
HAL Id: hal-00259692
https://hal.science/hal-00259692

Submitted on 29 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UnCaDo: Unsure Causal Discovery
Stijn Meganck, Philippe Leray, Bernard Manderick

To cite this version:
Stijn Meganck, Philippe Leray, Bernard Manderick. UnCaDo: Unsure Causal Discovery. Journées
Francophone sur les Réseaux Bayésiens, May 2008, Lyon, France. �hal-00259692�

https://hal.science/hal-00259692
https://hal.archives-ouvertes.fr


UnCaDo: Unsure Causal Discovery

Stijn Meganck* — Philippe Leray** — Bernard Manderick *

* CoMo, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Bruxelles, Belgique

smeganck@vub.ac.be

** LINA Computer Science Lab, Université de Nantes
2, rue de la Houssinière BP 92208, 44322 Nantes Cedex 03

philippe.leray@univ-nantes.fr

RÉSUMÉ.La plupart des algorithmes pour découvrir des relations de causalité à partir de don-
nées font l’hypothèse que ces données reflètent parfaitement les (in)dépendances entre les va-
riables étudiées. Cette hypothèse permet de retrouver le squelette théorique et le représentant
de la classe d’équivalence de Markov du modèle dont sont réellement issues les données. Ce
représentant est un graphe généralement partiellement orienté et sans circuit dont les arcs re-
présentent des relations de causalité directe entre un ensemble de parents et le noeud enfant.
Nous relachons cette première hypothèse en permettant d’obtenir initialement un graphe pou-
vant contenir des arêtes "incertaines". Ces arêtes seront ensuite validées (et orientées) ou sup-
primées lors de l’obtention de nouvelles données expérimentales. Nous présentons alors l’al-
gorithme UnCaDo (UNsure CAusal DiscOvery) qui propose le plain d’expériences nécessaire
pour obtenir suffisamment d’informations pour obtenir une structure complétement causale.

ABSTRACT.Most algorithms to learn causal relationships from data assume that the provided data
perfectly mirrors the (in)dependencies in the system under study. This allows us to recover the
correct dependence skeleton and the representative of the Markov equivalence class of Bayesian
networks that models the data. This complete partially directed acyclic graphcontains some
directed links that represent a direct causal influence from parent to child. In this paper we relax
the mentioned requirement by allowingunsureedges in the dependence skeleton. These unsure
edges can then be validated and oriented or discarded by performing experiments. We present
the UnCaDo (UNsure CAusal DiscOvery) algorithm which proposes a number of necessary
experiments that need to be done to gain sufficient causal information to complete the graph.

MOTS-CLÉS :Réseau Bayésien Causal, Apprentissage de Structure.

KEYWORDS:Causal Bayesian Networks, Structure Learning.
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1. Introduction

Learning causal relationships from data and modeling them is a challenging task.
One well known technique for causal modeling is a causal Bayesian network (CBN),
introduced by (Pearl, 2000). In a CBN each directed edge represents a direct causal
influence from the parent to the child. For instance a directed edgeC → E in a
CBN indicates that there exists at least one manipulation ofC that would alter the
distribution of the values ofE given that all other variables are kept at certain constant
values.

Learning the structure of Bayesian networks can be done fromobservational data.
First the complete partially directed acyclic graph (CPDAG) is learned from data, and
then a possible complete instantiation in the space of equivalent graphs defined by this
CPDAG is chosen (Spirteset al., 2000). It is impossible to follow the same strategy
for CBNs, because there is only one true causal network that represents the underlying
mechanisms, so only one of the graphs in the space of equivalent graphs is the correct
one. Learning algorithms for which it is proven that they converge to the true CPDAG
are PC proposed by (Spirteset al., 2000), GES by (Chickering, 2003) and conservative
PC by (Ramseyet al., 2006). (Shimizuet al., 2005) showed that when assumptions
are made or prior knowledge is available about the underlying distribution of the data
it is sometimes possible to recover the entire DAG structurefrom observational data.

To learn a CBN,experimentsare needed because in most cases from observatio-
nal data alone we can only learn up to Markov equivalence. Sometimes it is possible
that the entire structure is discovered (e.g. there is only one member in the Markov
equivalence class), however in general we can only learn a subset of the causal in-
fluences. Several algorithms exist to learn CBNs based on experiments. For example,
(Tong et al., 2001) and (Cooperet al., 1999) developed score-based techniques to
learn a CBN from a mixture of experimental and observationaldata. In (Megancket
al., 2006a) we proposed a decision theoretic based algorithm. (Eberhardtet al., 2005a)
performed a theoretical study on the lower bound of the worstcase for the number of
experiments to perform to recover the causal structure. Allthese results were based on
performingstructural interventionsas experiments, i.e. randomization of a variable.
Recently some work has been done on different types of interventions by (Eberhardt
et al., 2006) and (Eatonet al., 2007), but we will not go into detail in this paper.

