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RESUME La plupart des algorithmes pour découvrir des relations de causalitértirpie don-
nées font I'hypothése que ces données refleétent parfaitement lesp@nthnces entre les va-
riables étudiées. Cette hypotheése permet de retrouver le squelette tiegetitp représentant
de la classe d’équivalence de Markov du modéle dont sont réellensemiisises données. Ce
représentant est un graphe généralement partiellement orientéstcsi@uit dont les arcs re-
présentent des relations de causalité directe entre un ensemble desperda noeud enfant.
Nous relachons cette premiére hypothése en permettant d’obtenir iniatam graphe pou-
vant contenir des arétes "incertaines". Ces arétes seront ensuitegali@t orientées) ou sup-
primées lors de I'obtention de nouvelles données expérimentales. Kesenfons alors I'al-
gorithme UnCaDo (UNsure CAusal DiscOvery) qui propose le plaixgieiences nécessaire
pour obtenir suffisamment d’'informations pour obtenir une structureptétement causale.

ABSTRACTMost algorithms to learn causal relationships from data assume that theded data
perfectly mirrors the (in)dependencies in the system under study. Thigsall®to recover the
correct dependence skeleton and the representative of the Markiwatance class of Bayesian
networks that models the data. This complete partially directed acyclic graptains some
directed links that represent a direct causal influence from parertiitd.cin this paper we relax

the mentioned requirement by allowingsureedges in the dependence skeleton. These unsure

edges can then be validated and oriented or discarded by performirggimegnts. We present
the UnCaDo (UNsure CAusal DiscOvery) algorithm which proposesrab&r of necessary
experiments that need to be done to gain sufficient causal informatiomrtplete the graph.

MOTS-CLES Réseau Bayésien Causal, Apprentissage de Structure.
KEYWORDSCausal Bayesian Networks, Structure Learning.
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1. Introduction

Learning causal relationships from data and modeling treeanchallenging task.
One well known technique for causal modeling is a causal Siayenetwork (CBN),
introduced by (Pearl, 2000). In a CBN each directed edgeesemits a direct causal
influence from the parent to the child. For instance a dicketdgeC — FE in a
CBN indicates that there exists at least one manipulatioff ¢iat would alter the
distribution of the values aF’ given that all other variables are kept at certain constant
values.

Learning the structure of Bayesian networks can be done dfoservational data.
First the complete partially directed acyclic graph (CPDA&Iearned from data, and
then a possible complete instantiation in the space of atpnvgraphs defined by this
CPDAG is chosen (Spirtest al, 2000). It is impossible to follow the same strategy
for CBNs, because there is only one true causal networképaesents the underlying
mechanisms, so only one of the graphs in the space of equivgtigphs is the correct
one. Learning algorithms for which it is proven that theywenge to the true CPDAG
are PC proposed by (Spirtesal., 2000), GES by (Chickering, 2003) and conservative
PC by (Ramset al,, 2006). (Shimizwet al,, 2005) showed that when assumptions
are made or prior knowledge is available about the undeglgtistribution of the data
it is sometimes possible to recover the entire DAG strudiun® observational data.

To learn a CBN experimentsare needed because in most cases from observatio-
nal data alone we can only learn up to Markov equivalence.efiams it is possible
that the entire structure is discovered (e.g. there is onlymember in the Markov
equivalence class), however in general we can only learrbseswf the causal in-
fluences. Several algorithms exist to learn CBNs based oerempnts. For example,
(Tong et al, 2001) and (Coopeet al, 1999) developed score-based techniques to
learn a CBN from a mixture of experimental and observatialz. In (Meganclet
al., 2006a) we proposed a decision theoretic based algorithinerfardet al., 2005a)
performed a theoretical study on the lower bound of the waase for the number of
experiments to perform to recover the causal structureh&Be results were based on
performingstructural interventiong@s experiments, i.e. randomization of a variable.
Recently some work has been done on different types of ietgions by (Eberhardt
et al, 2006) and (Eatoet al., 2007), but we will not go into detail in this paper.

