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Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal

We describe how the susceptibility of a nonlinear material, such as lithium niobate, can change when the material is nanostructured. Indeed, we show, by the calculation of the local-field factor inside a photonic crystal, a significant augmentation of the susceptibility, especially at the edges of the photonic bandgap. In addition, and for the case of lithium niobate, we observe an increase of the second-order nonlinear coefficient. The experimental realization of an electro-optic tunable photonic crystal, based on a square lattice of holes, shows that the measured phenomenon completely agrees with the theoretical predictions.

INTRODUCTION

Since their discovery in 1987 by Yablonovitch and John, 1,2 photonic crystals (PhCs) have motivated many research groups and nanophotonics has appeared as a tool with the potential to create optical components as small as their electronic counterparts. Up to now, the size of conventional tunable optical components (modulators, filters,…) has been of the order of 1 cm. By using PhCs, the size of these devices can potentially be reduced to a few micrometers. However, the ultimate goal of PhCs is not only miniaturization. Indeed, when a material is nanostructured, its physical properties can be completely changed, [START_REF] Delaye | Transfermatrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal[END_REF][START_REF] Razzari | Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals[END_REF] and, in particular, its second-order susceptibility can increase in the structured area. [START_REF] Soljačic | Enhancement of nonlinear effects using photonic crystals[END_REF][START_REF] Vlasov | Active control of slow light on a chip with photonic crystal waveguides[END_REF][START_REF] Dumeige | Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap[END_REF][START_REF] Schneider | Nonlinear optical spectroscopy in one-dimensional photonic crystals[END_REF] In previous papers, [START_REF] Lacour | Nanostructuring lithium niobate substrates by focus ion beam milling[END_REF][START_REF] Roussey | Experimental and theoretical characterization of a lithium niobate photonic crystal[END_REF][START_REF] Bernal | Lithium niobate photonic crystal waveguides: far field and near field characterisation[END_REF] we have chosen lithium niobate (LN) as a suitable active material to realize PhCs because of its large electro-optic and acousto-optic coefficients. We have previously demonstrated what we believe to be the first experimental characterization of a photonic bandgap in a LN PhC. [START_REF] Roussey | Experimental and theoretical characterization of a lithium niobate photonic crystal[END_REF] Recently we have shown [START_REF] Roussey | Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons[END_REF] that an extraordinary shift of the photonic bandgap can be observed when an external voltage is applied on the PhC, but no explanation of this phenomenon was given. A more complete description of the behavior of the light inside the PhC device is reported here.

In this paper, we first present theoretical results obtained by FDTD (finite-difference time-domain) simulations of a square lattice of holes milled into a LN substrate. We study the influence of geometrical parameters (the number of rows of holes and the ratio of radius over period) on the transmission. Second, we theoretically explain how the nanostructuring of the bulk material influences the behavior of light and how this can be exploited to make a low-voltage tunable PhC. Finally, we compare these theoretical predictions with the experimental demonstration of these phenomena and find good agreement (2.5 nm/ V experimentally observed versus 2.7 nm/ V theoretically predicted), thus validating our theoretical explanation.

NUMERICAL STUDY

The aim of this section is to describe the studied photonic structures and the FDTD simulations [START_REF] Taflove | Computational Electrodynamics, the Finite-Difference Time-Domain[END_REF] carried out in order to determine the suitable PhC configuration. The structure consists of a square lattice (period a) of cylindrical air holes (n = 1, radius ) etched into an X-cut LN substrate ͑n = 2.143͒. The incident beam is a plane wave propagating perpendicularly to the hole axis in the ⌫X direction of the PhC (Fig. 1). The illuminating light is TE polarized, meaning that the electric field is perpendicular to the axis of the holes.

For the numerical simulations, the structure is defined by its spatial permitivity distribution. An orthogonal Cartesian mesh is usually used, and the resulting staircase effect typically leads to parasitic diffractive nodes. To reduce this artifact, two modifications have been introduced. The first is based on the introduction of a nonuniform mesh in the code. This mesh allows us to change the spatial step in order to describe more accurately the fine details of the structure. Indeed, inside the PhC a fine mesh is applied ͑␦y = 18.683 nm͒, and outside the PhC a bigger spatial step is used ͑␦y =35 nm͒.