We propose a constraint-based strategy to learn a causal Bayesian network using
structural experiments in the case that observational datais not sufficient to learn all
causal information and even insufficient to learn the correct skeleton of the network
(i.e. imperfectdata). We adapt an existing independence test and use this test to build
a model able to represent unsure connections in a network. Wethen show how these
unsure connections can be replaced either by a cause-effectrelation or removed from
the graph completely during the experiments phase.

The remainder of this paper is as follows. In the next sectionwe provide notations
and definitions needed in the remainder of this paper. Then wepresent our own ap-
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proach and illustrate it on a toy example. We end with a conclusion and an overview
of possible future work.

2. Preliminaries

In this section we introduce the basic elements needed in therest of the paper.

In this work uppercase letters are used to represent variables or sets of variables,
V = {X1, . . . ,Xn}, while corresponding lowercase letters are used to represent their
instantiations,x1, x2 andv is an instantiation of allXi. P (Xi) is used to denote the
probability distribution over all possible values of variable Xi, while P (Xi = xi) is
used to denote the probability that variableXi is equal toxi. Usually,P (xi) is used as
an abbreviation ofP (Xi = xi). If two variablesXi andXj are marginally dependent
or independent we denote this as(Xi 2Xj) and(Xi⊥⊥Xj) respectively. If the same
relations count conditioned on some set of variablesZ we denote it as(Xi 2Xj |Z)
and(Xi⊥⊥Xj |Z) respectively.

Ch(Xi), Πi, Ne(Xi), Desc(Xi) respectively denote the children, parents, neigh-
bors and descendants of variableXi in a graph. Furthermore,πi represents the values
of the parents ofXi.

Definition 1 A Bayesian network(BN) is a tuple,〈V,G, P (Xi|Πi)〉, with :

– V = {X1, . . . ,Xn}, a set of observable random variables

– a directed acyclic graph (DAG)G, where each node represents a variable from
V

– conditional probability distributions (CPD)P (Xi|Πi) of each variableXi from
V conditionally on its parents in the graphG such that the product of allP (Xi|Πi) is
a distribution.

As mentioned by (Pearl, 1988), several BNs can model the sameindependencies
and the same probability distribution, we call such networks observationally (or Mar-
kov) equivalent. A complete partially directed acyclic graph (CDPAG) is a represen-
tation of all observationally equivalent BNs.

Definition 2 A partially directed acyclic graph (PDAG) is a graph containg both di-
rected and undirected edges.

Definition 3 A complete partially directed acyclic graphCPDAG is a graph consis-
ting of directed and undirected edges. An edgeA → B is directed if all BNs in the
equivalence class have an edgeA→ B with the same directionality. An edge is undi-
rected if some haveA→ B and someA← B.

Definition 4 A Causal BN(CBN) is a Bayesian network in which the directed edges
are viewed as representing autonomous causal relations among the corresponding
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parents-child tuple, while in a BN the directed edges only represent a probabilistic
dependency, and not necessarily a causal one.

With an autonomous causal relation, we mean that each CPDP (Xi|Πi) represents
a stochastic assignment process by which the values ofXi are chosen only in response
to the values ofΠi. In other words, each variableXj ∈ Πi is a direct cause ofXi and
no other variable is a direct cause ofXi. This is an approximation of how events are
physically related with their effects in the domain that is being modeled.

As (Murphy, 2001; Tonget al., 2001) and (Eberhardtet al., 2005b) have done, we
will make some general assumptions about the domain being modeled.

Causal Markov condition : Assuming thatB = 〈V,G, P (Xi|Πi)〉 is a causal Baye-
sian network andP is the probability distribution generated byB. As mentioned
by (Spirteset al., 2000),G andP satisfy the Causal Markov condition if and
only if for every W in V , W is independent ofV \(Desc(W ) ∪ ΠW )) given
ΠW .

Faithful distribution : We assume the observed samples come from a distribution
which independence properties are exactly matched by thosepresent in the cau-
sal structure of a CBN.

Causal sufficiency : We assume that there are no unknown (latent) variables that in-
fluence the system under study.

