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Abstract We derive a compositional compressible two-phase, liquid gas, flow model
for numerical simulations of hydrogen migration in deeplggial repository for radioac-
tive waste. This model includes capillary effects and the lggh diffusivity. Moreover, it
is written in variables (total hydrogen mass density andifigpressure) chosen in order to
be consistent with gas appearance or disappearance. Wsslibe well possedness of this
model and give some computational evidences of its adedoagiynulate gas generation in
a water saturated repository.

Keywords Two-phase flow, porous medium, modeling, underground anch&aste
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1 Introduction

The simultaneous flow of immiscible fluids in porous mediauwsdn a wide variety of ap-
plications. The most concentrated research in the field dfiphase flows over the past four
decades has focused on unsaturated groundwater flows, ensdrilanderground petroleum
reservoirs. Most recently, multiphase flows have geneisgedus interest among engineers
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concerned with deep geological repository for radioact#aste. There is growing aware-
ness that the effect of hydrogen gas generation, due to@reemrrosion of the steel en-
gineered barriers (carbon steel overpack and stainleskesteelope) of radioactive waste
packages, can affect all the functions allocated to thestens, waste forms, buffers, back-
fill, host rock. Host rock safety function may be threaten kgrpressurisation leading to
opening fractures of the host rock, inducing groundwatev éod transport of radionuclides.

The equations governing these flows are inherently nonlirzesl the geometries and
material properties characterizing many problems in mapjieations can be quite irregu-
lar and contrasted. As a result, numerical simulation offiéers the only viable approach to
the mathematical modeling of multiphase flows. In nucleastevananagement, the migra-
tion of gas through the near field environment and the host iagolves two components,
water and pure hydrogeny,Hand two phases "liquid” and "gas”. It is then not clear if eon
ventional models, like for instance the Black-Oil modeledisn petroleum or groundwater
engineering are still valid for such a situation. Our apitid understand and predict under-
ground gas migration is crucial to the design of reliableteasorages. This is a fairly new
frontier in multiphase porous-media flows, and again therieht complexity of the physics
leads to governing equations for which the only practica} ¥eaproduce solutions may be
numerical simulation. This exposition provides an ovemid the types of standard models
that are used in the field of compressible multiphase maltigs flows in porous media
and includes discussions of the problems coming frang&b being one of the components.
Finally the paper also addresses one of the outstandinggathgsid mathematical problems
in multiphase flow simulation: the appearance disappearafone of the phases, leading
to the degeneracy of the equations satisfied by the satordtibas been seen recently in a
benchmark organized by the French agency in charge of thie&lud/aste management in
France ] that none of the usual codes used in that fieldendigle to simulate adequately
the appearance or/and disappearance of one of the phasedeimno overcome this diffi-
culty, we will discuss a formulation based on new variablégclv doesn’t degenerate. We
will demonstrate through two test cases, the ability of tree formulation to actually cope
with the appearance or/and disappearance of one phasecdpeaf the paper is limited to
isothermal flows in rigid porous media and will not include thossible process of "pathway
dilation” as described ir [5].

2 Conceptual and mathematical model

Our goal is first to present a survey of the conventional nsodskd for describing two-
phase two-components flow in porous media. Most of these Isiddwe been designed
and widely used in petroleum engineering (see for instafffie )], (Bl [fl. [{12). we
consider herein a porous medium saturated with a fluid coetho§2 phasesliquid and
gas According to the application we have in mind, the fluid is atwie of two components:
water (mostly liquid) and hydrogen gHmostly gas). Water is present in the gas phase
through vaporization, and hydrogen is present in the ligphidse through dissolution. The
fluids are compressible and the model is assumed to be iswhed¥or simplicity, we assume
first the porous medium to be rigid, meaning the porogitis only a function of the space
variable® = ®(x); and second, we neglect the pressure induced dilation obajhsvays.
Hydrogen being highly diffusive we have described in deftaiv the diffusion could be
taken in account in the models.



2.1 Petrographic and fluid properties
2.1.1 Fluid phases

The two phases will be denoted by indidedor liquid andg for gas. Associated to each
phase in the porous media are the following quantities:

— liquid and gas phase pressures: pg;

— liquid and gas phase saturatios: §;;

— liquid and gas phase mass densitigsg;
— liquid and gas phase viscositigs; Lg;

— phase volumetric flow rateq, andqg;

Then, theDarcy-Muskat lansays:

S (0p - pg). qg=—KWf«d%)

= —-K(x
a % H Hg

(Opg —pg9) 1

whereK(x) is the absolute permeability tensér; andkrg are the relative permeability
functions, andy is the gravity acceleration.