The second modification involves the use of a staggered grid. [START_REF] Chan | Order-N spectral method for electromagnetic waves[END_REF] The conventional cell, corresponding to one period of the PhC, would be defined by a grid of 41ϫ 41 points. However, this is not sufficient to have good hole definition. Thus, each point of the previous grid is considered as a cell of 20ϫ 20 points, and the dielectric constant of the grid point is taken to be the average dielectric value over the 20ϫ 20 points of this subgrid. Consequently, the PhC is better defined without increasing the calculation time.

Simulations are made with a single row of holes periodically repeated in the Z direction (perpendicular to the propagation direction), meaning that the structure is infinite in this direction. In the propagation direction Y,a finite number of holes are introduced at periodicity a, and the structure is terminated by Berenger's perfectly matched layers (PML). To avoid parasitic signals due to the reflections of evanescent waves from the PML regions, these layers are placed at a distance larger than max /2 from the outer holes of the structure ( max being the largest wavelength in the studied spectral area).

Figure 2 presents the calculated transmission spectrum through a PhC of 15 rows for a period a = 766 nm and a ratio / a = 0.27. Two gaps can be observed: The first one is between = 1130 nm and = 1210 nm, and the second one is between = 1390 nm and = 1550 nm. We can observe a transmission peak in the middle of the second gap with a maximum intensity at = 1460 nm. The quality factor Q of the peak is equal to 200. This peak is of great interest in our case. Indeed, for the fabrication of tunable PhCs, it is easier to obtain a good extinction ratio by tuning a thin peak rather than an edge of the bandgap. In what follows we investigate the origin of this peak.

Figure 3(a) shows the evolution of the transmission spectrum versus the ratio / a (abscissa corresponds to the wavelength, and the transmitted intensity is presented in gray scale). Within this region, we can observe five bandgaps and an isolated transmission peak, which is located in the highest bandgap. When / a increases, the peak moves toward shorter wavelengths but remains in all cases in the same bandgap. By choosing suitable geometrical parameters, we can set the peak wavelength to be in the middle of the bandgap. Consequently, for a = 766 nm and / a = 0.27 the peak is located at = 1460 nm, corresponding to a desirable position for future experimental characterization (both edges of the photonic bandgap would be accessible with a conventional optical spectrum analyzer).

For the parameters noted above, we calculate the transmission spectrum of the PhC in the vicinity of the isolated transmission peak as a function of the number of hole rows. As shown in Fig. 3(b), the position and the quality factor of the transmission peak depend on the number of hole rows. One also notes that the peak gets wider when the number of rows increases. We can remark that in the case of a PhC of 15 hole rows [dashed line in Fig. 3(b)], a good compomise between the thickness of the peak and its intensity has been found. This dependence on the length of the PhC suggests that the isolated transmission peak is actually a thin transmission band separating two photonic bandgaps. Owing to the Fabry-Perot cavity created by the finite structure, we can, in fact, observe a group of peaks inside this transmission band.

To take into account the artifacts introduced by the fabrication process, we have included in our calculations a random uncertainty in the shape and location of the holes. Experimentally, holes are milled with a FIB (focused ion beam) [START_REF] Lacour | Nanostructuring lithium niobate substrates by focus ion beam milling[END_REF] that has a resolution of 70 nm. Therefore, in our simulations, we randomly vary the value of the period a = a 0 ± ⌬a with a 0 = 766 nm and ⌬a =37 nm. We can observe in Fig. 4 that this level of fabrication error can cause the peak to disappear completely and to shift the bandgap toward lower wavelengths with a decrease in overall transmission. We have performed additional simulations (not presented here) with a smaller ⌬a =10 nm and also with a radius variation ( = 0 ± ⌬, with 0 = 207 m and ⌬ = 0 / 10), and we observe that in all cases the peak disappears. Consequently, we can conclude that it will be difficult to experimentally observe this peak. However, in the rest of the simulations, the structures will be considered as perfect ͑⌬a = ⌬ =0͒ in order to simplify the numerical simulations and the interpretation of the results.

SLOW LIGHT AND LOCAL-FIELD FACTOR

In the presence of an external voltage, a nonlinear material presents a variation of its refractive index [Eq. ( 1)], linked mainly to the Pockels ͑⌬n P ͒ and Kerr ͑⌬n K ͒ effects, as

⌬n = ⌬n P + ⌬n K . ͑1͒
If this variation is linear with the applied field, i.e., dependent on the second-order susceptibility ͗2͘ , we are in presence of the Pockels effect and the index of variation ͑⌬n P ͒ is generally calculated as

⌬n P =- 1 2 ϫ n 3 ϫ r 33 ϫ U e , ͑2͒
where r 33 is the electro-optic coefficient, U is the applied voltage, e is the distance between the electrodes, and n is the refractive index.

