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La plupart des algorithmes pour découvrir des relations de causalité à partir de données font l'hypothèse que ces données reflètent parfaitement les (in)dépendances entre les variables étudiées. Cette hypothèse permet de retrouver le squelette théorique et le représentant de la classe d'équivalence de Markov du modèle dont sont réellement issues les données. Ce représentant est un graphe généralement partiellement orienté et sans circuit dont les arcs représentent des relations de causalité directe entre un ensemble de parents et le noeud enfant.

Nous relachons cette première hypothèse en permettant d'obtenir initialement un graphe pouvant contenir des arêtes "incertaines". Ces arêtes seront ensuite validées (et orientées) ou supprimées lors de l'obtention de nouvelles données expérimentales. Nous présentons alors l'algorithme UnCaDo (UNsure CAusal DiscOvery) qui propose le plain d'expériences nécessaire pour obtenir suffisamment d'informations pour obtenir une structure complétement causale.

ABSTRACT. Most algorithms to learn causal relationships from data assume that the provided data perfectly mirrors the (in)dependencies in the system under study. This allows us to recover the correct dependence skeleton and the representative of the Markov equivalence class of Bayesian networks that models the data. This complete partially directed acyclic graph contains some directed links that represent a direct causal influence from parent to child. In this paper we relax the mentioned requirement by allowing unsure edges in the dependence skeleton. These unsure edges can then be validated and oriented or discarded by performing experiments. We present the UnCaDo (UNsure CAusal DiscOvery) algorithm which proposes a number of necessary experiments that need to be done to gain sufficient causal information to complete the graph.

Introduction

Learning causal relationships from data and modeling them is a challenging task. One well known technique for causal modeling is a causal Bayesian network (CBN), introduced by [START_REF] Pearl | Causality : Models, Reasoning and Inference[END_REF]. In a CBN each directed edge represents a direct causal influence from the parent to the child. For instance a directed edge C → E in a CBN indicates that there exists at least one manipulation of C that would alter the distribution of the values of E given that all other variables are kept at certain constant values.

Learning the structure of Bayesian networks can be done from observational data. First the complete partially directed acyclic graph (CPDAG) is learned from data, and then a possible complete instantiation in the space of equivalent graphs defined by this CPDAG is chosen [START_REF] Spirtes | Causation, Prediction and Search[END_REF]. It is impossible to follow the same strategy for CBNs, because there is only one true causal network that represents the underlying mechanisms, so only one of the graphs in the space of equivalent graphs is the correct one. Learning algorithms for which it is proven that they converge to the true CPDAG are PC proposed by [START_REF] Spirtes | Causation, Prediction and Search[END_REF], GES by (Chickering, 2003) and conservative PC by [START_REF] Ramsey | Adjacency-Faithfulness and Conservative Causal Inference[END_REF]. [START_REF] Shimizu | Discovery of non-gaussian linear causal models using ICA[END_REF] showed that when assumptions are made or prior knowledge is available about the underlying distribution of the data it is sometimes possible to recover the entire DAG structure from observational data.

To learn a CBN, experiments are needed because in most cases from observational data alone we can only learn up to Markov equivalence. Sometimes it is possible that the entire structure is discovered (e.g. there is only one member in the Markov equivalence class), however in general we can only learn a subset of the causal influences. Several algorithms exist to learn CBNs based on experiments. For example, [START_REF] Tong | Active Learning for Structure in Bayesian Networks[END_REF] and [START_REF] Cooper | Causal Discovery from a Mixture of Experimental and Observational Data[END_REF] developed score-based techniques to learn a CBN from a mixture of experimental and observational data. In (Meganck et al., 2006a) we proposed a decision theoretic based algorithm. (Eberhardt et al., 2005a) performed a theoretical study on the lower bound of the worst case for the number of experiments to perform to recover the causal structure. All these results were based on performing structural interventions as experiments, i.e. randomization of a variable. Recently some work has been done on different types of interventions by [START_REF] Eberhardt | Interventions and Causal Inference[END_REF] and [START_REF] Eaton | Exact Bayesian structure learning from uncertain interventions[END_REF], but we will not go into detail in this paper.

