodes and software, starting/stopping of
services or application servers, instantiation/killing of ap-

plications or programs, and data transfer. Particularly, in the
context of Grid Computing, deployment raises many chal-
lenges:

Complexity - Due to the huge number of nodes that are
potentially involved, deployment cannot be handled by hu-
mans. Elementary tasks that compose a deployment pro-
cess have to be automatically orchestrated. For instance,
the configuration of a software on a remote node obvi-
ously cannot be done before the software has been installed.
Another example, which is specific to the Grid’5000 plat-
form [7], is that a reservation submission request of nodes
and/or clusters (using the OAR [6] batch scheduler) neces-
sarily precedes any experiences using these nodes. Also,
dependencies between software is a critical issue. Software
most of the time depends on one or more software, which
themselves can have complex dependencies. Currently, this
problem is managed by hand by system administrators and
often leads to errors or inconsistencies. Furthermore, de-
ployment on large scale must allow the parallelization of
some tasks (e.g., the upload of a same software on a lot of
nodes) whereas some other tasks have to be executed in a se-
quential order (e.g., start a registry service before publishing
any business services). At last, administration of a system
that is composed of thousands of software distributed on the
grid is hard for human administrators. This raises two prob-
lems: the monitoring of such a system and the management
of it, once it has been deployed.

Heterogeneity - The second challenge is heterogeneity
which exists at different levels. Firstly, it concerns the tar-
geted physical infrastructure. Grids, clusters and in some
cases the nodes that compose a cluster are heterogeneous
in terms of hardware, network, operating systems or shells.
Also, administrators/users have to deal with a lot of low-
level deployment mechanisms such as remote access pro-
tocols (e.g., SSH, Telnet, rlogin) and file transfer protocols
(e.g., FTP, HTTP, SCP). Secondly, heterogeneity concerns
the software system to deploy itself. Software that com-
pose the distributed system are heterogeneous in terms of
technologies and/or paradigms. Distributed systems could

Eighth IEEE International Symposium on Cluster Computing and the Grid

978-0-7695-3156-4/08 $25.00 © 2008 IEEE
DOI 10.1109/CCGRID.2008.59

177

use different paradigms such as parallel programming with
MPI, component-based software engineering (CBSE [24]),
object-oriented programming (OOP) or service-oriented ar-
chitectures (SOA [23]), but also a plethora of middleware
for the grid exists, such as Globus [11], GridCCM [21],
DIET [17] or ProActive [3], or runtime platforms such
as SOA-based systems, JEE-based systems, OW2 Fractal-
based systems [5], CORBA-based systems [18] (CORBA
middleware, OpenCCM [19]). Furthermore, heterogene-
ity of software also concerns their granularity. Actually,
software we consider here can be middleware, application
servers, applications on top of middleware, objects or par-
allel components, services, libraries or binaries, and even
virtual operating systems! The deployment procedures will
strongly depend on both paradigm/technology and granu-
larity.

Validation - Static validation is an important issue, es-
pecially for the deployment on thousands of nodes. Large
scale deployment needs reliability, through a static valida-
tion before execution to prevent errors or inconsistencies.
Before starting a deployment process, administrators must
be sure of fulfilling all dependencies between software, and
avoiding errors and resource conflicts. Then, how to deal
with the problem of the sharing of file systems or port num-
bers by software/application servers?

Scalability - Scalabality is the new challenge for Grid
Computing community. Interconnections between grids,
such as between the Naregi Japan grid [2] and the Grid’5000
french one, are becoming a reality and will increase the
computational power for users. We have to deal with the
limits of physical resources such as the number of open
sockets on a single node, in order to achieve an automatic
and parallel deployment on hundreds of thousands of nodes,
and, in the future, even millions of nodes.