If the variation depends on the square of the applied field, i.e., the third-order susceptibility ͗3͘ , it is called the Kerr effect. In the case of LN, which is a noncentrosymetrical material, the Kerr effect is much smaller than the Pockels effect, and so Eq. ( 1) can be written as ⌬n Ӎ ⌬n P . ͑3͒

To have the largest electro-optic effect, the following configuration has been chosen: A PhC (15ϫ 15 holes) has been fabricated on an APE (annealed proton exchange) waveguide parallel to the Y axis of the LN substrate. The holes have been milled along the X axis, and two electrodes have been placed on each side of the waveguide. This means that the electrostatic field lines are parallel to the Z axis, allowing the largest electro-optic coefficient, r 33 , to be used.

Our experimental results indicate that while Eq. ( 2) may apply to a bulk material, we must additionally consider the effect on the susceptibility induced by the nanostructuring. Indeed, we find theoretically and validate experimentally that this nanostructuring enhances the susceptibility of the material compared with the same material without holes.

The effective susceptibility in a structured material has been previously shown to depend on the local-field factor f. Following the approach of Refs. 7 and 15, the effective second-order susceptibility can be related to the bulk susceptibility as

PhC ͗2͘ = f 3 ϫ BULK ͗2͘ . ͑4͒
The local-field factor f is equal to 1 outside the bandgap, recovering the properties of the bulk material, and is equal to 0 inside the bandgap. Because of the change from Eq. (2) to Eq. ( 4), the Pockels equation has to be modified in order to take this local-field factor into account. We know that the second-order susceptibility in the PhC will change with f 3 . In our calculations, the following hypothesis will be made: We consider that r 33 ϰ d 33 , where d 33 is the element of the susceptibility tensor. This approximation will be validated by our experimental results. In this case, the electro-optic coefficient becomes r 33 ϫ f 3 and the modified Pockels equation can be expressed as

⌬n =- 1 2 ϫ n 3 ϫ r 33 ϫ f 3 ϫ U e . ͑5͒
In the remainder of this section, we calculate the localfield factor f with two different methods. First, f can be written as 15

f = ͱ v g BULK v g PhC , ͑6͒
where v g BULK is the group velocity inside the bulk LN and v g PhC is the group velocity in the PhC. The band diagram of the infinite PhC is presented in Fig. 5(a), as computed by a homemade code based on the plane-wave expansion (PWE) method. To simplify the comparison with the transmission spectrum shown in Fig. 2, we have used different symbols for some bands of the diagram corresponding to the large bandgap in Fig. 3. The dashed curve corresponds to the lower band edge, the dotted curve to the other edge of the photonic bandgap, and the dasheddotted curve is the transmission peak observed in the center of the gap.

The group velocity can be determined by simply taking the derivate of the band diagram. In our case, since the propagation is along the ⌫X direction, we calculate only the group velocity for this direction as shown in Fig. 5(b). Then, we can note the existence of an almost flat horizontal band in the diagram (the dashed curve) that corresponds to a very weak group velocity. Here we observe that on the edge corresponding to the lower wavelengths (around = 1400 nm), the group velocity value approaches zero. For a period a = 766 nm, using Fig. 5(b), we have calculated an average value of the group velocity in the structure v g PhC = 15858 m / s around the flat band. With v g BULK = c / n and n = 2.143 for LN at 1550 nm, the theoretical value of the local-field factor is f Ӎ 94. Note that since this calculation corresponds to an infinitly long perfect structure, these simulations can be considered only as a tool to qualitatively understand the behavior of the more complex case of the real nanostructure that we will describe later. To have a more realistic value of v g corresponding to a finite structure, we performed FDTD numerical simulations. These consist of the study of the energy propagation through the finite crystal when it is illuminated by a plane-wave pulse centered on the bandgap edge ͑ Ӎ 1400 nm͒. The time delay of the pulse is long enough to cover a thin spectral interval ͑⌬ Ӎ 30 nm͒. For accuracy purposes, we have chosen to perform the calculations on a long PhC (75 rows along the propagation direction, but infinitely wide perpendicular to the propagation direction). A spatial average value over the Z direction of the Poynting vector versus time is presented in Fig. 6. We observe mainly two zones. In the first, the light propagates with a group velocity approaching that of the bulk material (see solid white line in Fig. 6). This corresponds to a steep slope ͑v g =5ϫ 10 7 m/s͒.A second zone presents a slower light (dashed white line) corresponding to a lower slope ͑v g = 6.1ϫ 10 6 m/s͒. The first zone corresponds to the part of the pulse whose frequencies are outside the bandgap. The second zone represents the frequencies of the pulse that are on the bandgap edge. The rest of the incident light, which falls within the photonic bandgap, is completely reflected by the PhC and thus cannot be observed on this map. Using FDTD results, a second method to calculate the local-field factor can also be employed, because f can be written [START_REF] Delaye | Transfermatrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal[END_REF][START_REF] Razzari | Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals[END_REF][START_REF] Rigneault | La nanophotonique[END_REF] as