We propose a constraint-based strategy to learn a causakBaynetwork using
structural experiments in the case that observationalidatat sufficient to learn all
causal information and even insufficient to learn the cars&eleton of the network
(i.e.imperfectdata). We adapt an existing independence test and useghts tauild
a model able to represent unsure connections in a networkh&eshow how these
unsure connections can be replaced either by a cause-effatibn or removed from
the graph completely during the experiments phase.

The remainder of this paper is as follows. In the next seatiemprovide notations
and definitions needed in the remainder of this paper. Thepregent our own ap-
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proach and illustrate it on a toy example. We end with a caictuand an overview
of possible future work.

2. Preliminaries

In this section we introduce the basic elements needed irett®f the paper.

In this work uppercase letters are used to represent vasallsets of variables,
V ={Xy,..., X, }, while corresponding lowercase letters are used to représeir
instantiations;1, 22 andv is an instantiation of allX;. P(X;) is used to denote the
probability distribution over all possible values of vailia X;, while P(X; = x;) is
used to denote the probability that variableis equal tar;. Usually, P(x;) is used as
an abbreviation oP (X; = z;). If two variablesX; andX; are marginally dependent
or independent we denote this @s;%.X ;) and (X; LX) respectively. If the same
relations count conditioned on some set of variatfese denote it agX;¥.X;|2)
and(X; 1L X;|Z) respectively.

Ch(X;),1I;, Ne(X;), Desc(X;) respectively denote the children, parents, neigh-
bors and descendants of variablgin a graph. Furthermorer; represents the values
of the parents of;.

Definition 1 A Bayesian networkBN) is a tuple(V, G, P(X;|I1;)), with :

-V ={Xy,...,X,}, asetof observable random variables

— a directed acyclic graph (DAGQ), where each node represents a variable from
v

— conditional probability distributions (CPDP (X;|IL;) of each variableX; from
V' conditionally on its parents in the grapghi such that the product of alP(X;|11;) is
a distribution.

As mentioned by (Pearl, 1988), several BNs can model the sadependencies
and the same probability distribution, we call such netwarkservationally (or Mar-
kov) equivalent. A complete partially directed acyclic gina( CDPAG) is a represen-
tation of all observationally equivalent BNs.

Definition 2 A partially directed acyclic graph (PDAG) is a graph contgiboth di-
rected and undirected edges.

Definition 3 A complete partially directed acyclic gragpbPDAG is a graph consis-
ting of directed and undirected edges. An edfje~ B is directed if all BNs in the
equivalence class have an edde— B with the same directionality. An edge is undi-
rected if some havd — B and somed «— B.

Definition 4 A Causal BN(CBN) is a Bayesian network in which the directed edges
are viewed as representing autonomous causal relationsngntioe corresponding
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parents-child tuple, while in a BN the directed edges onfyr@sent a probabilistic
dependency, and not necessarily a causal one.

With an autonomous causal relation, we mean that each B20|11;) represents
a stochastic assignment process by which the valu&s afe chosen only in response
to the values ofl;. In other words, each variabl€; € II; is a direct cause ok; and
no other variable is a direct cause ¥f. This is an approximation of how events are
physically related with their effects in the domain that ésrg modeled.

As (Murphy, 2001; Tonget al,, 2001) and (Eberhardt al, 2005b) have done, we
will make some general assumptions about the domain beimigied.

Causal Markov condition : Assuming thaiB = (V, G, P(X;|11,)) is a causal Baye-
sian network and is the probability distribution generated By As mentioned
by (Spirteset al, 2000),G and P satisfy the Causal Markov condition if and
only if for every W in V, W is independent o\ (Desc(W) U Iy )) given
Oy

Faithful distribution : We assume the observed samples come from a distribution
which independence properties are exactly matched by firesent in the cau-
sal structure of a CBN.

Causal sufficiency : We assume that there are no unknown (latent) variablesrthat i
fluence the system under study.

3. UnCabDo

Some existing constraint-based structure learning mstbai converge to the cor-
rect CPDAG, however often the amount of data available doepermit this conver-
gence. In this section we discuss our structural experistestiegy when the available
observational data does not provide enough informatioedaml the correct CPDAG.
We propose a constraint-based technique and assume caaffiséiscy and the causal
Markov property and that the samples come from a faithfutithistion.