The above phase mass densities and viscosities are alidonscif phase pressures and
of phasecomposition Moreover, phase saturations satisfy

§+§=1 ()

and the pressures are connected through a given experinaptary pressure law

Pe(Sy) =Pg— - (3)

From definition KB) we should notice thpt is strictly increasing function of gas saturation,

Pe(Sy) > 0.

2.1.2 Fluid components

Water and pure hydrogen components will be denoted by isdicandh. Since the liquid
phase could be composed of water and dissolved hydrogen edetoéntroduce the water
mass density in the liquid phag¥, and the hydrogen mass density in the liquid phr#&e
Similarly, we introduce the water and hydrogen mass dessiti the gas phasey’, pg.
Note that the upper index is always the component index, badadwer one denotes the
phase. We have, then

o =p"+p", pg=py+pf- @)

Since the composition of each phase is generally unknowmtreducethe mass fraction
of the componenite {w,h} in the phaser € {g,1}

) i
w},:ﬁ—z; w,‘§,”+w2:1,ae{g,l}. (5)



2.2 Mass conservation equation
The conservation of the mass applies to each compoewtreads, for any arbitrary control
volumeZ:

dd—T+Fi:gzi, i € {wh}. (6)
where

— i is the mass of the componehnin the control volumeZ, at given instant;

— F' is the rate at which the componenis leaving (migrating from) the voluméZ, at
given instant;

— Z1is the source term (the rate at which fl@mponent is added t@ by the source).

The mass of each componens a sum over all phasegandl:

m = [ o(Spd+Syppe) ok, i€ {wh},

In each phase, the migration of a component is due to thepainby the phase velocity
and to the molecular diffusion:

Pl /a,f (oraiar + pgdhag+i} +ib) -ndx; i€ {wh};
wheren is the unit outer normal td%. The phase flow velocitiesy andqg are given by
the Darcy-Muskat Iaw[[l), and the componentiffusive flux in phasea is denotedj!,,

i € {w,h}, a € {g,1}, and will be defined in the next paragraph, by equati@s @dm (6)
we get the differential equations:

7V, W

0 . . .
@ ot (S b (qw+ %pgwé”) +div (p| (qwa + pg(‘]WQQ +J\|N+J\év)
_6 H . .
Pt (S”QMSJPQ‘*’S) +div (M @'di + P g+ +Jg) =" @)
2.2.1 Diffusion fluxes

FromM" andM", the water and hydrogen molar masses, using definitﬁ;nse(@eﬁne the
following water and hydrogen molar concentrations in eawspa € {g,1}:

SuPy  SuPa®y W Supl  SuPa Wl

h _ _ _ _
Ca = Mh - mMmh Ca = MW - Mw (9)
Then the phase molar concentrationsy € {g,1}, is:
h W
w, w,
Ca =+ = Sypq (M_71+M_(\jv) (10)

Usually, componeritdiffusive flux in phasex is assumed to be depending X, the com-
ponenti molar fraction in phase € {g,}, defined from () and (}0):

h W W
Xh Ca Wy w Ca Wa

B . OXW = e : X =1 (11
g W MYMW WY Y T e wlf + (MY/MP)wh i:%wa -

h




for a € {I,g}. Molar diffusive flux of componentin phasea € {g,l} is given by
Jy, = —c,DLOXL: ae{gl}, ie{wh}

and give molar diffusive flow rate of componerhrough the unit area. Coefficieri, and
DW (unit L?/T) are Darcy scale molecular diffusion coefficients of congas in phase
a € {g,I}. Mass flux of componeritin phaseq, in equations|]7),|:[8) is then obtained by
multiplying the above component molar diffusive fluxdg, by the molar mass/; of the
component, and by the rock porosity:

ih = —@oM"c,DEOXE, % = —dMYc DYOXY. (12)

Remark 1: Number of unknowns in the system is eigB; p", plh, P, S, Py’ pg, pg; but,
up to now, we have only four equatior$ (4, (3], (7) dld (8} trerefore, four additional
equations are needed to close the system.