We propose a constraint-based strategy to learn a causal Bayesian network using structural experiments in the case that observational data is not sufficient to learn all causal information and even insufficient to learn the correct skeleton of the network (i.e. imperfect data). We adapt an existing independence test and use this test to build a model able to represent unsure connections in a network. We then show how these unsure connections can be replaced either by a cause-effect relation or removed from the graph completely during the experiments phase.

The remainder of this paper is as follows. In the next section we provide notations and definitions needed in the remainder of this paper. Then we present our own ap-proach and illustrate it on a toy example. We end with a conclusion and an overview of possible future work.

Preliminaries

In this section we introduce the basic elements needed in the rest of the paper.

In this work uppercase letters are used to represent variables or sets of variables, V = {X 1 , . . . , X n }, while corresponding lowercase letters are used to represent their instantiations, x 1 , x 2 and v is an instantiation of all X i . P (X i ) is used to denote the probability distribution over all possible values of variable X i , while P (X i = x i ) is used to denote the probability that variable X i is equal to x i . Usually, P (x i ) is used as an abbreviation of P (X i = x i ). If two variables X i and X j are marginally dependent or independent we denote this as (X i X j ) and (X i ⊥ ⊥X j ) respectively. If the same relations count conditioned on some set of variables Z we denote it as (X i X j |Z) and (X i ⊥ ⊥X j |Z) respectively.

Ch(X i ), Π i , N e(X i ), Desc(X i ) respectively denote the children, parents, neighbors and descendants of variable X i in a graph. Furthermore, π i represents the values of the parents of X i .

Definition 1 A Bayesian network (BN) is a tuple, V, G, P (X i |Π i ) , with :

-V = {X 1 , . . . , X n }, a set of observable random variables -a directed acyclic graph (DAG) G, where each node represents a variable from V -conditional probability distributions (CPD) P (X i |Π i ) of each variable X i from V conditionally on its parents in the graph G such that the product of all P (X i |Π i ) is a distribution.

As mentioned by [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems[END_REF], several BNs can model the same independencies and the same probability distribution, we call such networks observationally (or Markov) equivalent. A complete partially directed acyclic graph (CDPAG) is a representation of all observationally equivalent BNs.

Definition 2 A partially directed acyclic graph (PDAG) is a graph containg both directed and undirected edges.

Definition 3 A complete partially directed acyclic graph CPDAG is a graph consisting of directed and undirected edges. An edge A → B is directed if all BNs in the equivalence class have an edge A → B with the same directionality. An edge is undirected if some have A → B and some A ← B.

Definition 4 A Causal BN (CBN) is a Bayesian network in which the directed edges are viewed as representing autonomous causal relations among the corresponding parents-child tuple, while in a BN the directed edges only represent a probabilistic dependency, and not necessarily a causal one.

With an autonomous causal relation, we mean that each CPD P (X i |Π i ) represents a stochastic assignment process by which the values of X i are chosen only in response to the values of Π i . In other words, each variable X j ∈ Π i is a direct cause of X i and no other variable is a direct cause of X i . This is an approximation of how events are physically related with their effects in the domain that is being modeled.

As [START_REF] Murphy | Active Learning of Causal Bayes Net Structure[END_REF][START_REF] Tong | Active Learning for Structure in Bayesian Networks[END_REF] and (Eberhardt et al., 2005b) have done, we will make some general assumptions about the domain being modeled.

Causal Markov condition :

Assuming that B = V, G, P (X i |Π i ) is a causal Baye-
sian network and P is the probability distribution generated by B. As mentioned by [START_REF] Spirtes | Causation, Prediction and Search[END_REF], G and P satisfy the Causal Markov condition if and

only if for every W in V , W is independent of V \(Desc(W ) ∪ Π W )) given Π W .
Faithful distribution : We assume the observed samples come from a distribution which independence properties are exactly matched by those present in the causal structure of a CBN.

Causal sufficiency :

We assume that there are no unknown (latent) variables that influence the system under study.

UnCaDo

Some existing constraint-based structure learning methods can converge to the correct CPDAG, however often the amount of data available does not permit this convergence. In this section we discuss our structural experiment strategy when the available observational data does not provide enough information to learn the correct CPDAG. We propose a constraint-based technique and assume causal sufficiency and the causal Markov property and that the samples come from a faithful distribution.