To address these four challenges, we propose Deploy-
Ware, a framework for the deployment of distributed and
heterogeneous software systems on grids. DeployWare pro-
vides a Domain Specific Modeling Language (DSML) for
the deployment based on a metamodel that captures abstract
concepts of deployment and masks software heterogeneity
from the user point of view. DeployWare models are vali-
dated before execution to ensure reliable deployments. De-
ployWare models, conform to our metamodel, describe con-
figurations to deploy, regardless paradigms or technologies,
and are mapped to concrete descriptions, written with an ar-
chitecture description language (ADL). A distributed plat-
form executes DeployWare descriptions thanks to a virtual
machine that interprets these descriptions and automatically
orchestrates the deployment process, and deal with software
dependencies. The virtual machine is implemented using
the CBSE approach. The deployment process of the system
is reified as an assembly of software components. Deploy-
Ware can be distributed on multiple nodes for scalability

Figure 1. Overview of DeployWare

purpose. A graphical console allows one to monitor and
manage the deployed system at runtime, by calling elemen-
tary deployment tasks on each software that composes it.
The remainder of this paper is organized as follows. Sec-
tion 2 details our contribution to Grid Computing: the De-
ployWare framework and its elements. Experiments with
DeployWare of large scale deployments on Grid’5000, the
french experimental grid infrastructure, are shown in Sec-
tion 3. In Section 4, related works are discussed and fi-
nally, Section 5 concludes this paper and gives some future
works.

2 The DeployWare Framework

2.1 Overview

DeployWare is a framework for the description, the de-
ployment and the management of heterogeneous and dis-
tributed software systems on grids. In order to address the
challenges of deployment on grids, DeployWare provides
1) a DSML for the deployment based on a metamodel that
captures abstract concepts of deployment, such as the no-
tions of personality, software, procedure or instruction and
a concrete syntax based on an ADL, 2) a virtual machine
that interprets these concrete descriptions and executes the
deployment process, plus a library of low-level deployment
components masking the heterogeneity of the physical in-
frastructure, and 3) a graphical console that allows to man-
age/monitor, at runtime, systems that have been deployed
with DeployWare.
Figure 1 gives an overview of the DeployWare framework.
It shows the three actors involved in a DeployWare process:
a system administrator describes the targeted infrastructure,

178

i.e. the nodes of the grid, the network and protocols, a soft-
ware expert describes the deployment procedures of a given
technology, the end-users simply declare the software to de-
ploy and assign them to the nodes of the grid.

2.2 The DeployWare Metamodel

DeployWare lies on a metamodel (Figure 2). Its goal
is to capture the abstract concepts of the deployment of
a distributed system on a grid, independently of the un-
derlying paradigm, technology or granularity. The De-
ployWare metamodel is composed of two main parts: the
TechnoExpert package that defines the concepts that are
manipulated by software experts of a given technology, and
the SystemAdmin package, used by administrators/end-
users to write models that represent their deployment con-
figurations. A system can be seen as a set of software
that have to be installed, configured, started and instanti-
ated on a physical distributed infrastructure. So, the first
key concept of the metamodel is Personality. It is
used at design time to package a set of software related to
a specific technology. A Personality is composed of
SoftwareType elements that abstract the concept of soft-
ware and represent any deployable artifact of a given tech-
nology. A software contains several generic deployment
procedures such as install, configure, start, manage, stop,
unconfigure and uninstall, symbolized by Procedure el-
ements. Deployment procedures of any software mainly
consist in executing some elementary actions that we call
Instruction. For example, the install procedure of soft-
ware most of the time consists of downloading/uploading
an archive and extracting and installing it somewhere in
the file system of the remote node. Software has generic
configurable properties, as illustrated in Figure 2 with the
Property element, such as a path to its archive or its
home directory, but also specific ones, such as a port where
a server must listen for client requests. Furthermore, soft-
ware often have dependencies to other software. This
is represented by the dependencies relation between
SoftwareType elements. Software are declared, in a
DeployWare model, at runtime and by end-users, using the
SoftwareInstance concept and are assigned to phys-
ical nodes with the HostInstance element that repre-
sents a host.

In order to ensure reliable deployments, DeployWare
models are validated before execution [9]. This validation is
possible thanks to the DeployWare metamodel. Many con-
ditions have to be fulfilled. First of all, all dependencies
between software are checked. This means if a software A
depends on a software B, DeployWare checks if an instance
of software B is present for each instance of software A that
has been declared by end-users. The second verification is
about the SoftwareType procedures. For each proce-