f = 1 NS ͵ PhC E local PhC E local BULK dydz = 1 NS ͵ PhC f loc dxdy. ͑7͒
In Eq. ( 7), S is the area of one period of the PhC, N is the number of periods, E local PhC is the local electric field in the photonic structure, and E local BULK is the local field without the photonic structure. Here we have to calculate f for each wavelength in the real structure, integrating over 15 rows of holes. 7) and (5). Figure 7(a) shows the transmission spectrum according to FDTD simulations. Figure 7(b) shows the local-field factor f as a function of wavelength as computed with Eq. ( 7) and the field distributions obtained by FDTD. Finally, Fig. 7(c) shows the expected variation in the index of refraction according to the local-field factor from Fig. 7(b) and Eq. ( 5). For this calculation of the expected refractive index of variation, we use the experimental value of the applied voltage ͑U =80 V͒ and the distance between the electrodes ͑e =13 m͒.

We can note that, as expected, outside the bandgap the value of f is around 1, while it tends to 0 inside the bandgap. We can also remark that the edges of the bandgaps (corresponding to lower wavelengths) present f values larger than those outside or inside the bandgap. As expected for a finite structure, these results are lower than those previously calculated for an infinite structure by the first method. Indeed, when the group velocity decreases, the local-field factor increases and the variation of the index of refraction is bigger. We would like to emphasize that, for U = 80 V and = 1400 nm, a ⌬n of 0.32 is obtained.

In the following section, we will show that this value of the index of variation corresponds exactly to our experimental measurements.

EXPERIMENTS

In the previous section, we have seen that the presence of the nanostructure in a nonlinear material can increase its susceptibility at the edges of the photonic bandgaps. Considering that the position of the photonic bandgaps depends directly on the value of the refractive index of the material and considering the large value of ⌬n that we have calculated for = 1400 nm, a significant shift of the photonic bandgap can be expected. In this section, with the same nanostructure used in our simulations, we show experimental characterization results that exhibit wavelength shifts 312 times larger than would be expected using the bulk susceptibility of LN. As mentioned above, the PhC has been fabricated with a FIB on an X-cut LN substrate. To observe the enhancement of the electro-optic effect induced by the slow light inside the PhC, we deposited titanium electrodes on each side of the crystal as shown in Fig. 8(a). The sample was glued to a plate where two copper strips were deposited and connected by wire bonding to the electrodes. A SEM (scanning electron microscopy) image of the PhC is presented in Fig. 8(a). More details on the fabrication process can be found in our previous papers. [START_REF] Roussey | Experimental and theoretical characterization of a lithium niobate photonic crystal[END_REF][START_REF] Bernal | Lithium niobate photonic crystal waveguides: far field and near field characterisation[END_REF] To measure the spectral transmission of the PhC and the shift of its bandgap as a function of the applied voltage, we used the experimental apparatus described in Fig. 8(b). While applying a continuous voltage to the sample, a white-light fiber source [START_REF] Wadsworth | Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers[END_REF][START_REF] Mussot | Generation of a broadband single-mode supercontinuum in a conventional dispersion shifted fiber by use of a subnanosecond microchip laser[END_REF] is coupled to the APE waveguide. The transmitted light is collected with a multimode fiber connected to an optical spectrum analyzer. The white-light source is generated by 20 m of PhC fiber pumped by a pulsed microchip laser emitting at = 1064 nm.

Figure 8(c) shows the measured transmission spectrum for three different values of the applied voltage: 0, 40, and 80 V. The measured bandgap position at 0 V corresponds to the theoretical predictions shown in Fig. 2. As suspected, the fine transmission peak that was present in our numerical simulations is not observed. Moreover, the photonic bandgap is slightly shifted toward the lower wavelengths just as was theoretically expected in the presence of fabrication error.