General description

The strategy of our approach consists of three phases. First an unsure dag, which is an undirected dependence structure, is learned using the observational data, that can include some unsure relations between nodes. In order to model these unsure relations we introduce a new type of edge, namely an unsure edge. Secondly all these unsure relations are removed from the graph by performing experiments in the system on the corresponding variables. In the final phase, possible remaining undirected edges are oriented.

Unsure independence test

The learning techniques we use are based on conditional (in)dependence tests. These tests need a certain amount of data in order to be reliable. If, for instance, not enough data was available then we can not draw a conclusion on the (in)dependence of two variables and thus are unsure whether an edge should be removed or added to the current graph. However most implementations of independence tests provide a standard answer in case there is not enough data. We propose an adapted independence test which in case there is not enough data or not enough evidence (this can be user dependent) for (in)dependence returns unsure as a result.

There are several ways to adapt existing independence tests, for instance :

-Using χ 2 , the number of data points has to be more than 10 * (degree of freedom), otherwise the test can not be performed reliably as mentioned by [START_REF] Spirtes | Causation, Prediction and Search[END_REF]. In most implementations "no conditional independence" is returned as default, while in our case unsure would be returned.

-There can be an interval for the significance level used to return unsure. Traditionally tests are done using α = 0.05 significance level. We allow to set two parameters α 1 and α 2 with α 1 > α 2 . We return independence if the test is significant for significance level α 2 and unsure if it is significant for α 1 and not for α 2 . For example Unsure could be returned where the test is significant with α 1 = 0.05, but no longer insignificant for α 2 = 0.02.

Initial phase : unsure observational learning

We use the adapted independence test and modify the skeleton discovery phase of the PC algorithm in order to form an unsure graph.

The independence test used in PC corresponds to our adapted independence tests. The classic independence test returns either true or f alse, using our adaptation there is a third possible response unsure. When independence is found the edge between the two nodes is removed as usual, however when the relation between the two variables is unsure, we include a new type of edge o-? -o. In order to find sets to test for conditional independence, arrows of type o-?-o are regarded as normal undirected edges.

Nodes in an unsure graph can have three graphical relations : no edge : X i and X j are found to be independent conditional on some subset (possibly the empty set).

edge X i o-oX j : X i and X j are dependent conditional on all subset of variables and all conditional independence tests returned f alse. This corresponds to the traditional undirected edge X i -X j and hence means either

X i ← X j or X i → X j .
unsure edge X i o-?-oX j : we can not determine whether X i and X j are (in)dependent, i.e. there exists at least one subset of variables for which the in-4) exp(X j )

X i + (3) ⇒ X i ← X j 5) exp(X j ) X i + (3) ⇒ X i X j
In a general graph there can be more than one path between two nodes, and we need to take them into account in order to draw conclusions based on the results of the experiments.

Therefore we introduce the following definition :

Definition 5 A potentially directed path (p.d. path) in an unsure PDAG is a path made of edges of types o-? -o, → and -? -o, with all arrowheads in the same direction. A p.d. path from X i to X j is denoted as X i X j .

If in a general unsure PDAG there is an edge X i o-? -oX j , the results of performing an experiment at X i are :

6) exp(X i ) X j ⇒ X i X j
, but since we want to find direct effects we need to block all p.d. paths of length ≥ 2 by a blocking set Z.

-(exp(X i ) X j )|Z ⇒ X i → X j -(exp(X i ) X j )|Z ⇒ X i X j 7) exp(X i ) X j ⇒ X i o-?-X j
In the case that exp(X i ) X j we have to perform an experiment at X j too. The results of this experiment are : 8) exp(X j ) X i + (7) ⇒ X i X j , but since we want to find direct effects we need to block all p.d. paths of length ≥ 2 by a blocking set Z.

-(exp(X j ) X i )|Z + (7) ⇒ X i ← X j -(exp(X j ) X i )|Z + (7) ⇒ X i X j 9) exp(X j ) X i + (7) ⇒ X i X j
After these experiments all unsure edges X i o-?-oX j are transformed into either directed edges or are removed from the graph.