Figure 2. The DeployWare Metamodel

dure, e.g. install or start, that has been declared by a soft-
ware expert in a new SoftwareType, the opposite proce-
dure must exist, i.e. respectively uninstall or stop. This en-
sures correct undeployment of the system, and to leave the
nodes of the grid after the experiences as they were before.
A verification is also made inside deployment procedures
themselves, on the set of instructions. Procedures must be
globally symetric. The goal of such a semantic validation
is to prevent some unpredictable errors due to side effects.
In support of this view, let us take a simple start procedure
of a software, e.g. an application server, that contains an
instruction that launches a daemon to start the server. If the
stop procedure does not contain an instruction that kills the
daemon, a sequence of start/stop deployment procedures on
the software will inescapably lead to memory problem since
the daemon is launched many time, but never killed. Finally,
to deal with resource conflicts during the deployment pro-
cess, some additionnal static verifications on ports and file
systems are done. This allows to prevent for instance two
servers from using the same port number on the same host.

DeployWare models are mapped to DeployWare descrip-
tions files that use a concrete syntax, based on an ADL al-
lowing to describe a software system to deploy. These files
hide complexity since end-users/administrators just have to
describe the software system/grid infrastructure, instead of
programming the deployment process. A DeployWare de-
scription is divided in two parts: the hosts part describes the
infrastructure whereas the software part specifies the soft-
ware to deploy and on which host, using identifiers that re-

179

Figure 3. The DeployWare Virtual Machine

fer to (i.e. are instance of) the TechnoExpert package’s
elements of the DeployWare metamodel. More information
about the FDF syntax can be found in [10].

2.3 The DeployWare Runtime

The DeployWare runtime executes DeployWare descrip-
tions. Its goal is to automatically execute complex deploy-
ment processes, dealing with orchestration and software de-
pendencies, hardware heterogeneity and very large scale de-
ployment.

2.3.1 A Virtual Machine to execute descriptions

The DeployWare runtime, named Fractal
Deployment Framework (FDF), is a virtual ma-
chine that automatically executes and orchestrates the
deployment process. Its implementation follows the
CBSE approach, i.e. everything is reified as software
components. FDF is composed of two layers: the software
components layer and the deployment components one, as
illustrated in Figure 3. The software components layer is
the set of components that reify the high-level software to
deploy. These components are the result of the mapping
of software experts’ DeployWare models, according to the
Model-Driven Approach (MDA [22]). They define the
personalities. The deployment components layer is a library
of components that abstracts low-level deployment mech-
anisms, such as file transfer and remote access protocols,
shells, etc. This allows us to mask the heterogeneity of the
physical infrastructure. The FDF virtual machine interprets
DeployWare descriptions as assemblies of components.
These assemblies hide, from user’s point of view, the
complexity of the deployment process, and particularly

Figure 4. A DeployWare Software

problems of the software dependencies and orchestration.
Indeed, a software is represented as a composite of com-
ponents as shown in Figure 4. Everything in FDF being
components, properties is the composite that contains
the configurable properties of a software, dependencies
is the composite that contains references to other software
components whereas the procedures, such as install,
configure or start, are also composites of compo-
nents symbolizing the instructions. The instructions are
runnable components that use the deployment components
library to realize elementary deployment tasks, such as
uploading an archive, executing a remote shell command,
setting an environment variable, etc.
Dependencies are automatically resolved thanks to an
internal automaton. If a software A depends on a soft-
ware B, i.e. a reference to software B is included in the
dependencies composite of software A, then proce-
dures of software B are executed before procedures of
software A. In other words, starting software A means:
starting software B then starting software A. It is also
possible to associate different procedures in the case of, for
example, starting the software A just requires the installa-
tion of software B. Obviously, dependencies of software
B are also resolved recursively. Dependencies must be
correctly declared in DeployWare models by software
experts. Thus, the orchestration of the deployment of a
system composed of various software that have complex
dependencies are automatically managed by FDF, no more
by users. The FDF implementation [10] is based on the
Fractal component model [5] and its Java-based tools.

