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Comparison of sediment transport formulae for the

coastal environment

Benoît Camenen*, Philippe Larroudé
Laboratoire des Ecoulements Géophysiques et Industriels, Institut de Mecanique de Grenoble, BP51, 38041 Grenoble cedex 9, France 

Most existing sediment transport formulae to estimate transport rate in the coastal environment have a restricted range of
applicability and are often used beyond this range. The aim of this paper is to investigate the limits of five of these formulae: the
Bijker, Bailard, Van Rijn, Dibajnia and Watanabe, and Ribberink formulae. The sensitivity of these formulae to wave orbital
velocity, wave period, wave asymmetry, sediment grain size, and steady current has been studied and tested against data for large
velocities where significant errors can appear. The formulae behave in very different ways if one of the main parameters is slightly
modified, particularly when fine sediments are present and phase-lag effect appears. But important discrepancies between
formulae can also be observed for medium sand. At last, the wave-related sediment transport (due to wave asymmetry) has great
importance for the morphodynamic and is only accounted for in the Bailard, Dibajnia and Watanabe, and Ribberink formulae.
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1. Introduction

Calculating nearshore sediment transport is a chal-

lenge due to the complexity of the hydrodynamics

and the variety of the governing phenomena. Indeed,

it is very difficult to estimate sediment fluxes on bea-

ches due to the combination of steady flows (currents)

and oscillatory flows (waves). Moreover, many other

effects should be integrated such as the variations in

mean water level (tide, set-up, and set-down), break-

ing wave effects (turbulence and undertow), and

topographic influence (mean slope and bed forms).

Furthermore, these parameters induce different types

of transport (bed load, suspended load, and sheet

flow), with very different physical implications for

the movement of sand.

Many different formulae are available to estimate

sediment transport on beaches, most of them based on a

macroscopic approach to the phenomena. Two main

approaches to the phenomena have been studied: an

energetics approach developed by Bagnold (1963) and

a probabilistic approach introduced by Einstein (1972).

One limitation of the formulae is that authors have

mainly compared and fitted their formulae only to a

certain set of data (experimental or field data). For

example, Bijker (1968), Bailard (1981), and Bailard

and Inman (1981) mainly compared their formula to

field data for littoral drift; Van Rijn (1984, 1989)
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compared his formula to a large variety of field data;

Dibajnia and Watanabe (1992), Dibajnia (1995), Rib-

berink (1998), and Ribberink and Al Salem (1994)

compared and fitted their formula to experimental

flume data, Soulsby (1995) compared Bailard formula

with data and models.

Apart from the authors, it seems that very few

studies have compared the behaviour of different for-

mulae with respect to the main parameters. King and

Seymour (1982) performed some comparisons of mod-

els with Shields parameter. More recently, Dohmen-

Janssen (1999) compared the Bailard, Ribberink, and

Dibajnia and Watanabe formulae with experimental

flume data involving different grain sizes, currents,

and orbital velocities. Camenen and Larroudé (2000)

pointed out the great dependence of sediment fluxes on

these parameters. At last, one aim of the Sedmoc

program was to find (or improve) a formula, which

gives the best results in the nearshore environment.

Several authors have hence made some comparisons

but only between their own formula and one other, or

have only studied the influence of one parameter (see

the book resulting from the Sedmoc project, (Van Rijn

et al., 2001), papers CJ, CK and CL).

The idea of comparing the dependence of formulae

with respect to the main parameters of sediment trans-

port is very interesting. It provides a better understand-

ing of the physics of sediment transport. These para-

meters relate to wave (bottom orbital velocity, period,

and asymmetry), current, and sediment (grain size).

2. The sediment transport formulae studied

We chose to study five formulae which are interest-

ing because of their different approaches to the prob-

lem:

� The Bijker (1968) and Van Rijn (1984, 1989) total

load formulae. The formulation for bed load

transport comes from a method used in a river

environment and adapted to a coastal environment.

Suspended load is obtained from the integration

over depth of c(z)v(z), where c is the concentration

of sediment and v the velocity at level z.
� The Bailard (1981) total load formula, which is an

energetics formulation for sediment transport due

to waves.

� The Dibajnia and Watanabe (1992) total load

formula, which results from an analysis of the

instantaneous velocity due to wave and current

interaction and the associated induced movement

of sediment.
� The Ribberink (1998) bed load formula, which is a

quasi-steady model of sediment transport that uses

instantaneous shear stresses.

2.1. Bijker formula

One of the first sediment transport formulations

that is still often used in engineering applications was

proposed by Bijker (1968). It is derived from Frijlink

(1952) formula for a current only with a modification

of the bottom shear stress using a wave–current

model. The direction of sediment fluxes is always

that of the current since this formula was proposed to

estimate longshore transport rate:

qsb ¼ Cbd

ffiffiffiffiffiffiffiffiffi
lcsc
q

r
exp �0:27

ðqs � qÞgd
lcscw

� �
;

qss ¼ 1:83 qsb I1ln
33h

dc

� �
þ I2

� �
; ð1Þ

where qsb, qss: sediment volume fluxes for bed load

and suspended load, respectively; d: median grain size

diameter; h: water depth; Cb: breaking wave param-

eter; lc: ripple parameter; sc: shear stress due to

current only; scw: shear stress due to wave–current

interaction; qs, q: sediment and water densities,

respectively; I1, I2: Einstein integrals (suspended

load); and dc = 100d / h: dimensionless thickness of

the bed load layer.

The ripple parameter introduced by Bijker (1968)

is defined by the following equation:

lc ¼
fct

fc

� �3=2

ð2Þ

where fct: the total friction coefficient due to current

and fc: the skin friction coefficient due to current.
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The breaking wave coefficient is defined by:

Cb ¼ 2 if Hw=h < 0:05

¼ 2þ 3ðHw=h� 0:05Þ if 0:05 < Hw=h < 0:4

¼ 5 if 0:4 < Hw=h

ð3Þ

where Hw: wave height and h: water depth.

The shear stress due to the wave–current interac-

tion is computed following the method proposed by

Bijker introducing a suspension factor:

scw ¼ 1þ 0:5 nB
Uw

Uc

� �2
" #

scf ð4Þ

with nB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
fwt=fct

p
: parameter due to the wave–

current interaction, fwt: the total friction coefficient

due to waves, Uw: peak value of the wave orbital

velocity at the bottom, and Uc: mean current velocity.