It has to be noted that, like in the simplest example, the experiments only provide us with more data and that this still might not be enough to give a reliable answer for our statistical test. In this case the result of an experiment would leave the unsure edge and more experiments are needed until the test can be performed reliably.

Completion phase

At this point there are only the original undirected edges o-o and directed edges → found by resolving unsure edges, we can hence use Steps 3 and 4 of PC to complete the current PDAG into a CPDAG. If not all edges are directed after this we need to perform another set of experiments. In order to complete this we use the MyCaDo algorithm we proposed in (Meganck et al., 2006a) 

X 1 X 3 X 2 X 1 X 3 X 2 X 1 X 3 X 2 ? X 1 X 3 X 2 (a) (b) (c) (e) X 1 X 3 X 2 ? (d)

Complete Learning Algorithm

All the actions described above combine to form the Unsure Causal Discovery algorithm (UnCaDo). The complete algorithm is given in Algorithm 1. We define a couple of notions to simplify the notation. In an unsure graph N e(X i ) are all variables connected to X i either by a directed, undirected or unsure edge. Test of independence in an unsure graph are performed using the unsure independence test we introduced above, in Algorithm 1 this test is referred to as the test of independence.

Toy Example

We demonstrate the different steps of the UnCaDo algorithm on a simple example. If the unsure independence test returns "unsure" for a test between X i and X j conditioned on some set Z we note this as (X i ⊥?⊥X j |Z). Assume the correct CBN is given in Figure 1(a). The algorithm starts with a complete undirected graph shown in Figure 1(b). Assuming that the first ordered pair of variables that will be checked is (X 1 , X 3 ) and that we find the following (in)dependence information :

-(X 1 X 3 ) -(X 1 ⊥?⊥X 3 |X 2 )
This means that the edge X 1 o-oX 3 will be replaced by X 1 o-? -oX 3 , cfr. Figure 1(c). To check for (in)dependence between the other sets of variables (X 1 , X 2 ) and (X 2 , X 3 ) we regard the unsure edge X 1 o-? -oX 3 as being a normal undirected edge. This means that we need to check for both the marginal as the conditional independence of these pairs. If the edge would be considered absent this might lead to missing necessary independence tests. Assume that we find the following independence information for (X 1 , X 2 ) and (X 2 , X 3 ) : and thus we can replace the edge X 1 o-?-oX 3 by X 1 o-?-X 3 as shown in Figure 1(d). Now we need to perform an experiment on X 3 , taking into account the p.d. path X 3 o-oX 2 o-oX 1 . We find that :

-(exp(X 3 ) X 1 |X 2 )
and we can remove the edge X 1 o-?-X 3 , leaving us the graph shown in Figure 1(e). Now that all unsure edges are resolved we can use the orientation rules of the PCalgorithm, including the search for v-structures which in some cases will immediatly find the correct structure if enough data is available or we need to run the MyCaDo algorithm to complete the structure.

Conclusions and Future work

In this paper, we discussed learning the structure of a CBN. In general, without making assumption about the underlying distribution, the full causal structure can not be retrieved from observational data alone and hence experiments are needed.

We proposed an algorithm for situations when observational data is not sufficient to learn the correct skeleton of the network. Therefore we proposed an adapted (in)dependence test which can return unsure if the (in)dependence can not be detected reliably. We suggested to change the skeleton discovery phase of the PC algorithm in order to be able to include the adapted (in)dependence test. We proposed a new graph, an unsure graph, which can represent the results of the new discovery phase by means of unsure edges. We then showed how these unsure connections can be replaced either by a cause-effect relation or removed from the graph completely during an experimentation phase. The experiment strategy indicates which experiments need to be performed to transform the unsure DAG into a PDAG. Using a combination of the orientation rules of PC and, if necessary, some experiments, this PDAG can then be turned into the correct CBN.

We would like to extend these results to a setting with latent variables for which we will use our previous results proposed in (Meganck et al., 2006b).