Remark 2: Note thatD}} andDY are not exactly molecular diffusion coefficients in phase
a, corresponding to molecule-molecule interactions in fpace but®D., a < {g,I},

i € {w,h}, are effective diffusion coefficients, obtained from thecstmolecular diffusion
coefficients by a kind oaveragingthrough the whole porous medium (see section 2.6 in
[@ll, or [H or [Hl). Moreover, for simplicity, we have not iheded in diffusion of compo-
nenti in phasea any dependancy on phase saturations; and then did not eopsissible
non linear effects coming from coupling between advectifisive transport ("dusty gas”
model) and molecular streaming effects (Knutsen diffus{see for instancq [10]).

Remark 3In a binary system diffusive fluxes satigfy+j% = 0, for a € {g,1}, and there-
fore we have
MPDY =M"DY, ae{gl}. (13)

2.3 Phase equilibrium Black-oil model

The additional equations needed to close the system ofieqad@), [B), [I7) and[{8) will
come from the assumption that the two phases are in equilibrequilibrium meaning
that at any time the quantity of hydrogen dissolved in theewa maximal for the given
pressure, and similarly, the quantity of evaporated watenaximal for the given pressure.
Composition of each phase is then uniquely determined Iphése pressure and saturation.
In this flow situation we say that water and gas phasesatigated Nevertheless it could
happen that one of the phases disappears: either water wgahately evaporate or hydrogen
can be completely dissolved in the water. Then in thesetginsthe composition of the
remaining phase is not uniquely determined by its phasespresand the phase composition
becomes an independent variable (instead of the saturatiich is now constant, O or
1). This flow situation correspond to the so-calletsaturated flowFor unsaturated flow,
standard practice in petroleum reservoir engineeringiisttoduce the following quantities:

— liquid and gagormation volume factors3; = By (p;), By = By(pg);
— solution gas/liquid phase RatiosR Rs(p);
— vapor water/gas phase Ratiq R R,(pg).



The explanation of formation volume factors and solutiomponent/phase ratios, as used
in the oil reservoir modelling, is as follows. Consideririge tvolumeAV,™®s of liquid at
reservoir conditions (reservoir temperature and preyswuieen this volume of liquid is
transported through the tubing to the surface it separatssadard conditions to a volume
of liquid A\/,S‘d, and a volume of gaAVgStd (coming out of the liquid, due to the pressure
drop). At standard (i.e. stock tank) conditions, the ligoiihse contains only oil component
(here only water component) and the gas phase contains aslg@mponent (here only
hydrogen). Then applying conservation of mass,

Avlresg :A\/|Stdp|5td+AVgStdp§td;

and denoting the solution gas/liquid RaRg= AVS“‘/AVE“’, we may write:
AVIrespI :A\/ﬁtd(pftd—i—RspgtdL

and the liquid phase mass density decomposition

pIstd + Rspstd

5 14

whereB; is the liquid formation volume factoBy = AV|"®S/AVS4, Similarly, from AVy®pg
and the gas formation volume factBg = AVgres/AVgS‘d, we get the gas phase mass density
decomposition

pstd+ Rvplstd
Pg = 987; (15)
9
where the vapor water/gas phase rd&p= A\/ﬁ‘d/AVgS‘d. Now, in order to express the
diffusion fluxes in terms of the new variablBg, R,, B, andBy we have to rewrite the molar
concentrations defined iﬂ (9):

Ch _ S Rspgtd CIW _ Splstd Ch _ %Pstd o SJRVpIStd (16)
' mhB MWB = 9 MPhByT 9 MWBg

These concentrations, definedm (16) may be slightly diffiefrom those previously defined
in (E) if the gas at standard conditions is not composed dittyydrogen, and the liquid, also
at standard conditions, is note made only of water. The phasar concentrations, from
@), are then given by:

h
a=ctd =g | v vw ) g e (et P

5 (Rspgtd plstd) B E@td
B

d std std
v S (P8 REMY S p5°
CgC9+C9|39(|v|h+ Mw | = By wn (PR

whereF is given by:
Mhplstd

F= wagtd'

17



The componeninolar fractionsin phase, are now defined as:

th _ &h _ RSpgStd _ RS
G Rypgld4 (MN/MW)pstd R+ F’
xr= 4 o __F
3 p|Std+ (MW/Mh)Rspgsm Rs+F’ 18
h_ % p3 1 e
Xy = g = pgtd-F(Mh/MW)RvplStd 1t FR,’
cg R/ FR,