3.1. General description

The strategy of our approach consists of three phases.dfinshsure dag, which
is an undirected dependence structure, is learned usirgptevational data, that can
include some unsure relations between nodes. In order telttoese unsure relations
we introduce a new type of edge, namelywarsureedge. Secondly all these unsure
relations are removed from the graph by performing expertsim the system on the
corresponding variables. In the final phase, possible mnundirected edges are
oriented.



UnCaDo: Unsure Causal Discovery 5

3.2. Unsureindependence test

The learning technigques we use are based on conditionaefiendence tests.
These tests need a certain amount of data in order to belesligtfor instance, not
enough data was available then we can not draw a conclusitimeafin)dependence
of two variables and thus are unsure whether an edge shouldnt@ved or added
to the current graph. However most implementations of isdépnce tests provide a
standard answer in case there is not enough data. We prapesajpted independence
test which in case there is not enough data or not enoughreadghis can be user
dependent) for (in)dependence retunmsureas a result.

There are several ways to adapt existing independencefsisstance :

— Usingy?, the number of data points has to be more thandegree of freedoin
otherwise the test can not be performed reliably as merdibggSpirte<et al., 2000).
In most implementations "no conditional independenceéfamed as default, while
in our casaunsurewould be returned.

— There can be an interval for the significance level usedttwrensure Traditio-
nally tests are done using= 0.05 significance level. We allow to set two parameters
a; andas with a; > . We return independence if the test is significant for si-
gnificance levehy and unsure if it is significant fofi; and not foras. For example
Unsurecould be returned where the test is significant with= 0.05, but no longer
insignificant foras = 0.02.

3.3. Initial phase: unsure observational learning

We use the adapted independence test and modify the skelistmvery phase of
the PC algorithm in order to form amsure graph

The independence test used in PC corresponds to our adagegztendence tests.
The classic independence test returns eithee or false, using our adaptation there
is a third possible responssure When independence is found the edge between the
two nodes is removed as usual, however when the relatioreleetihe two variables is
unsure, we include a new type of edgé&o. In order to find sets to test for conditional
independence, arrows of type?o are regarded as normal undirected edges.

Nodes in arunsuregraph can have three graphical relations :
no edge : X; and.X; are found to be independent conditional on some subseti{poss
bly the empty set).

edgeX,;o—0X; : X, andX; are dependent conditional on all subset of variables and
all conditional independence tests returrfedse. This corresponds to the tradi-
tional undirected edg&’; — X; and hence means eith&; — X; or X; — Xj.

unsureedgeX;o->o0X; : we can not determine whetheX; and X; are
(in)dependent, i.e. there exists at least one subset afhlas for which the in-
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dependence test returnadsureand none that return independent. This means
that eitherXi X]’, X; — X]‘ orX; «— Xj.

Note that as the number of data poiNs— oo the unsureedges will disappear,
since we will work withperfectdata. In general however when there ansureedges
more data is needed to distinguish between independenceegrthdence, therefore
we are in need of experiments.

3.4. Experimentation phase : resolving unsure edges

In this section we show how we can resolugsureedges using experiments. We
denote performing an experiment at varialdleby exp(X;).

In general if a variableX; is experimented on and the distribution of another va-
riable X; is affected by this experiment, we say th} varies withexp(X;), de-
noted byexp(X;) ~» X;. If there is no variation in the distribution of; we note
exp(X:) # X;.

If we find when comparing the observational with the expenrtakdata by condi-
tioning the statistical test on the value of another set ofides” thatexp(X;) ~
X, we denote this agexzp(X;) ~ X;)|Z, if conditioning onZ cuts the influence of
the experiment we denote it §sxp(X;) + X;)|Z. Note that conditioning ot¥ is
done when comparing the data, not during the experimentitalsa blocking setZ
is Ne(X;)\X;, since this is sure to block all incoming paths icg.

We introduce additional notation to indicate that two nodgsand X; are either
not connected or connected by an arc inip, we denote this byX; —7-0X;, where
"—"indicates that there can be no arrow io¥g.