The Einstein integrals for the suspended load are

given:

I1 ¼
Z 1

d

1� y

y

� �A

dy;

I2 ¼
Z 1

d

1� y

y

� �A

ln ydy: ð5Þ

where A=Ws/j(scw / q)
0.5 is a function determining

the rate of the suspension, j = 0.41 is the Von Karman

constant, and Ws the settling velocity.

2.2. Bailard formula

Bagnold (1966) introduced the energetics model in

which the main idea is that the sediment flux is

proportional to the energy flux (local rate of energy

dissipation). His transport model also separated the

two classical types of transport:

� bed load transport sustained by the bed via grain to

grain interaction,

� suspended load transport sustained by the current

via turbulent diffusion.

Thus, the transport is expressed as:

qs ¼ qsb þ qss~X ð6Þ

X ¼ 0:5qfcwA
!
uðtÞA3 ð7Þ

with X: energy flux due to waves and currents, fcw:

friction coefficient due to the wave–current interac-

tion,
!
uðtÞ: instantaneous velocity vector,

!
uðtÞ ¼!Uc þ!

uwðtÞ,Uc: current velocity averaged over the depth, and

uw(t): instantaneous wave velocity.

The Bailard (1981) formula is derived directly

from the Bagnold model. It can take into account

wave–current instantaneous velocity profiles. For a

horizontal bed, it can ultimately be written as a vector

of sediment volume transport:

!
qs ¼

0:5fcw
gðs� 1Þ

eb

tan/
hA!uA2!ui þ es

Ws

hA!uA3!ui
� �

ð8Þ

where eb, es: bed load and suspended load efficiencies

respectively, /: friction angle of the sediment, and h i:
average over several periods of the wave.

The bed load and suspended load efficiency coef-

ficients are slightly different from those given by

Bagnold. Bailard suggested from a calibration with

field data that eb = 0.1 and es = 0.02. One difficulty for

this formulation is the estimation of the friction

coefficient due to the wave–current interaction as

Bailard did not specify any expression for this friction

factor. A discussion on this problem is presented in

Section 3.1.

2.3. Van Rijn formula

The Van Rijn (1989) formula is expressed in the

same way as the Bijker formula, as the sum of bed

load transport (taking into account the influence of

waves) and the suspended load flux integrated over

depth. The direction of sediment fluxes is also that of

3



the current. Bed load transport can be written as

follows:

qsb ¼ 0:25dD�0:3
*

scf
q

� �0:5 scw � scr
scr

� �1:5

ð9Þ

where D*=((s� 1)gd3 = v2)1/3: dimensionless sediment

diameter, scf = lcacwsc: total shear stress due to cur-

rent only (taking into account the influence of bed

forms), scr: critical shear stress for sediment transport,

lc = fc/fct: shape factor, and acw: coefficient due to the

presence of waves (which can affect the mean shear

stress).

Suspended load transport is computed by solving

the equation of concentration over depth:

dc

dz
¼ � ð1� cÞ5cWs

escw
ð10Þ

where c(z): mean volume concentration (time aver-

aged) at height z, (1� c)5 corresponds to the decrease

of the settling velocity due to high concentrations, and

escw: mixing coefficient in case of a wave–current

interaction.

Then, integrating sediment fluxes over depth:

qss

Z h

a

uðzÞ cðzÞdz ð11Þ

where h: water depth; a =max(ksct, kswt): reference

level; ksct, kswt: total roughness values due to current

and waves; and uðzÞ: mean velocity (time averaged) at

height z.

escw, ca and uðzÞ are computed following the

equations given by Van Rijn (1984, 1989).

2.4. Dibajnia and Watanabe formula

Another interesting sediment transport formulation

is that of Dibajnia and Watanabe (1992) and Dibajnia

(1995). Similar to the Bailard and Ribberink models,

it breaks down the sediment transport into two half-

cycles due to the presence of waves (cf. Fig. 1).

During the first half-cycle, sediment moves in the

direction of the wave, just as it moves in the opposite

direction during the second half-cycle. An interesting

aspect of the formula is that it takes into account a

possible quantity of sand still in suspension after each

half-cycle, and hence moving in the other direction

(this phenomenon is also called ‘‘phase-lag’’ intro-

duced by Dohmen-Janssen, 1999). This formula (as

the Bailard and Ribberink formulae) enables transport

under a non-linear wave to be described.

The solid volume flux is given by the following

equation:

!
qs ¼ AdwWsd

!
C
C

CBdw ð12Þ

where Adw = 0.001 and Bdw = 0.55: coefficients of

calibration, and with

!
C ¼ Twc

!
uwcðX3

c þ XtV
3Þ þ Twt

!
uwtðX3

t þ XcV
3Þ

ðuwc þ uwtÞTw
ð13Þ

where Tw, Twc, Twt: period and half-periods of wave

taking into account the effect of a current (cf. Fig. 1);

Xc, Xt: amount of sand entrained and settled during

the half-period Twc and Twt, respectively; XcV, XtV:
amount of suspended sand remaining from the pos-

itive and the negative half-cycle, respectively; and

uwc, uwt: quadratic velocity (wave + current) over each

half-period expressed as:

u2wj ¼
2

Twj

Z tþTwj

t

u2ðtÞdt þ 2U2
c sin

2h ð14Þ

Fig. 1. Bottom velocity profile in the direction of the wave

propagation (Dibajnia and Watanabe, 1992).
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where j can be c or t; u(t) =Uccosh+ uw(t), uw(t):

instantaneous wave orbital velocity; h: angle between
wave direction and current direction.

if xjVxcr then Xj ¼ xj
2WsTwj

d

and XjV¼ 0;

if xjzxcr then Xj ¼ 2WsTwj
d

and XjV¼ ðxj � 1Þ 2WsTwj
d

;

ð15Þ

with:

xj ¼
u2wj

2ðs� 1ÞgWsTwj
ð16Þ

where j can be c or t.

xcr is a ripple parameter:

xcr ¼ 0:03 if WcwðmaxÞV0:2

¼ 1� 0:97 1� WcwðmaxÞ�0:2

0:4

� �2
� �0:5

if 0:2 < WcwðmaxÞ < 0:6

¼ 1 if 0:6 < WcwðmaxÞ

ð17Þ

where Wcw(max): maximum Shields parameter due the

wave–current interaction (computed followingmethod

of Soulsby, 1997, pp. 87–95).

2.5. Ribberink formula

Ribberink proposed a quasi-steady model of bed

load transport where the instantaneous solid flux is

assumed to be proportional to a function of the

difference between the actual time-dependent bed

shear stress and the critical bed shear stress (see Fig.

2). This formulation has been calibrated towards

several flume data sets including wave–current inter-

action in a plane regime (suspended load negligible)

and field data (unidirectional flows in rivers).