In Fig. 8(d) we plot the shift of the bandgap versus the applied voltage. The measured curve is almost linear, and we observe that the bandgap shift changes direction when the voltage changes sign. This implies that the effect is purely electric, as opposed to a piezoelectric or a photorefractive effect.

For an applied voltage of 80 V, a bandgap shift of 200 nm is measured. It corresponds to a variation of the index of refraction of ⌬n Ӎ 0.3, which is within 94% of the value predicted by the FDTD calculations in Section 3 for the same voltage.

Note that this shift is readily observed on the left edge (lower wavelengths) of the photonic bandgap. Indeed, we can see from Fig. 7(c) that the right edge does not shift so much. This also corresponds to the theoretical predictions, since in curve Fig. 7(c) we have calculated that for the right edge (upper wavelengths), ⌬n Ӎ 0.01 for a voltage U = 80 V. This shift, which is 30 times lower than that for the left edge, cannot be easily observed in Fig. 8(c). Nevertheless, we see that the behavior of the experimental spectra corresponds extremely closely to our theoretical expectations presented in Section 3. This close agreement strongly validates the approximation we made when quantifying the effect of the nanostructure on the susceptibility (where we estimated that r 33 ϰ d 33 ).

CONCLUSION

In this paper, we show an excellent agreement between theoretical predictions and experimental measurements related to an unexpectedly large shift of the photonic bandgap in a LN PhC. Indeed, this shift is 312 times larger than what would be expected from the bulk susceptibilities of an unstructured material. This phenomenon is due to the existence of slow light within the photonic nanostructure at the wavelengths corresponding to the edges of the photonic bandgap. This slowing of light is the origin of the enhancement of the electro-optic coefficients, which can be quantified by the local-field factor. This opens the way for a new generation of electro-optic modulators that would be, in our case, 10,000 times smaller the conventional devices. 
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 1 Fig. 1. Scheme of the numerically studied structure.
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 2 Fig. 2. (Color online) Theoretical transmission spectrum calculated by FDTD in the case of a LN PhC (15 hole rows, n = 2.143, = 207 nm, a = 766 nm, TE polarization).
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 3 Fig. 3. (Color online) (a) Two-dimensional map of the evolution of the transmission spectrum versus / a. (b) Close-up around the thin transmission peak versus the number of rows.
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 4 Fig. 4. (Color online) Theoretical transmission (solid curve) spectrum through a perfect square-lattice PhC compared with the spectrum obtained with a random variation of the period (⌬a = 37 nm, black dashed curve).
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 5 Fig. 5. (Color online) (a) Band diagram of the square lattice of holes in the LN substrate calculated by the PWE method. (b) Group velocity ͑d /dk͒ along the ⌫X direction. The dashed curve corresponds to the lower edge of the gap ͑1400 nm͒, the dotted curve to the peak, and the dashed-dotted curve to the upper edge of the photonic bandgap ͑1550 nm͒.
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 6 Fig. 6. (Color online) Time evolution of the energy in the PhC. The solid line corresponds to high group velocity (outside the bandgap), and the dashed line is associated with the slow light (on the edge of the bandgap).
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 7 Figure 7 presents the results of our FDTD simulations and the subsequent calculations based on Eqs. (7) and (5).Figure 7(a) shows the transmission spectrum according to FDTD simulations.Figure 7(b) shows the local-field factor f as a function of wavelength as computed with Eq. (7) and the field distributions obtained by FDTD. Finally, Fig. 7(c) shows the expected variation in the index of refraction according to the local-field factor from Fig. 7(b) and Eq. (5). For this calculation of the expected refractive index of variation, we use the experimental value of the applied voltage ͑U =80 V͒ and the distance between the electrodes ͑e =13 m͒.We can note that, as expected, outside the bandgap the
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 7 Fig. 7. (Color online) (a) Close-up of Fig. 2 showing the zeroorder transmission through a PhC of 15 rows along the propagation direction; (b) local-field factor calculated from Eq. (7); (c) variation of the refractive index for an applied voltage of 80 V obtained from Eq. (5).

Fig. 8 .

 8 Fig. 8. (Color online) (a) Photograph of the device with the PhC sample and the electrodes (left) and a SEM image of the PhC (right); (b) scheme of the experimental setup used for the characterization of the device; (c) experimental transmission spectra obtained for three different values of the applied voltage; (d) shift of the bandgap versus the applied voltage.
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