If we take a look at the simplest example, a graph existingnbf two variables
X, and.X; for which our initial learning phase gives;o—>0.X ;. After performing an
experiment onX; and studying the data we can conclude one of three things :

1) Xi07?70Xj
2) €],‘p(Xl) ~ Xj = X; — Xj

The first case happens if the added experiments still do matiger us with enough
data to perform an independence test reliably. We can raheagxperiment until
sufficient data is available or the test can be performed adesired significance
level. If no sufficient experiments can be performed the lieainsX;o->0X}, this
possibility is a part of future work. The second case is thelicbne, in which we
immediately find an answer for our problem.

In the third case, the only conclusion we can make is fiafs not a cause of
X, and hence there is no arrawinto X ;. To solve this structure completely we still
need to perform an experiment df;. So in this case the results of performing an
experiment af\; are :
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5) GIp(Xj) 7@ X; + (3) = X; X]‘
In a general graph there can be more than one path betweenotes,nand we

need to take them into account in order to draw conclusiossdan the results of the
experiments.

Therefore we introduce the following definition :

Definition 5 A potentially directed path (p.d. path) in anunsurePDAG is a path
made of edges of types?o, — and —2o, with all arrowheads in the same direction.
A p.d. path fromX; to X; is denoted as(; --+ Xj.

If in a generaunsurePDAG there is an edg&;0—>0.X, the results of performing
an experiment ak; are :

6) exp(X;) ~ X; = X; --» X, but since we want to find direct effects we need
to block all p.d. paths of length 2 by a blocking sef.
- (exp(Xs) 4 X;)|Z2 = X X;
In the case thatzp(X;) + X; we have to perform an experiment & too. The
results of this experiment are :

8) exp(X;) ~ X; +(7)= X, «-- X, but since we want to find direct effects we
need to block all p.d. paths of length2 by a blocking seZ.
- (exp(X;) ~ Xi)|Z + (1) = X; — X;
- (exp(X;) / Xl Z+ ()= Xi X;
9) e;ch(Xj) 7@ X; + (7) = X; Xj
After these experiments alinsureedgesX;o—"—o0.X; are transformed into either
directed edges or are removed from the graph.

It has to be noted that, like in the simplest example, the xyats only provide
us with more data and that this still might not be enough te giveliable answer for
our statistical test. In this case the result of an expertmenlld leave theinsureedge
and more experiments are needed until the test can be pedawetiably.

3.5. Completion phase
At this point there are only the original undirected edgesand directed edges

found by resolvingunsureedges, we can hence use Steps 3 and 4 of PC to complete
the current PDAG into a CPDAG. If not all edges are directddrahis we need to
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‘“’

Figure 1. Simple example demonstrating the different steps in theaDoG&lgorithm.

perform another set of experiments. In order to complete we use the MyCaDo
algorithm we proposed in (Meganek al, 2006a)

3.6. Complete Learning Algorithm

All the actions described above combine to form the Unsures@laDiscovery
algorithm (UnCaDo). The complete algorithm is given in Aiigom[1. We define a
couple of notions to simplify the notation. In an unsure grafe(X;) are all variables
connected toX; either by a directed, undirected or unsure edge. Test opentdence
in an unsure graph are performed using the unsure indepeadest we introduced
above, in Algorithni L this test is referred to as the test déjpendence.

4. Toy Example

We demonstrate the different steps of the UnCaDo algorithim simple example.
If the unsure independence test returns "unsure" for a &atdenX; and.X; condi-
tioned on some se&f we note this agX; 1?2l X;|Z). Assume the correct CBN is given
in Figure1(a). The algorithm starts with a Complete undadgraph shown in Figure
[di(b). Assuming that the first ordered pair of variables thiithe checked i X, X3)
and that we find the following (in)dependence information :

- (Xll&Xg)
—(X112L X5|X5)

This means that the edgdé, -0 X3 will be replaced byX; 0-20X3, cfr. Figurd(c). To
check for (in)dependence between the other sets of vasialle X,) and (X5, X3)

we regard the unsure edgg o->0 X3 as being a normal undirected edge. This means
that we need to check for both the marginal as the conditimagpendence of these
pairs. If the edge would be considered absent this might teadissing necessary
independence tests. Assume that we find the following intidgece information for
(Xl, Xg) and(Xg, X3) .
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Algorithm 1 Adaptive learning of CBN for imperfect observational data &xperi-
ments.