2.3.2 About Scalability

The FDF virtual machine, installed on one node of the grid,
executes, from a DeployWare description, the deployment
process on the other nodes of the grid. DeployWare pro-

180

Figure 5. Distribution of DeployWare

vides a way to specify the execution mode, parallel or se-
quential, of the deployment process for any set of soft-
ware. It has been successfully tested for the deployment
of the OpenCCM middleware on one thousand of nodes of
Grid’5000 (see Section 3). But, to address very large scale
deployments, e.g. on 5 000, 10 000 or 50 000 nodes, the
physical resources of the node that runs the FDF virtual ma-
chine are limited. These physical resources’ limitations are,
for example, the number of sockets that can be opened on
a single node, the available memory, the CPU usage or the
number of running threads. The idea then is to use multi-
ple DeployWare nodes, by starting FDF on several nodes.
For example, to deploy a software system on 10 000 grid
nodes, 10 FDF servers can be used. Each FDF server is in
charge of the deployment of a part of the system (on 1000
nodes), as illustrated in Figure 5. No bootstrap is required
on the grid, the deployment of these FDF servers is accom-
plished using FDF itself! Users just specify the number of
servers in DeployWare descriptions. The DeployWare fron-
tend server, that deploys the FDF servers (step 1), launches
and orchestrates the deployment of all the subsystems (step
2) by each FDF server.

2.4 The DeployWare eXplorer

The DeployWare eXplorer console addresses the admin-
istration issue. It is a graphical user interface allowing one
to load DeployWare descriptions, as illustrated in Figure 6.
Administrator can 1) explore hierarchically the system de-
scription to monitor it using the left tree panel, and 2), act
on this system to manage it, using contextual menus. Figure
6 illustrates a deployment of OpenCCM application servers
on Grid’5000. For a selected software, the console displays
a graph (right panel) that shows all dependencies for the
software and the node on which it is deployed. The ad-

Figure 6. The DeployWare eXplorer console

ministrator manages the system by calling the deployment
procedures (such as install, configure, start, stop, uninstall)
for any software declared in the DeployWare description,
and can follow the progress of the whole deployment pro-
cess thanks to icons that indicate the current state of the
software (uninstalled, started, stopped, etc.).

3 Experiments on Grid’5000

3.1 Experiments with DeployWare

To validate our work, we have experimented it with a lot
of paradigms, technologies, middleware, and applications.
For that, we have written, as software experts, the personal-
ities for many software such as:
- CORBA-based systems with CORBA middleware, the
OW2 (previously, the ObjectWeb consortium) OpenCCM
platform and CORBA component-based applications,
- Grid services with the OAR/OARGrid tool,
- SOA-based systems with SCA (Service Component
Architecture) applications, Apache Tuscany SCA plat-
form, BPEL (Business Process Execution Language) pro-
cesses, OW2 Orchestra and ActiveBPEL engines, the OW2
PEtALS JBI (Java Business Integration) container and JBI
components and assemblies,
- JEE-based systems with the Apache Geronimo, JBoss,
JOnAS and SUN GlassFish application servers, and the
JASMINe/Jade autonomic systems.
The complete list of supported software can be found at
http://fdf.gforge.inria.fr/. Thus, writing a
DeployWare personality (e.g., to integrate a new software)
is easy. There are two ways to achieve that: by design-
ing DeployWare models that are mapped to DeployWare
descriptions, as explained on Section 2.2, or simply using
the FDF ADL syntax as illustrated in Figure 7. This piece
of code shows the personality for LAM-MPI software. It
details the install and start deployment procedures.

181

Figure 7. An example of FDF description

3.2 Results

The first experiment we have conducted concerns the de-
ployment of the OpenCCM middleware on 1000 nodes of
seven clusters of the Grid’5000 platform. The deployment
of OpenCCM application servers means the deployment of
the following software stack (i.e. the dependencies) on each
node: the OpenCCM libraries, the JacORB middleware and
a JRE1. The DeployWare description of this scenario in-
cludes a reservation task of 1000 nodes with the OAR tool.
Figure 8 shows the execution time of the deployment pro-

Figure 8. Deployment on Grid’5000 results

cess according to the number of grid nodes, for this exper-
iment. It may be of interest to point out that the execution
time of the deployment grows linearly with the number of
nodes, approximatively until 700-800 nodes. This result is
interesting as it demonstrates the limits discussed in Section
2.3.2 about the physical resources. The deployment process
is executed on one node of the grid by FDF. The deploy-
ment of the system on one thousand of nodes is executed
according to a parallel mode. This means one thousand of
sockets have to be opened at the same time on the node from
which the deployment is launched, to execute the deploy-
ment instructions (e.g. the upload instructions with scp
or shell commands to start processes on remote nodes with