3. UnCaDo

Some existing constraint-based structure learning methods can converge to the cor-
rect CPDAG, however often the amount of data available does not permit this conver-
gence. In this section we discuss our structural experimentstrategy when the available
observational data does not provide enough information to learn the correct CPDAG.
We propose a constraint-based technique and assume causal sufficiency and the causal
Markov property and that the samples come from a faithful distribution.

3.1. General description

The strategy of our approach consists of three phases. Firstan unsure dag, which
is an undirected dependence structure, is learned using theobservational data, that can
include some unsure relations between nodes. In order to model these unsure relations
we introduce a new type of edge, namely anunsureedge. Secondly all these unsure
relations are removed from the graph by performing experiments in the system on the
corresponding variables. In the final phase, possible remaining undirected edges are
oriented.
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3.2. Unsure independence test

The learning techniques we use are based on conditional (in)dependence tests.
These tests need a certain amount of data in order to be reliable. If, for instance, not
enough data was available then we can not draw a conclusion onthe (in)dependence
of two variables and thus are unsure whether an edge should beremoved or added
to the current graph. However most implementations of independence tests provide a
standard answer in case there is not enough data. We propose an adapted independence
test which in case there is not enough data or not enough evidence (this can be user
dependent) for (in)dependence returnsunsureas a result.

There are several ways to adapt existing independence tests, for instance :

– Usingχ2, the number of data points has to be more than10∗(degree of freedom),
otherwise the test can not be performed reliably as mentioned by (Spirteset al., 2000).
In most implementations "no conditional independence" is returned as default, while
in our caseunsurewould be returned.

– There can be an interval for the significance level used to returnunsure. Traditio-
nally tests are done usingα = 0.05 significance level. We allow to set two parameters
α1 andα2 with α1 > α2. We return independence if the test is significant for si-
gnificance levelα2 and unsure if it is significant forα1 and not forα2. For example
Unsurecould be returned where the test is significant withα1 = 0.05, but no longer
insignificant forα2 = 0.02.

3.3. Initial phase : unsure observational learning

We use the adapted independence test and modify the skeletondiscovery phase of
the PC algorithm in order to form anunsure graph.

The independence test used in PC corresponds to our adapted independence tests.
The classic independence test returns eithertrue or false, using our adaptation there
is a third possible responseunsure. When independence is found the edge between the
two nodes is removed as usual, however when the relation between the two variables is
unsure, we include a new type of edgeo−?−o. In order to find sets to test for conditional
independence, arrows of typeo−?−o are regarded as normal undirected edges.

Nodes in anunsuregraph can have three graphical relations :

no edge : Xi andXj are found to be independent conditional on some subset (possi-
bly the empty set).

edgeXio−oXj : Xi andXj are dependent conditional on all subset of variables and
all conditional independence tests returnedfalse. This corresponds to the tradi-
tional undirected edgeXi−Xj and hence means eitherXi ← Xj or Xi → Xj .

unsure edgeXio−?−oXj : we can not determine whetherXi and Xj are
(in)dependent, i.e. there exists at least one subset of variables for which the in-
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dependence test returnedunsureand none that return independent. This means
that eitherXi Xj , Xi → Xj or Xi ← Xj .

Note that as the number of data pointsN → ∞ theunsureedges will disappear,
since we will work withperfectdata. In general however when there areunsureedges
more data is needed to distinguish between independence anddependence, therefore
we are in need of experiments.

3.4. Experimentation phase : resolving unsure edges

In this section we show how we can resolveunsureedges using experiments. We
denote performing an experiment at variableXi by exp(Xi).

In general if a variableXi is experimented on and the distribution of another va-
riable Xj is affected by this experiment, we say thatXj varies withexp(Xi), de-
noted byexp(Xi)  Xj . If there is no variation in the distribution ofXj we note
exp(Xi) 6 Xj .

If we find when comparing the observational with the experimental data by condi-
tioning the statistical test on the value of another set of variablesZ thatexp(Xi)  
Xj we denote this as(exp(Xi)  Xj)|Z, if conditioning onZ cuts the influence of
the experiment we denote it as(exp(Xi) 6 Xj)|Z. Note that conditioning onZ is
done when comparing the data, not during the experiment. A suitable blocking setZ
is Ne(Xj)\Xi, since this is sure to block all incoming paths intoXi.

We introduce additional notation to indicate that two nodesXi andXj are either
not connected or connected by an arc intoXj , we denote this byXi−?−oXj , where
"−" indicates that there can be no arrow intoXi.