The following expression for the sand transport

rate was obtained:

!
qsb ¼ mRib

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þgd3

p


 ðA!WðtÞA� WcrÞnRib
!
WðtÞ

AWðtÞA

* +
ð18Þ

where
!
WðtÞ ¼ 0:5fcwAuðtÞA

!
uðtÞ=½ðs� 1Þgd� : time-

dependent Shields parameter (cf. Fig. 2) with the

instantaneous velocity
!
uðtÞ ¼!Uc þ

!
uwðtÞ and the

wave–current friction factor fcw computed according

to the Madsen and Grant’s (1976) method; Wcr: criti-

cal Shields parameter; h i: time-averaged over several

wave periods; and mRib = 11, nRib = 1.65: adjusted

coefficients.

In the same way as the Bailard formula, an equiv-

alent wave–current friction coefficient has to be

computed. Ribberink proposed to use the Madsen

and Grant’s (1976) method (see Section 3.1). He also

proposed to compute total roughness values as fol-

lows:

kst ¼ maxðks; d½1þ 6ðhAWðtÞAi=Wcr � 1Þ�Þ ð19Þ

where ks is skin roughness height.

3. Important physical parameters for estimating

sediment fluxes

This section aims to demonstrate the importance of

taking into account various parameters as roughness,

phase-lag, and models of orbital bottom velocity

profile of the waves when calculating sediment flux.

3.1. Influence of roughness and friction coefficients

The calculation of the total roughness value ks
seems to be a great challenge as it influences signifi-

cantly the total sediment transport, although large

Fig. 2. Profile of the time-dependent shear stress (case where wave

and current directions are the same).
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uncertainties can be observed. The following models

has been used to compute bed form characteristics and

roughness, as well as sheet-flow roughness:

� current ripples: Soulsby’s (1997) method (pp. 115

and 123),
� current megaripples: Van Rijn’s (1993) method

(pp. 5.14 and 6.8; Van Rijn 1993),
� wave ripples: Van Rijn’s (1993) method (pp. 5.39

and 6.21),
� sheet- flow: Wikranmanayake and Madsen’s (1991)

method.

Figs. 3 and 4 show the marked influence of bed

forms and sheet flow roughness values on the friction

coefficient and hence on the estimation of shear

stresses due to current or waves. A factor of 3 between

skin and total shear stress due to the current can be

observed and this factor becomes 5 for the shear stress

due to waves. Many other formulae exist and often

give very different results particularly for sheet flow

conditions (cf. Dohmen-Janssen, p. 27). The Wikran-

manayake and Madsen’s method has been chosen as it

produces the best results when compared to the

available data for high sediment transport fluxes.

Thus, it appears that significant errors in sediment

transport computation can be induced through the

calculation of total roughness. It is obvious that these

roughness values are physical and significantly influ-

ence solid fluxes. Furthermore, some formulae have

been calibrated taking into account bed forms and

sheet flow roughnesses. Thus, we have attempted to

take the influence of total roughness into account as

far as possible with respect to the author’s recom-

mendations. In the absence of any recommendation,

the presented models are used.

The roughness is included in sediment transport

formulae via the friction coefficients due to current fc,

or (and) due to waves fw. These coefficients are

mainly increasing functions of grain size diameter

(cf. Fig. 4 for skin roughness). But, if the total

roughness is computed (method presented in the

previous paragraph), the influence of hydrodynamic

conditions prevails. The total friction coefficient fct is

thus an increasing function with mean velocity Uc (cf.

Fig. 4a). Because ripples appear more often for fine

sediments, a small current has a bigger effect on the

friction coefficient. On the other hand, the friction

coefficient fwt is very sensitive to small orbital veloc-

ities with coarser sediments. This effect decrease with

an increasing Uw (cf. Fig. 4b). Otherwise, fwt increase

with Uw. The total friction factor is thus very sensitive

Fig. 3. Shields parameters Wc and Ww versus current and wave orbital velocity using skin roughness (dashed lines) or total roughness (solid

lines).
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to grain size and current (or wave) velocity, and can

often explain the sensitivity of formulae to these

parameters.

At last, several formulations need a friction coef-

ficient due to wave–current interaction. Indeed, fric-

tion coefficients due to current only or due to waves

only do not have the same physical basis and display

very different values ( fw/fcc 10–100). Madsen and

Grant (1976) suggested a linear combination of the

two friction coefficients:

fcw ¼ Xfc þ ð1� X Þfw with X ¼ Uc

Uc þ Uw

ð20Þ

However, following the relation between friction

coefficient and shear stress, fcw can be computed from

the maximum total shear stress over the bottom

(computed using the Soulsby’s (1997) method, pp.

87–95):

fcw ¼ scw;max

0:5 qhA!uA2i
ð21Þ

On Fig. 5, it can be seen that results obtained from

these two different methods remain more or less

similar. However, when waves prevail, Eq. (21) pre-

dict values for fcw 20% bigger than Eq. (20) and even

bigger than fw. Afterwards, in this paper, the Madsen

and Grant’s method will be used.

3.2. Influence of phase-lag

As most of the sediment transport occurs near the

bed in the sheet flow case, it is often assumed that

the response time of the sediment is a lot shorter

than the wave period. Sediment transport in oscillat-

ing fluxes is generally considered as quasi-steady,

implying that the instantaneous sand flux is a func-

tion of a certain power of the instantaneous velocity.

However, Ribberink and Chen (1993), during their

experiment in an oscillating flume, observed that for

fine sand (d = 0.13 mm) and second-order Stokes

waves, the sediment flux is much lower than

expected, and can even be in the opposite direction

to the steady current. This contradicts the quasi-

steady hypothesis.

An explanation of this phenomenon may be the

phase-lag of the sand’s response to the fluid. The

quantity of sediment in suspension depends essen-

tially on the instantaneous velocity, but it also depends

on the settling velocity. In the case of oscillating

flows, not all the sand grains put into suspension

during the first half-period settle during this same

half-period. The proportion still in suspension is then

carried away in the opposite direction during the

second half-period.

Fig. 4. Skin and total friction coefficients due to current fc, fct (a) and due to waves fw, fwt (b) versus the mean grain size diameter for different

hydrodynamic conditions (Uw = 0 m/s, h = 2 m (a); Uc = 0 m/s, Tw = 6 s, h = 2 m (b)).
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Dohmen-Janssen (1999) introduced the parameter

p to express the importance of phase-lag:

p ¼ tsettling

Tw
¼ d

WsTw
ð22Þ

where d: height at which the particle is situated and

Ws: settling velocity.