For future research regarding learning with imperfect data we would like to study the case in which not all unsure edges can be removed. In this case the completion phase would regard them as being absent as not to make any false propagation mistakes. We would like to study how we can use this to adapt our strategy to combine the experimentation and completion phase on a one-by-one basis instead of removing all the unsure edges first (Steps 4 and 5 in Algorithm 1) and then using one big completion phase (Steps 6 and 7 in Algorithm 1) as is presented in this article.
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 1 Figure 1. Simple example demonstrating the different steps in the UnCaDo algorithm.

L'objet. Volume 8 -n˚2/2005 

dependence test returned unsure and none that return independent. This means that either X i X j , X i → X j or X i ← X j .

Note that as the number of data points N → ∞ the unsure edges will disappear, since we will work with perfect data. In general however when there are unsure edges more data is needed to distinguish between independence and dependence, therefore we are in need of experiments.

Experimentation phase : resolving unsure edges

In this section we show how we can resolve unsure edges using experiments. We denote performing an experiment at variable X i by exp(X i ).

In general if a variable X i is experimented on and the distribution of another variable X j is affected by this experiment, we say that X j varies with exp(X i ), denoted by exp(X i ) X j . If there is no variation in the distribution of X j we note exp(X i ) X j .

If we find when comparing the observational with the experimental data by conditioning the statistical test on the value of another set of variables Z that exp(X i ) X j we denote this as (exp(X i ) X j )|Z, if conditioning on Z cuts the influence of the experiment we denote it as (exp(X i )

X j )|Z. Note that conditioning on Z is done when comparing the data, not during the experiment. A suitable blocking set Z is N e(X j )\X i , since this is sure to block all incoming paths into X i .

We introduce additional notation to indicate that two nodes X i and X j are either not connected or connected by an arc into X j , we denote this by X i -?-oX j , where "-" indicates that there can be no arrow into X i .

If we take a look at the simplest example, a graph existing of only two variables X i and X j for which our initial learning phase gives X i o-? -oX j . After performing an experiment on X i and studying the data we can conclude one of three things :

The first case happens if the added experiments still do not provide us with enough data to perform an independence test reliably. We can repeat the experiment until sufficient data is available or the test can be performed at our desired significance level. If no sufficient experiments can be performed the link remains X i o-?-oX j , this possibility is a part of future work. The second case is the ideal one, in which we immediately find an answer for our problem.

In the third case, the only conclusion we can make is that X i is not a cause of X j and hence there is no arrow > into X j . To solve this structure completely we still need to perform an experiment on X j . So in this case the results of performing an experiment at X j are :

Algorithm 1 Adaptive learning of CBN for imperfect observational data and experiments. Require: A set of samples from a probability distribution faithful to a CBN P (V ). Ensure: A CBN. 1) G is complete undirected graph over V .

2) Skeleton discovery of PC. If any of the independence tests in this step of PC returned unsure, record the tuple (X i , X j ) into P ossU nsEdg.

3) For each tuple (X i , X j ) in P ossU nsEdg, if the edge X i -X j is still present in G replace that edge by X i o-?-oX j . 4) For each unsure edge X i o-?-oX j , Perform experiment at X i , If exp(X i ) X j , Find a (possibly empty) set of variables Z blocking all p.d. paths between X i and X j . If (exp(X i ) X j )|Z then orient X i o-?-oX j as X i → X j , else remove the edge. else replace X i o-?-oX j by X i o-?-X j . 5) For each edge X i o-?-X j , Perform experiment at X j , If exp(X j ) X i , Find a (possibly empty) set of variables Z blocking all p.d. paths between X j and X i . If (exp(X j ) X i )|Z then orient X i o-?-X j as X i ← X j , else remove the edge. else remove the edge. 6) Apply v-structure discovery and edge inference of PC. 7) Transform PDAG into CBN using the MyCaDo algorithm (Meganck et al., 2006a).

-

So at the end of our non-experimental phase we end up with the structure given in Figure 1(c).

We now need to perform experiments in order to remove the unsure edge X 1 o-?-oX 3 . Assume we choose to perform an experiment on X 1 and gather all data D exp . There is a p.d. path X 1 o-oX 2 o-oX 3 so we have to compare all conditional distributions to see whether there was an influence of exp(X 1 ) at X 3 . Hence we find that :

-(exp(X 1 ) X 3 |X 2 )