1This represents approximatively 70 MB per node

Figure 9. Distributed deployment results

ssh). But, the number of opened sockets is fixed on the
Grid’5000 nodes. Thus, sockets cannot be opened anymore
if this limit is reached, until some sockets are closed, i.e. de-
ployment instructions that use sockets are finished. That’s
the reason why the execution time starts to grow exponen-
tially from 700-800 grid nodes, as illustrated in Figure 8
with the vertical bar. The second experiment is based on the
same deployment process, but using multiple DeployWare
nodes. This is so a distributed deployment. Figure 9 gives
the results on 400 grid nodes for 1, 2, 5 and 10 FDF servers
(unfortunately, we were not able to reserve more than 400
Grid’5000 nodes at this time). It shows that the deployment
execution time decreases with the number of FDF servers,
and this is an expected result. For example, the use of 2 FDF
servers to deploy the system on 400 nodes of Grid’5000 has
divided the execution time by 2. Nevertheless, we can no-
tice that the use of more FDF servers, such as 10 servers to
deploy on 100 nodes, is not really interesting as the number
of grid nodes is not significant. We deduce that the use of
one FDF server per 500 grid nodes can be a good compro-
mise. We hope than experiments we plan to make in a near
future, with at least 2000 nodes and 10 FDF servers, will
reinforce this observation.

4 Related Work

ProActive [3] proposes a framework to program, com-
pose and deploy distributed applications on grid infrastruc-
tures. GoDIET [8] is a deployment tool for distributed mid-
dleware. In those two approaches, efforts have been brought
to wrap low-level network mechanisms and then to be able
to automatically deploy both middleware and applications.
Nevertheless, both ProActive and GoDIET are linked to
their underlying technologies. ProActive allows to deploy
ProActive-based servers and applications, whereas GoDIET
is for the deployment of the DIET middleware. DeployWare
is not linked to a specific technology or programming model
and allows one to deploy any kind of software and middle-

182

ware. Besides, DeployWare can deploy the ProActive and
DIET middleware and applications.
Jade [4] is a deployment approach that provides additional
mechanisms to administrate systems autonomously accord-
ing to autonomic computing principles. To deploy and ad-
ministrate software with Jade, one has to wrap legacy code
into Fractal components. Jade allows one to deploy any
software in any language, and even black boxed legacy soft-
ware. But, the wrapper of these legacy software requires
Java and advanced wrapping techniques knowledge. The
design of new personalities in DeployWare is done seam-
lessly using the very simple dedicated language. More-
over, Jade requires additionnal operations performed by
hand to organise the deployment, such as starting Jade dae-
mons/servers, registering them in a naming service, etc. De-
ployWare has no prerequisites for deploying any software.
Besides, Jade belong to the list of supported DeployWare
personalities.
GADe / ADAGE [15] proposes a generic process in the pur-
pose of automatic deployment on computational grids. One
of the main ideas is that application descriptions must be
separated from resource descriptions. Both are inputs of the
deployment planning phase which consists in mapping the
application processes onto the selected computation nodes.
Deployment plans are then executed by the ADAGE de-
ployment tool. This generic process has been specialized
for the deployment of CORBA component-based applica-
tions [13] and MPI applications [14] which are an important
class of grid applications. DeployWare, through its meta-
model, refines the three phases that are considered by the
GADe / ADAGE architecture, and which are i) files upload-
ing/installation, ii) processes launching and iii) application
configuration, and validates some aspects of the deployment
process. Nevertheless, we consider that the idea of the sep-
aration of application and resource descriptions could be re-
ally interesting for DeployWare, for example by defining a
virtual host concept in our metamodel.
KaDeploy [1] is a tool allowing to execute deployment of
operating system images on remote nodes. It is possible to
build pre-configured images embedding every artifact that
is necessary to a software system, and to automatically de-
ploy these images onto each node of the grid infrastructure.
For example, it can be used to deploy an image that include
Globus on Grid’5000. Nevertheless, customizing and build-
ing OS images is a very costly activity. The configuration of
the software and middleware contained in the image, and of
the environment variables is really a complex task. More-
over, KaDeploy can’t perform distributed orchestration of
the deployment process. DeployWare is an alternate ap-
proach that allows to dynamically configure software and
nodes, at runtime. TakTuk [16] or pssh are tools for de-
ploying parallel remote executions of commands to a large
set of remote nodes. TakTuk particularly addresses the scal-