Dohmen-Janssen proposed to use Wilson’s (1987)

formulation for the thickness of the sheet flow layer,

thus: d= 10Wwd.

In case of rippled beds, phase-lags can also occur

quite often (suspension due to the bed forms, reversal

flow on the lee side of the ripple caused by eddies)

and thus have a large influence on the transport rate.

However, as rippled beds often correspond to rela-

tively small shear stresses and, consequently, to small

sediment transport rates, this specific case will not be

studied in this paper.

3.3. Influence of second-order wave velocity profiles

In morphodynamic models, it is often necessary to

describe waves as simply as possible, simultaneously

being as consistent with reality as possible. Bottom

velocity profiles often become non-linear near the

coast, which results in positive net transport shore-

ward. However, waves are often considered to be

sinusoidal in morphodynamic models and thus are

only a function of two parameters: the magnitude of

the bottom orbital velocity Uw and the period Tw,

yielding an instantaneous velocity:

uwðtÞ ¼ Uwsin
2pt
Tw

� �
ð23Þ

Nevertheless, introducing a third parameter would

enable the velocity profile to be simulated more

correctly. The asymmetry coefficient Rw is defined as

the quotient between the maximum positive velocity of

the wave and its amplitude (Rw = uw(max)/(uw(max)�
uw(min)) = uw(max)/(2Uw)). The asymmetry can also be

written with the coefficient rw = 2Rw� 1. The wave

velocity equation becomes:

uwðtÞ ¼ Uw sin
2pt
Tw

� �
þ rwsin

4pt
Tw

� �� �
ð24Þ

Fig. 6 shows the relevance of using the term rw for

the velocity asymmetry. The velocity profile obtained

with the second order is much closer to some exper-

imental results. (The experimental profile given by

Dibajnia and Watanabe, 1992 corresponds to the first

order of the cnoidal theory which is a quite good

representation of a non-breaking wave.) Thus, assum-

ing the sand flux to be proportional to the instanta-

neous velocity to the power three, the resultant error is

much lower using the second-order theory.

Fig. 5. Skin friction coefficient for wave and current interaction fcw computed following Eq. (20) (solid lines) or Eq. (21) (dashed lines) versus

mean current (a) or wave orbital velocity (b); fine solid lines correspond to skin friction coefficients fc and fw.
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Among the formulae studied, only those of Bailard,

Dibajnia and Watanabe, and Ribberink enable second

order velocity profiles to be used. As a consequence,

computations of the terms hA!uA2!ui and hA!uA3!ui in
the Bailard formula, the quadratic velocities in the

Dibajnia and Watanabe formula and the average of the

time-dependent shear stress in the Ribberink formula

are more correctly represented using the second order

of the Stokes waves. The main differences can be

observed for cases without current, where only those

formulae taking into account the second order produce

a net transport. Better results are also obtained for the

cases where the current velocity is slightly lower than

the wave orbital velocity ((1� rw)Uw <Uc <Uw), as

the half-period Twc and the velocity peaks are better

estimated (the ‘‘flat’’ shape of the negative part of the

velocity profile is more realistically described). To

improve this effect, the cnoidal theory must be used

but no analytical computation is then allowed for the

velocity moments.

4. Comparison between studied formulae and field

and experimental data

4.1. General points and data presentation

According most of the authors, their formulae give

results that are very close to their own experimental

data. However, it is almost impossible to find a simple

formula that is valid for every applicable case, as so

many parameters exist and interact together. Some

formulations may simply be more suited for one case

or another. A comparison with a large quantity of data

is very interesting in order to observe whether a

formula gives correct results for the main cases; but

such a comparison must be supplemented with a study

of how the formulae behave with respect to the key

parameters of sediment transport over a wide range of

parameter values.

Major morphological changes occur during high

hydrodynamic stresses. It is therefore essential that

sediment transport formulae should give accurate

results for strong currents and/or high waves. To

check this, the five formulae studied are compared

to experimental data mainly corresponding to the

sheet flow regime. Comparisons were made for cases

with strong currents without waves (according to

Voogt et al., 1991 with the headings Krammer and

Scheldt corresponding to the names of the beaches),

and laboratory data in an oscillating flume (according

to Al Salem, 1993; Ribberink and Al Salem, 1994

with the heading Alsalem; Dohmen-Janssen, 1999

with the heading Janssen; Dibajnia and Watanabe,

1992; Dibajnia, 1995 with the heading Dibajnia).

It is often considered that the estimation of sedi-

ment flux is acceptable when it is between 0.5 and 2

times the experimental data. Therefore, in the follow-

ing graphs, the curves qs(num) = qs(data) (solid line) and

qs(num) = 0.5 or 2 qs(data) (dashed lines) are given. For

each comparison with the data, the percentage of

points with less than 50% error and less than 20%

error is also computed for ‘‘current only’’ data and

‘‘wave–current’’ data (i.e., Cc50, Cc80, Cw50, and

Cw80, respectively). In case of negative data (current

direction opposite to wave direction), the absolute

value is presented on the graph only if the formula

predict the correctly induced direction of the sediment

transport. If the direction of transport is predicted

incorrectly, an error up to 100% is considered.

4.2. Bijker formula

Fig. 7 shows that the Bijker formula tends to

underestimate solid transport mainly for wave–cur-

rent interaction where the errors may reach several

orders of magnitude. This can be explained by the fact

that the Bijker formula takes into account waves only

Fig. 6. Velocity profiles and sediment transport obtained from

different wave models (the experimental profiles are from the

experiments of Dibajnia and Watanabe, 1992).
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as an active term for suspension. Thus, even when the

wave orbital velocity is high (and also the asymme-

try), if the steady current is very low, the net sediment

transport will also be very low. The results for cases

with purely waves are therefore very scattered. In

cases without waves, the results are better (Cc50 up to

65%), but still less good than for the other formulae

and very sensitive to the computation of the total

roughness. Using skin friction results in serious under-

estimation, particularly for the coarsest sediments.

4.3. Bailard formula

Using the present experimental data, it is possible

to compare different methods for estimating the fric-

tion coefficient fcw derived from Bailard formula (cf.

Section 3.1). With the Madsen and Grant’s method or

by extracting this coefficient from the total shear

stress scw, similar results are obtained but a clear

overestimation has been observed in the case of a

wave–current interaction. In Fig. 8, good agreement

with the experimental data can be observed (much

better than with the Bijker formula) using the Madsen

and Grant’s method with the skin friction due to

waves. However, slight scatter can be observed for

wave–current interaction cases (over-estimation for

the Janssen data and underestimation for the Dibajnia

data). Finally, it may be stated that, using the Stokes

second-order theory for waves in the case of asym-

metric waves with a weak current (case of the Alsalem

data), a clear improvement in the results is observed.