If we take a look at the simplest example, a graph existing of only two variables
Xi andXj for which our initial learning phase givesXio−?−oXj . After performing an
experiment onXi and studying the data we can conclude one of three things :

1) Xio−?−oXj

2) exp(Xi) Xj ⇒ Xi → Xj

3) exp(Xi) 6 Xj ⇒ Xio−?−Xj

The first case happens if the added experiments still do not provide us with enough
data to perform an independence test reliably. We can repeatthe experiment until
sufficient data is available or the test can be performed at our desired significance
level. If no sufficient experiments can be performed the linkremainsXio−?−oXj , this
possibility is a part of future work. The second case is the ideal one, in which we
immediately find an answer for our problem.

In the third case, the only conclusion we can make is thatXi is not a cause of
Xj and hence there is no arrow> into Xj . To solve this structure completely we still
need to perform an experiment onXj . So in this case the results of performing an
experiment atXj are :
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4) exp(Xj) Xi + (3)⇒ Xi ← Xj

5) exp(Xj) 6 Xi + (3)⇒ Xi Xj

In a general graph there can be more than one path between two nodes, and we
need to take them into account in order to draw conclusions based on the results of the
experiments.

Therefore we introduce the following definition :

Definition 5 A potentially directed path (p.d. path) in anunsurePDAG is a path
made of edges of typeso−?−o,→ and−?−o, with all arrowheads in the same direction.
A p.d. path fromXi to Xj is denoted asXi 99K Xj .

If in a generalunsurePDAG there is an edgeXio−?−oXj , the results of performing
an experiment atXi are :

6) exp(Xi) Xj ⇒Xi 99K Xj , but since we want to find direct effects we need
to block all p.d. paths of length≥ 2 by a blocking setZ.

- (exp(Xi) Xj)|Z ⇒ Xi → Xj

- (exp(Xi) 6 Xj)|Z ⇒ Xi Xj

7) exp(Xi) 6 Xj ⇒ Xio−?−Xj

In the case thatexp(Xi) 6 Xj we have to perform an experiment atXj too. The
results of this experiment are :

8) exp(Xj) Xi + (7)⇒Xi L99 Xj , but since we want to find direct effects we
need to block all p.d. paths of length≥ 2 by a blocking setZ.

- (exp(Xj) Xi)|Z + (7)⇒ Xi ← Xj

- (exp(Xj) 6 Xi)|Z + (7)⇒ Xi Xj

9) exp(Xj) 6 Xi + (7)⇒ Xi Xj

After these experiments allunsureedgesXio−?−oXj are transformed into either
directed edges or are removed from the graph.

It has to be noted that, like in the simplest example, the experiments only provide
us with more data and that this still might not be enough to give a reliable answer for
our statistical test. In this case the result of an experiment would leave theunsureedge
and more experiments are needed until the test can be performed reliably.

3.5. Completion phase

At this point there are only the original undirected edgeso−o and directed edges→
found by resolvingunsureedges, we can hence use Steps 3 and 4 of PC to complete
the current PDAG into a CPDAG. If not all edges are directed after this we need to
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Figure 1. Simple example demonstrating the different steps in the UnCaDo algorithm.

perform another set of experiments. In order to complete this we use the MyCaDo
algorithm we proposed in (Megancket al., 2006a)

3.6. Complete Learning Algorithm

All the actions described above combine to form the Unsure Causal Discovery
algorithm (UnCaDo). The complete algorithm is given in Algorithm 1. We define a
couple of notions to simplify the notation. In an unsure graph Ne(Xi) are all variables
connected toXi either by a directed, undirected or unsure edge. Test of independence
in an unsure graph are performed using the unsure independence test we introduced
above, in Algorithm 1 this test is referred to as the test of independence.

4. Toy Example

We demonstrate the different steps of the UnCaDo algorithm on a simple example.
If the unsure independence test returns "unsure" for a test betweenXi andXj condi-
tioned on some setZ we note this as(Xi⊥?⊥Xj |Z). Assume the correct CBN is given
in Figure 1(a). The algorithm starts with a complete undirected graph shown in Figure
1(b). Assuming that the first ordered pair of variables that will be checked is(X1,X3)
and that we find the following (in)dependence information :

– (X1 2X3)

– (X1⊥?⊥X3|X2)

This means that the edgeX1o−oX3 will be replaced byX1o−?−oX3, cfr. Figure 1(c). To
check for (in)dependence between the other sets of variables (X1,X2) and(X2,X3)
we regard the unsure edgeX1o−?−oX3 as being a normal undirected edge. This means
that we need to check for both the marginal as the conditionalindependence of these
pairs. If the edge would be considered absent this might leadto missing necessary
independence tests. Assume that we find the following independence information for
(X1,X2) and(X2,X3) :
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Algorithm 1 Adaptive learning of CBN for imperfect observational data and experi-
ments.
Require: A set of samples from a probability distribution faithful toa CBNP (V ).
Ensure: A CBN.