ability challenge as the TakTuk engine can deploy itself on
other nodes, like DeployWare. DeployWare can wrap such
software to execute parallel low-level commands such as
file transfers, environment settings or launching of remote
processes. Nevertheless, pssh or TakTuk are mainly ded-
icated to parallel programs and are not able to orchestrate
heterogeneous deployment tasks. Finally, the OMG De-
ployment and Configuration of Component-based Ap-
plications (D&C) [20] specification provides generic con-
cepts to express deployment of component-based business
applications, independently of the underlying component-
model. Unfortunately, nothing is said about the deployment
of the middleware/application server layer. Furthermore,
the OMG D&C specification is not really adapted for SOA
architectures. Additionally, the OMG D&C specification
and its metamodel do not deal with verification, orchestra-
tion and scalability concerns, contrary to DeployWare.

5 Conclusion and Perspectives

In this paper, we have presented the DeployWare frame-
work that particularly addresses the deployment of hetero-
geneous and distributed software systems on grids. Deploy-
Ware lies on a metamodel that captures abstract concepts of
software deployment. The DeployWare metamodel is used
to describe the deployment process of a system, indepen-
dently of the underlying paradigm, technologies or middle-
ware and runtime platforms that compose this system, and
the granularity of the software, in order to deal with the
software heterogeneity challenge. As grids are shared in-
frastructures, we are conviced that large scale deployments
have to be validated before the execution. DeployWare pro-
vides this static validation. DeployWare models, that de-
scribe a set of software related to a specific technology (per-
sonality), are mapped to concrete software components, ac-
cording the MDA principles. A concrete syntax allows to
describe systems to deploy. The FDF virtual machine inter-
prets these descriptions and the deployment process is auto-
matically executed dealing with orchestration and software
dependencies. FDF uses a library of deployment compo-
nents that masks the heterogeneity of the physical infras-
tructures. The DeployWare eXplorer allows one to monitor
and manage, at runtime, the deployed system. As far as
scalability is concerned, DeployWare can deploy itself to
achieve deployment on thousands of grid nodes. We vali-
dated our approach with concrete experiments of CORBA-
based systems on the Grid’5000 platform. A lot of personal-
ities, including component-based middleware, SOA-based
systems, grid services or network tools are available yet.
DeployWare/FDF is an LGPL open source project. Our fu-
ture work will go in many directions. Firstly, we plan to
make new experiments and measures of very large scale de-
ployments using the whole Grid’5000 clusters, and if pos-

183

sible, the Naregi and DAS3 (the Netherlands grid initiative)
grids. The purpose is to validate our approach, and par-
ticularly the distributed deployment using multiple Deploy-
Ware nodes, and to experimentally verify the limits we iden-
tified. The scenario could be the automatic deployment of
grid-specific software systems, such as MPI programs. Sec-
ondly, although DeployWare provides some mechanisms to
dynamically compute hostnames for hosts, e.g. from a file
that contains the list of nodes, software are statically as-
signed to hosts in end-users descriptions, contrary to grid’s
philosophy. The idea is to add an assignation phase to au-
tomatically select resources for software. Mid-term work
concerns autonomic computing, faults tolerance and errors
management (during the deployment process). We work
on adding autonomic behaviour on deployment. For ex-
ample, if new grid nodes become available, DeployWare
will adapt the system, and automatically deploy software
on these nodes. Finally, we think that it may be really inter-
esting to simulate large scale deployment, before executing
them on the grid. This means DeployWare models could be
validated and executed on a virtual machine that symbol-
izes the grid infrastructure. Our long-term goal is to provide
such a feature in DeployWare.

Acknowledgments

Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, an initiative from
the French Ministry of Research through the ACI GRID
incentive action, INRIA, CNRS and RENATER and other
contributing partners (see https://www.grid5000.fr).

References

[1] The KaDeploy project. http://kadeploy.imag.fr/.
[2] NAREGI: National Research Grid Initiative, 2006.

http://www.naregi.org.
[3] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet,

M. Morel, and R. Quilici. Grid Computing: Software En-
vironments and Tools, chapter Programming, Deploying,
Composing, for the Grid. Springer-Verlag, Jan. 2006.