4.4. Van Rijn formula

One advantage of the Van Rijn formula is that it

takes into account many physical parameters to esti-

mate bed load and suspended load. Thus, for instance,

only skin friction is considered for bed load, while

total friction is considered for suspended load; effects

of turbulence are included and the velocity profile

over the depth is computed. On the other hand, many

parameters, that are not always easy to estimate,

significantly complicate the computations. Suspension

is highly sensitive to parameters such as reference

concentration or mixing coefficient, which involve

considerable uncertainties. Moreover, computing sus-

pended load while resolving the integrals is time-

consuming.

The Van Rijn formula yields reasonable results

(Cc50 up to 70% and Cw50 up to 45%), with only

a slight underestimation in the case of wave–current

interactions (cases from the Dibajnia data) and an

Fig. 7. Comparison between the Bijker formula and experimental data (explanation of legend in Section 4.1).
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overestimation for some cases (very fine sediments)

of the Scheldt data (cf. Fig. 9). But, in the same

way as the Bijker formula, considerable errors

appear for cases with asymmetric waves opposite

to current.

4.5. Dibajnia and Watanabe formula

The Dibajnia and Watanabe formula gives good

results for most of the cases studied (the best results for

the five studied formulae, Cc50 = 84% and Cw50 =

Fig. 8. Comparison between the Bailard formula and experimental data (explanation of legend in Section 4.1).

Fig. 9. Comparison between the Van Rijn formula and experimental data (explanation of legend in Section 4.1).
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46%). However, a slight underestimation can be

observed in Fig. 10 for the Scheldt and Krammer data,

and a slight overestimation for the Janssen and Alsa-

lem data. Nevertheless, the results remain less scat-

tered than with some of the previous formulae.

4.6. Ribberink formula

Finally, the Ribberink formula gives good results in

case of wave–current interaction, but significantly

underestimates the sediment transport for the cases

Fig. 10. Comparison between the Dibajnia and Watanabe formula and experimental data (explanation of the legend in Section 4.1).

Fig. 11. Comparison between the Ribberink formula and experimental data (explanation of the legend in Section 4.1).
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with strong currents, and thus with high suspended load

(see experimental results from the Scheld andKrammer

beaches; Fig. 11). It can easily be explained by the fact

that this formula was only adjusted for cases with bed

load and sheet flow (without suspension).

As for the Bailard formula, a difficulty which

occurs is the estimation of the wave–current friction

coefficient. The best results were obtained using the

Madsen and Grant’s method but using the total shear

stress due to current (computed as presented in para-

graph 3.1, bed form effects included).

5. Behaviour of sediment transport formulae

To validate each of these formulae more com-

pletely, it is interesting to study their behaviour with

respect to the main parameters of sediment transport.

Indeed, while all these formulae give nearly equiv-

alent results for a large amount of data (cf. Section 4),

their behaviour in relation to a single parameter can

differ a lot. These formulae are often calibrated with a

fairly narrow range of values of these parameters and,

outside this range of values, the sediment flux may be

wrongly estimated.

Unfortunately, obtaining a suitable amount of

experimental data (i.e., data where only one parameter

varies) for this study is quite difficult, particularly in

the case of field studies. Thus, the lack of data

prevents any firm conclusion being reached with

regard to differences in sediment transport behaviour.

5.1. Grain size influence

Grain size diameter d appears in the formulae

mainly through the friction coefficients fc and fw and

the settling velocity Ws. These three parameters are all

increasing functions of the grain size. Thus, as grain

size diameter increases, suspended load decreases

because of the increased settling velocity, but shear

stresses increase as the friction coefficients increase.

However, Shields parameter is a decreasing function

of grain size. A critical grain size diameter must

therefore exist for a given hydrodynamic field, where

the critical Shields parameter is reached, and thus

where the sediment flux is equal to zero.

The curves in Fig. 12 show the behaviour of the

sediment transport rate in relation to grain size diam-

eter. While the results are relatively close to each other

for the classical cases studied (i.e., 10� 4 < d < 3
10� 4

m), they diverge rapidly beyond this range of values.

Thus, for fine sediments (dV 0.1 mm), while the

Dibajnia and Watanabe formula gives increasing sedi-

ment transport with grain size, Bijker, Bailard, and

Van Rijn formulae display the opposite behaviour. In

the case of waves prevailing (cf. Fig. 12a), the experi-

mental values obtained by Dohmen-Janssen seem to

indicate that the Dibajnia and Watanabe formula

shows the best behaviour. This confirms the impor-

tance of phase-lag effects for this particular case. The

Bijker and Bailard formulae, which are very sensitive

regarding fine sediments, may largely overestimate

sediment flux for such cases.

On the other hand, when the steady current is

significant (cf. Fig. 12b), or predominant (cf. Fig.

12c), fine sediments that are easily put in suspension

move with the current. Then, the Bijker, Bailard, and

Van Rijn formulae display a correct behaviour.

Unfortunately, the lack of data for fine sediment

prevents any quantitative conclusion from being

reached, either for the negative values given by the

Dibajnia and Watanabe formula (prevailing waves) or

for the high sediment transport predicted by the

Bijker, Bailard, and Van Rijn formulae (prevailing

current). A reason for this lack of data is that the limit

of the sediments below which they become cohesive

is about d = 0.06 mm. The investigated formulae

suppose non-cohesive sediment.

In the case of a larger grain size (>1 mm), two

parameters influence the sediment transport. First, if

bed load transport prevails, the sediment transport

must be an increasing function of the mean grain size

diameter due to the friction coefficient (cf. paragraph

3.1 and Fig. 4). On the other hand, the Shields

parameter decreases rapidly with an increasing grain

size to reach its critical value, which means that there

is no longer any sediment flux. Apart from the Van

Rijn formula, which takes into account this critical

value, all the formulae predict sediment transport that

is nearly independent of grain size. Experimental data

on Fig. 12b and c indicate this behaviour. But for

these two cases, the critical grain size is up to d = 0.01

m, which is larger that the experimental values. It

must however be stated that the Bijker formula is

extremely sensitive to roughness: for d>1 mm, using

skin friction, this formula estimate a sediment flux

13



very close to zero, whereas using the total friction it

gives a sediment flux that increases substantially with

the diameter, which seems to be unrealistic for grain

size up to 2 mm.