Require: A set of samples from a probability distribution faithfuladCBN P (V).
Ensure: A CBN.

1) Gis complete undirected graph ovér

2) Skeleton discovery of PC.
If any of the independence tests in this step of PC retutned.re, record the
tuple (X;, X;) into PossUnsEdyg.
3) For each tupléX;, X;) in PossUnsEdg, if the edgeX; — X; is still
present inG replace that edge b¥;o0—~0X;.
4) For each unsure edgg;o—>-0X;,
Perform experiment aX;,
If exp(X;) ~ X,
Find a (possibly empty) set of variabl&sblocking all p.d. paths between
X; ande.
If (exp(X;) ~» X;)|Z then orientX;0->0X,; asX, — X, else remove
the edge.
else replaceX;o-~o0X; by X0 X;.
5) For each edg&(;o-*- X;
Perform experiment aX;,
If exp(X;) ~ X,
Find a (possibly empty) set of variabl&sblocking all p.d. paths between
Xj andX,».
If (exp(X;) ~ X;)|Z then orientX;0-- X; asX; — X, else remove
the edge.
else remove the edge.

6) Apply v-structure discovery and edge inference of PC.

7) Transform PDAG into CBN using the MyCaDo algorithm
(Megancket al,, 2006a).

- (XllkXQ) (Xli&X2|X3)

- (XQD&X;;) (XQJLX3|X1)
So at the end of our non-experimental phase we end up withtthetisre given in
Figure[d(c).

We now need to perform experiments in order to remove thereregeX; o—*
0X3. Assume we choose to perform an experimentXgnand gather all dat#®.,.
Thereis a p.d. patl(; 0-0X20-0X3 S0 we have to compare all conditional distributions
to see whether there was an influencef(X;) at X3. Hence we find that :

— (ezp(X1) » X3]X2)
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and thus we can replace the ed§eo—"—0X3 by X;0-7— X3 as shown in Figure
[d(d). Now we need to perform an experiment®g, taking into account the p.d. path
X30—-0X50-0X;. We find that :

— (exp(X3) » X1]X2)

and we can remove the edgg o->~ X3, leaving us the graph shown in Figlide 1(e).
Now that all unsure edges are resolved we can use the or@ntales of the PC-
algorithm, including the search for v-structures whichame cases will immediatly
find the correct structure if enough data is available or wedrte run the MyCaDo
algorithm to complete the structure.

5. Conclusions and Future work

In this paper, we discussed learning the structure of a CBNjeheral, without
making assumption about the underlying distribution, tibedausal structure can not
be retrieved from observational data alone and hence ewpets are needed.

We proposed an algorithm for situations when observatioladh is not suffi-
cient to learn the correct skeleton of the network. Theefoe proposed an adapted
(in)dependence test which can return unsure if the (in)oé@ece can not be detected
reliably. We suggested to change the skeleton discovergepbaithe PC algorithm
in order to be able to include the adapted (in)dependenteVilesproposed a new
graph, an unsure graph, which can represent the resulte okt discovery phase by
means of unsure edges. We then showed how these unsure tonsiean be repla-
ced either by a cause-effect relation or removed from thplgcampletely during an
experimentation phase. The experiment strategy indieatésh experiments need to
be performed to transform the unsure DAG into a PDAG. Usingralination of the
orientation rules of PC and, if necessary, some experiménssPDAG can then be
turned into the correct CBN.

We would like to extend these results to a setting with latemtables for which
we will use our previous results proposed in (Megaathl, 2006b).

For future research regarding learning with imperfect datavould like to study
the case in which not all unsure edges can be removed. Indbis the completion
phase would regard them as being absent as not to make aeypfalsagation mis-
takes. We would like to study how we can use this to adapt oategty to combine the
experimentation and completion phase on a one-by-one ina$ésad of removing all
the unsure edges first (Steps 4 and 5 in Algorithm 1) and thieg ose big completion
phase (Steps 6 and 7 in Algorithih 1) as is presented in thideart
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