[4] S. Bouchenak, N. D. Palma, D. Hagimont, and C. Taton. Au-
tonomic Management of Clustered Applications. In Cluster
2006, Barcelona, Spain, Sept. 2006. IEEE.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
Stefani. The FRACTAL Component Model and Its Support
in Java. Software Practice and Experience – Special issue
on Experiences with Auto-adaptive and Reconfigurable Sys-
tems, 36(11-12):1257–1284, Aug. 2006.

[6] N. Capit, G. D. Costa, Y. Georgiou, G. Huard, C. Martin,
G. Mouni, P. Neyron, and O. Richard. A batch scheduler
with high level components. In CCGrid’05, 2005.

[7] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jean-
not, Y. Jegou, S. Lanteri, J. Leduc, N. Melab, G. Mornet,

R. Namyst, P. Primet, and O. Richard. Grid’5000: a large
scale, reconfigurable, controlable and monitorable Grid plat-
form. In Grid’2005 Workshop, Seattle, USA, November 13-
14 2005. IEEE/ACM.

[8] E. Caron, P. K. Chouhan, and H. Dail. Go DIET: A De-
ployment Tool for Distributed Middleware on Grid’5000. In
EXPGRID’06, Paris, France, June 2006.

[9] J. Dubus and P. Merle. Towards Model-Driven Validation of
Autonomic Software Systems in Open Distributed Environ-
ments. In Proceedings of the ECOOP Workshop on Model-
Driven Adaptation, Berlin, Germany, July 2007.

[10] A. Flissi and P. Merle. A Generic Deployment Frame-
work for Grid Computing and Distributed Applications. In
GADA’06, volume 4279 of LNCS, pages 1402–1411, Mont-
pellier, France, Nov. 2006. Springer-Verlag.

[11] I. Foster. Globus Toolkit Version 4: Software for Service
Oriented Systems. In IFIP NPC, volume 3779 of LNCS,
pages 2–13. Springer-Verlag, 2006.

[12] I. Foster and C. Kesselman. The Grid 2: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2003.

[13] S. Lacour, C. Pérez, and T. Priol. Deploying CORBA Com-
ponents on a Computational Grid: General Principles and
Early Experiments Using the Globus Toolkit. In CD’04, vol-
ume 3083 of LNCS, pages 35–49. Springer, 2004.

[14] S. Lacour, C. Pérez, and T. Priol. Description and
Packaging of MPI Applications for Automatic Deploy-
ment on Computational Grids. Technical report, 2005.
http://hal.inria.fr/inria-00070425/fr.

[15] S. Lacour, C. Pérez, and T. Priol. Generic Application De-
scription Model: Toward Automatic Deployment of Appli-
cations on Computationnal Grids. In Grid 2005, 6th Int’l
Workshop, Seattle, WA, USA, Nov. 2005. Springer-Verlag.

[16] C. Martin, O. Richard, and G. Huard. Déploiement adaptatif
d’applications parallèles. TSI, 2005.

[17] J.-M. Nicod. DIET: Distributed Interactive Engineering
Toolbox. In Management of Metacomputers, Seminar
N. 01241, Report N. 310, Dagstuhl, Germany, May 2001.

[18] Object Management Group. CORBA Components Specifi-
cation. Available Spec. formal/2006-04-01, Apr. 2006.

[19] Objectweb Consortium. OpenCCM - The Open
CORBA Component Model Platform, 2002.
http://openccm.objectweb.org.

[20] OMG. Deployment and Configuration of Component-based
Distributed Applications. Available Spec. formal/2006-04-
02, Apr. 2006.

[21] C. Pérez, T. Priol, and A. Ribes. A Parallel CORBA Com-
ponent Model for Numerical Code Coupling. In Grid 2002,
3rd International Workshop, volume 2536 of LNCS, pages
88–99, Baltimore, MD, USA, Nov. 2002. Springer.

[22] J. D. Poole. Model-Driven Architecture: Vision, Standards
And Emerging Technologies. In ECOOP 2001, Workshop
on Metamodeling and Adaptative Object Models, Budapest,
Hungary, Apr. 2001.

[23] M. Stal. Using Architectural Patterns and Blueprints for
Service-Oriented Architecture. IEEE Software, 23(2):54–
61, 2006.

[24] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 2 edition, 2002.

184