The Ribberink formula shows an unrealistic behav-

iour in relation to grain size diameter whatever the

case. Thus, this formula is nearly independent of the

grain size. This can be explained by the termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þgd3

p
proposed by Ribberink as a reference

sediment flux, which could be too sensitive to sand

diameter and then inhibit the influence of the grain

size in the computation of the shear stress. The

Ribberink formula was calibrated for transport on a

plane bed, where suspended load is negligible. In case

of high suspension (cf. Fig. 12c), the underestimation

is thus logical.

5.2. Influence of wave orbital velocity

Waves were originally believed to affect sediment

transport mainly by increasing the suspension as a

result of oscillating flow (cf. Bijker, 1968). Thus,

the higher the orbital velocity, the higher the sedi-

ment flux. This is verified in Fig. 13b, where, for a

grain size of 0.2 mm and a significant current,

sediment transport is an increasing function of wave

orbital velocity. The five formulae studied have a

consistent behaviour in relation to the experimental

Fig. 12. Influence of grain size diameter on sediment transport for a case where waves prevail (a), a case with waves and current (b) and a case

with current only (c).
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data of Dohmen-Janssen. But only the Ribberink

formula give relatively reasonable results for the

amplitude of the transport in this case. The four

other formulae overestimate the sediment rate maybe

because they include suspended load, whereas no

suspended load was observed in the oscillating

flume.

In the case of fine sediments with a small current

(cf. Fig. 13a), the phase-lag phenomenon can be

observed easily. The experimental data of Dohmen-

Janssen indicate for Uc = 0.24 m/s and d = 0.13 mm

a sediment flux lower than the case with d = 0.21

mm when wave orbital velocity rises beyond 1.1

m/s (smaller slope of increase with the wave orbital

velocity). Thus, explaining this phenomenon with

the suspension phase-lag in relation to instantaneous

velocity appears to be clearly justified. Only the

Dibajnia and Watanabe formula is in agreement with

the data, although it tends to exaggerate the phase-

lag effects (which only stand out as a curb of the

sediment flux). The Bijker, Bailard, Van Rijn, and

Ribberink formulae do not take into account phase-

lag, and largely overestimate sand fluxes in this

case.

5.3. Wave period influence

Wave period is included in the formulae mainly

via the friction coefficient due to waves, which is a

decreasing function of the wave period. This explains

the sensitivity to wave period of the Bijker, Bailard,

Van Rijn, and Ribberink formulae. In the case of the

Van Rijn formula, wave period is also involved in the

computation of the boundary layer thickness dw (an

increasing function of Tw), which has an important

effect on the estimation of suspended load (a decreas-

ing function of dw). This may explain the high

increase estimated by the Van Rijn formula for

decreasing wave period (cf. Fig. 14). For a case

where waves do not prevail, a decreasing period

leads to a decreasing bottom excursion Aw, and thus

a decrease of the suspension. The Ribberink formula

include wave period only via the friction coefficient

fw, but to the power nRib, which explains the high

decrease.

Dohmen-Janssen’s data indicate an important in-

crease in the sediment flux with wave period. This

behaviour is accentuated in the case of waves prevail-

ing. With the idea of phase-lag, this can be easily

explained: the shorter the wave period, the more

sediment stays in suspension after the first half-period.

Thus, sediment transport is attenuated in the direction

of the waves. The experimental data confirm that only

the Dibajnia and Watanabe formula behaves correctly

in relation to this parameter. Fig. 14b shows how

much a larger sediment inhibits the phase-lag effects.

This confirms the correct behaviour of the Dibajnia

and Watanabe formula.

Fig. 13. Influence of wave orbital velocity on sediment transport for a case with weak current and fine sands (0.13 mm) (a) and a case with

stronger current and sand diameter of 0.21 mm (b).
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To parameterize the phase-lag effect, Dohmen-

Janssen (1999) introduced a phase-lag correction

factor:

rpl ¼
hqs;rðtÞi
hqs;eqðtÞi

ð25Þ

where qs,eq(t) is the ‘‘equilibrium’’ transport rate

(without phase-lag effects) and qs,r(t) is the ‘‘real’’

transport rate (with phase-lag effects).

To estimate this factor rpl, Dohmen-Janssen devel-

oped an analytical diffusion model for sediment con-

centrations. From the studies of influence of wave

orbital velocity and period, assuming that the time-

averaged ‘‘equilibrium’’ sediment rate hqs,eq(t)i is in-
dependent of wave period and, with respect to the

proportionality with the velocity moment to the power

three (cf. Al Salem, 1993), it is also possible to

estimate the factor rpl, using experimental data and

results from the Dibajnia and Watanabe formula.

Results are shown in Fig. 15. Case 1 corresponds to

Fig. 13a, where the relation hqs,r(t)i = hqs,eq(t)i is

supposed to be reached for Uw = 0.68. Case 3 corre-

sponds to Fig. 14a and case 4 to Fig. 14b, where the

relation hqs,r(t)i = hqs,eq(t)i is supposed to be reached

for Tw =l. Case 2 is identical to case 3 except for the

orbital velocity, which is weaker (Uw = 0.68 m/s

instead of 1.06 m/s).

Firstly, it can be observed that the factor rpl seems

to be linearly related to the phase-lag parameter p after

a minimum value has been exceeded ( pminc 0.05),

but it seems to be also function of the hydrodynamic

parameters. While the model of Dohmen-Janssen

predicts a too small factor rpl (and nearly independent

of the different cases studied as 0.16 <Uc/Uw < 0.37),

the Dibajnia and Watanabe formula predicts the

appearance of the phase-lag effects for larger values

of p and seems to be too sensitive to larger values of

p. The greater value of pmin obtained from case 1

could be only due to the fact that hqs,r(t)i is lower than
hqs,eq(t)i for Uw = 0.68. An empirical relation for rpl is

thus proposed:

rpl ¼ 1� 0:2 ðp� 0:05Þ if p > 0:05

rpl ¼ 1 if pV0:05
ð26Þ

At last, it could be interesting to compare these

results with phase-lag effects on a rippled bed. But, to

the authors’ knowledge, no data are available to study

this case.