1) G is complete undirected graph overV .

2) Skeleton discovery of PC.
If any of the independence tests in this step of PC returnedunsure, record the
tuple(Xi,Xj) into PossUnsEdg.

3) For each tuple(Xi,Xj) in PossUnsEdg, if the edgeXi −Xj is still
present inG replace that edge byXio−?−oXj .

4) For each unsure edgeXio−?−oXj ,
Perform experiment atXi,
If exp(Xi) Xj ,

Find a (possibly empty) set of variablesZ blocking all p.d. paths between
Xi andXj .
If (exp(Xi) Xj)|Z then orientXio−?−oXj asXi → Xj , else remove
the edge.

else replaceXio−?−oXj by Xio−?−Xj .

5) For each edgeXio−?−Xj ,
Perform experiment atXj ,
If exp(Xj) Xi,

Find a (possibly empty) set of variablesZ blocking all p.d. paths between
Xj andXi.
If (exp(Xj) Xi)|Z then orientXio−?−Xj asXi ← Xj , else remove
the edge.

else remove the edge.

6) Apply v-structure discovery and edge inference of PC.

7) Transform PDAG into CBN using the MyCaDo algorithm
(Megancket al., 2006a).

– (X1 2X2) (X1 2X2|X3)

– (X2 2X3) (X2 2X3|X1)

So at the end of our non-experimental phase we end up with the structure given in
Figure 1(c).

We now need to perform experiments in order to remove the unsure edgeX1o−?−
oX3. Assume we choose to perform an experiment onX1 and gather all dataDexp.
There is a p.d. pathX1o−oX2o−oX3 so we have to compare all conditional distributions
to see whether there was an influence ofexp(X1) atX3. Hence we find that :

– (exp(X1) 6 X3|X2)
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and thus we can replace the edgeX1o−?−oX3 by X1o−?− X3 as shown in Figure
1(d). Now we need to perform an experiment onX3, taking into account the p.d. path
X3o−oX2o−oX1. We find that :

– (exp(X3) 6 X1|X2)

and we can remove the edgeX1o−?−X3, leaving us the graph shown in Figure 1(e).
Now that all unsure edges are resolved we can use the orientation rules of the PC-
algorithm, including the search for v-structures which in some cases will immediatly
find the correct structure if enough data is available or we need to run the MyCaDo
algorithm to complete the structure.

5. Conclusions and Future work

In this paper, we discussed learning the structure of a CBN. In general, without
making assumption about the underlying distribution, the full causal structure can not
be retrieved from observational data alone and hence experiments are needed.

We proposed an algorithm for situations when observationaldata is not suffi-
cient to learn the correct skeleton of the network. Therefore we proposed an adapted
(in)dependence test which can return unsure if the (in)dependence can not be detected
reliably. We suggested to change the skeleton discovery phase of the PC algorithm
in order to be able to include the adapted (in)dependence test. We proposed a new
graph, an unsure graph, which can represent the results of the new discovery phase by
means of unsure edges. We then showed how these unsure connections can be repla-
ced either by a cause-effect relation or removed from the graph completely during an
experimentation phase. The experiment strategy indicateswhich experiments need to
be performed to transform the unsure DAG into a PDAG. Using a combination of the
orientation rules of PC and, if necessary, some experiments, this PDAG can then be
turned into the correct CBN.

We would like to extend these results to a setting with latentvariables for which
we will use our previous results proposed in (Megancket al., 2006b).

For future research regarding learning with imperfect datawe would like to study
the case in which not all unsure edges can be removed. In this case the completion
phase would regard them as being absent as not to make any false propagation mis-
takes. We would like to study how we can use this to adapt our strategy to combine the
experimentation and completion phase on a one-by-one basisinstead of removing all
the unsure edges first (Steps 4 and 5 in Algorithm 1) and then using one big completion
phase (Steps 6 and 7 in Algorithm 1) as is presented in this article.
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