5.4. Influence of wave asymmetry

In Section 3.3, it was shown that wave asymmetry

considerably influences sediment transport. Fig. 16

clearly shows that sediment flux is an increasing

function of wave asymmetry. Among the formula-

Fig. 14. Influence of wave period on sediment transport in case of very fine (a) and fine (b) sand.
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tions studied, only the Bailard, Dibajnia and Wata-

nabe, and Ribberink formulae can integrate the

second order of the Stokes waves. It is therefore

expected to obtain constant values for the Bijker and

Van Rijn formulae (a slight variation appear due to

the computation of the shear stress sw taking into

account the asymmetry). This demonstrates the

severe limitation of both these formulae, as waves

tend to be highly asymmetric in the nearshore

environment, particularly near the breaking point

and in the surf zone. Hence, as can be seen in Fig.

16a, only the Bailard, Dibajnia and Watanabe, and

Ribberink formulae predict sediment transport in the

direction of waves although the current direction is

opposite (case of undertow). However, it appears that

these formulations are not sensitive enough to this

parameter if we compare the results with the Dibaj-

nia data. For high values of rw, the use of the

Fig. 16. Influence of wave asymmetry on sediment transport in case of a current in the opposite direction (a) or in the same direction (b).

Fig. 15. Phase-lag reduction factor rpl as a function of phase-lag parameter p (cf. Dohmen-Janssen, 1999; Eqs. (22) and (25)), estimated results

of the Dibajnia and Watanabe formula, and experimental data of Dohmen-Janssen.
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second-order theory is not sufficient; the cnoidal

theory should then be used. Finally, it can also be

observed that asymmetry can play a role in the

phase-lag (for high asymmetry, a decrease in the

sediment flux is observed in Fig. 16a).

5.5. Influence of steady current

The velocity of the current (averaged over the

depth in the case of 2DH models) remains one of

the fundamental parameters for sediment transport.

The first research concerning sediment transport (Du

Boys, 1879; Meyer Peter and Müller, 1948; Einstein,

1950; etc.) was performed for a river environment.

Thus authors proposed formulae that are mainly

functions of the Shields parameter due to the current.

Many studies have already been carried out for that

specific case. However, the results given by the five

formulae studied here are surprisingly scattered. It can

be seen in Fig. 17b (case without waves) and mainly

in Fig. 17a (case with waves) that the estimation of

sand transport can vary by over one order of magni-

tude depending on the formula.

For instance, for the case without waves (cf. Fig.

17b), the Bijker formula clearly overestimate sedi-

ment transport when current velocities are lower than

approximately 1.5 m/s (this can be explained by its

sensitivity to roughness). For strong currents (>1.3 m/

s), the Ribberink formula underestimates sediment

flux due to prevailing suspended load.

In the case of strong waves (Uw = 1.5 m/s),

although there is a lack of experimental data, some

remarks are called for. When strong currents are

added, a significant scatter is observed in the results.

This can be explained by the fact that all these

formulae were calibrated with relatively weak cur-

rents. According to the authors, no data are available

for this kind of case (storm events). The Bailard and

Ribberink formulae seems still to overestimate sand

fluxes for currents up to 0.5 m/s. Finally, the Van Rijn

formula gives a flux when the current tends towards

zero, even if the flux should be zero in the case of

sinusoidal waves. This could be explained by the fact

that this formula is based on the maximum total shear

stress due to the wave–current interaction.

Al Salem (1993) found that net sediment transport

is proportional to the velocity moment to the power

three. In the case of a sinusoidal wave, we obtain:

hU 3i ¼ U 3
c þ 1

2
UcU

2
w ð27Þ

We should therefore find the slope a of the line as

follows:

ac
Dqs

DðhU 3iÞ ð28Þ

However, in the case of a prevailing current (cf.

Fig. 18a and b, where Uw is fixed), straight lines do

Fig. 17. Influence of current velocity on sediment transport for a case with prevailing waves (a) and a case without waves (b).
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clearly not appear, and strong disparities in the mean

slope are found. One explanation is that we take into

account total roughness, which is clearly neither

linear nor a monotonic function of the current

velocity. Thus, for the Dibajnia and Watanabe for-

mula, which does not seem to be very sensitive to

roughness, a straight line is observed. Of course, in

the case of weak currents and strong waves (cf. Fig.

18c where Uc =Cte), phase-lag appears rapidly.

Thus, the previous relation cannot be verified any

longer, as there is a relative decrease of sand flux

when the velocity moment to the power three in-

creases (comparing with the case with a coarser sed-

iment).

More generally, these five formulations will be

compared with all the data available. These data have

been cut into four subsets, in relation to grain size

diameter (up to 2
 10� 4 m or more) and in relation to

water depth (up to 5 m or more). Field data (Scheldt and

Krammer: current only) are thus separated from flume

data (Dibajnia, Alsalem and Janssen: wave–current).

Even if the results obtained are approximate (they are

summarized in Table 1), they show a correct approach

to what they should be and what the formulae give. It is

clear that the Bijker formula overestimate sediment

flux in the case of fine sediment. It can also be observed

that Bailard formula tends to slightly overestimate the

slope a, whereas the Ribberink formula tends to under-

Fig. 18. Relation between sediment flux and velocity moment to the power three hU3i for a case without waves (a), a case with prevailing

current (b) and two cases with prevailing waves with fine sediments (c) and coarser sediments (d).
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estimate it except for cases with waves and fine sedi-

ments. Finally, the Van Rijn formula seems to be

proportional to the velocity moment to a power up to

three when high suspension exists.

Lastly, the coefficient a does not seem to be

sensitive to grain size (except for the phase-lag effect),

as Dohmen-Janssen (1999) noticed, but a seems to

decrease with water depth and/or with the presence of

waves following the observed results. Ribberink and

Al Salem (1994) have observed that a is an increasing

function of the wave period.

6. Conclusions

6.1. Remarks on influences of the different parameters

Base on all the comparisons carried out in this study,

recommendations concerning the use of these formulae

can be given depending on the field in which they are to

be used. From a purely numerical point of view, it can

be pointed out that the Van Rijn formulae call for longer

computation times due to the need to compute the

integral over the depth of the suspended load.

6.1.1. Grain size

The grain size diameter plays an important role in

estimating sediment flux (via roughness, settling veloc-

ity, etc.). But no formula seems to give satisfactory

behaviour with respect to the grain size (see Table 2).

In the case of coarse sediments, sand transport

should decrease with the size of the sand until a

critical value is reached where there is no transport.

Only the Van Rijn and Ribberink formulae take into

account a critical value for the Shields parameter.

With the Bailard formula, even though sediment

transport does not tend towards zero, it tends towards

negligible values in terms of mid-term morphodynam-

ics. Indeed, the critical value of the shear stress seems

to be unnecessary for most of the cases.

On the other hand, the Bijker formula even esti-

mates an increasing sediment flux for coarse sand due

to its sensitivity to roughness. Roughness is thus a

factor too in uencial for the Bijker formula. As total

roughness is very difficult to estimate accurately, the

Bijker formula is not recommended for grain sizes

over 1 mm (cf. Section 3.1).

In the sameway, the Dibajnia andWatanabe formula

is not accurate concerning the grain-size dependence

except for the specific case of high sheet flow. Some

modifications of this formula presented by da Silva and

Temperville (2000) and Silva (2001) have improved its

behaviour mainly by integrating a friction coefficient in

the terms of Xc and Xt, and calibrating the ripple

parameter xcr towards data. At last, while the Ribber-

ink formula is less sensitive to roughness, its behaviour

in relation to grain size seems to be too insensitive since

it takes into account the bed load only.

6.1.2. Waves

In the case of very fine sediments, the results

diverge noticeably. It is clear that for a prevailing

current, the suspended load (and hence the total load)

increases with decreasing grain size. However, the

order of magnitude of suspended load for fine sedi-

ments is very different from one formula to another.

Table 1

Estimation of the slope a assuming qs = ahU3i (cf. Eq. (28))
Values of ‘‘a’’

study case

dV 2
 10� 4 m,

h > 5 m

(current only)

d > 2
 10� 4 m,

h > 5 m

(current only)

dV 2
 10� 4 m,

hV 5 m

(wave + current)

d > 2
 10� 4 m,

hV 5 m

(wave + current)

Experimental aexpc 3.5
 10� 4 aexpc 3.5
 10� 4 aexpc 1.0
 10� 4 aexpc 1.5
 10� 4

Bijker ac 1.5
 10� 4,

a/aexpc 0.4

ac 5.0
 10� 4,

a/aexpc 1.4

ac 1.0
 10� 3,

a/aexpc 10

ac 2.0
 10� 4,

a/aexpc 1.3

Bailard ac 2.0
 10� 4,

a/aexpc 0.6

ac 4.0
 10� 4,

a/aexpc 1.1

ac 7.0
 10� 4,

a/aexpc 7

ac 3.0
 10� 4,

a/aexpc 2

Van Rijn ac 2.0
 10� 4,

a/aexpc 0.6

ac 5.0
 10� 4,

a/aexpc 1.4

ac 1.0
 10� 4,

a/aexpc 1

ac 2.5
 10� 5,

a/aexpc 0.2

Dibajnia–Watanabe ac 3.5
 10� 4,

a/aexpc 1

ac 2.5
 10� 4,

a/aexpc 0.7

ac 1.0
 10� 4,

a/aexpc 1

ac 2.5
 10� 4,

a/aexpc 1.7

Ribberink ac 2.0
 10� 4,

a/aexpc 0.6

ac 1.5
 10� 4,

a/aexpc 0.4

ac 4.0
 10� 4,

a/aexpc 4

ac 1.5
 10� 4,

a/aexpc 1
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Computations of suspended load with the Bijker

formula are very sensitive to current while with the

Bailard and Van Rijn formulae are more sensitive to

waves. On the other hand, the Dibajnia and Watanabe

formula, which does not compute suspended load and

bed load separately, is not sensitive to fine sediments.

It therefore seems to behave poorly for that specific

case. Yet, when waves dominate, only this formula

can take into account the phase-lag effect, and is thus

able to predict sediment transport opposite to the

current direction for extreme cases. This is particularly

important in the surf zone where the current (‘‘under-

tow’’) is opposite to the incident waves. We therefore

recommend the Dibajnia and Watanabe formula when

waves dominate (especially for large sheet flow where

phase-lag occurs), and the Van Rijn and Ribberink

formulae for wave–current interaction. Finally, for the

specific cases where phase-lag occurs, a linear relation

seems to link the phase-lag correction factor rpl and

the phase-lag parameter p.

The wave asymmetry (used for the second-order

Stokes waves) seems to be an important parameter.

Waves become more and more asymmetric when

approaching the coast. This factor is important not only

from a quantitative point of view but also from a

qualitative one. Indeed, wave direction has a strong

influence on the direction of sediment transport if we

take into account asymmetry. Only the Bailard, Dibaj-

nia and Watanabe, and Ribberink formulae account for

this parameter, and then only those formulae can be

used in a nearshore morphodynamic model. The Bijker

and Van Rijn formulae can only be used to estimate

longshore sediment transport rate. Van Rijn (1998,

Appendix A) proposed a wave-related component for

the suspended load that he adds in his Coastran model,

but that expression involves significant uncertainties.

6.1.3. Current

Al Salem (1993) suggested that sediment flux is

proportional to the velocity moment to the power

three. This relation seems to be valid except when

phase-lag occurs. However, taking into account total

roughness slightly complicates the estimation of the

slope a as roughness is not a linear or monotonic

function of U3. The results obtained are widely

scattered depending on the formula. Moreover, it

seems that the coefficient a is a function of water

depth and/or wave orbital velocity and period. Also, it

could be stated that the Bailard, Ribberink, and above

all the Bijker formulae tend to overestimate this

coefficient for wave–current cases.

6.2. The use of sediment transport formulae

To conclude, various recommendations have been

given regarding the use of these different formulae in

relation to the various parameters studied. The rec-

ommendations are summarized in Table 2. Regarding

global estimations for a large range of data, except for

the Bijker formula, similar results are obtained for

Table 2

Calculated transport rate in the range of 50% and 200% of measured transport rate (Cc50, Cw50) and assessed physical behaviour of the

different sediment transport formulae in relation to the studied parameters (++: excellent, +: good, � : poor, �� : unsuitable)

Parameters Bijker Bailard Van Rijn Dibajnia–Watanabe Ribberink

Global estimations

Cc50 (strong current) 66% 82% 70% 84% 60%

Cw50 (wave + current) 18% 35% 45% 48% 45%

Varying diameter d

UcHUw + + + �� ��
Uc +Uw � + + + � �
UcbUw �� �� � + +

Varying orbital velocity Uw

d < 0.2 mm �� �� � + �
d > 0.2 mm + + + + +

Varying wave period Tw �� �� �� + + ��
Varying wave asymmetry rw �� + �� + +

Varying steady current Uc

UwHUc � � + + +

Uw = 0 + + + + �
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wave and current interaction. Nevertheless, some

formulae show non-physical behaviour in relation to

parameters which are mainly the grain size and the

wave asymmetry (and with lesser consequences, the

wave period). At last, for a morphodynamic model of

the nearshore zone, the Bijker and Van Rijn formulae

should not be used as they integrate only the current-

related sediment transport.
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