X'== = :
¢ RpPI+ (MW/MMpstd — 1+FR,

Mass diffusive fluxes of components, definedm (12), dependomponeninolar fractions
in phases; they have then to be rewritten. For instance, #ss mhiffusion flux of hydrogen
in water, takes now the form:

. Mh S pStd S F

h / 5std 9 hryh h

—_—p—2" FYD'OX"= —p— D/ URs.
Other diffusion fluxes could be obtained by similar caldolas, leading to the following
formulas:
S F n std_ 31

h +h 7 ~std W FW w
- ——o2 "~ _D'OR = =o———D/'OR 1
@' =11'/pPg BRFD R o =i'/n BRIFD R (19

. F . 1
¢EZJS/P§td:¢B§;1+FRVDSDRV, <pg:15”/pf‘d:f¢%1+FRvongv. (20)

Remark 4Let us recall, like in Remarﬂ 3, that'the diffusion coeffi(ffﬁﬂssatisfyMhDh =
M"D}", MND} = MWDY; and, like in [T}1),5_nw X} = 1, for any phaser € {I,g}, in (18).

The Darcy quxesﬂl) can now be rewritten in the following form
K, P|Std+ RsPStd kl’g pgtd+ Rvplstd
=-K—(0Op————qg], =-K—=|UOpy— ——5—9],
Qi m ( P B, g Qg g Py By g

and the component fluxes, normalized by standard densities,

w_ 1, R w,oow R 1 h, h
® —B|q|+ngg+qo. +@y, @ —B|q|+ngg+qo.+qog. (21)
Finally, we can write mass conservatidh ({), (8) in the follgg form:
J S RVSJ ; W\ W/ ~std
S (B| + B, )+dIV(<p )=ZY/ (22)
J (SR | § () _ hyastd
> ( Lot Bg)+d|v(<p ) — 7"/pge. (23)

These equations have to be completed by equatﬂ)ns (Z)DanEdB)nstance, in@Z) and
@), we can take saturation and one of the pressures asindiept variables; for example
§ andp, and for the other terms the following functional dependesic

Bl(p|)7 Bg(pg), RS( pl)v RV( pg): Ul(pl)»ﬂg(pg)a krW(%)v krg(%)

According to their definitionF, p$'9, pstd andD, (a € {I,g},i € {w,h}) are constants, and
@ andK are depending only on space position.



2.3.1 Unsaturated flow

Equations @2) andeZS), with saturation and pressure asawrks, are valid if there is
no missing phase (saturated flow); but if one of the phasesssimy (unsaturated flow),
equations and unknowns have to be adapted. There are twiblpogssaturatedcases,
according to either the gas phase or the liquid phase disappe

1. Gas phase missin#lydrogen totally dissolved in water): then we h&ge=0,§ = 1.
Generalized gas phase Darcy’s velocity is equal to zera$ing0) = 0. Independent
variables are nowpy, the liquid phase pressure, aRg, the solution gas/liquid phase
Ratio; then we must writ® = Bj(p;,Rs) and iy = i (pr,Rs), for 0 < Rg < IQS( i),
whereRs( ) is equilibrium solution gas/liquid phase ratio.

2. Liquid phase missinghen,§ = 0, § = 1. Generalized liquid phase Darcy’s velocity
is zero sinckry(§ = 1) = 0; independent variables are ngy, the gas phase pressure,
andR, the water vapor/gas phase ratio, become the new indepevatétiles. However
pressurgy can be kept as independent variable sipgeould be expressed through the
capillary pressure Iav[|(§). We must also wilig= By(pg, R,) and g = pg(pg, Ry), for
0 <Ry < R/(pg), whereR,(pg) is the equilibrium water vapor/gas phase ratio.

These above conditions can be summarized as

$>0, R(p)—Rs>0, (R(p)—R)S=0, (24)
S>0, R(py)—R >0, (R(pg)—R)S=0. (25)

Remark 51In this last section, Phase Equilibrium Black-oil model,dignot take in account
a possible interplay between dissolution and capillargguee.

2.4 Thermodynamical equilibrium Henry-Raoult model

Another way of closing the system of equatiofls @), (@), &) &) is to use phase thermo-
dynamical properties for characterizing equilibrium . Ve dirst ideal gas law and Dalton
law,

Pg = PY + P, (26)

wherepy and pg are the vaporized water and hydrogen partial pressure®igdh phase;
and

o g
MW Mh
T is the temperatureR is universal gas constant ait¥, M" are the water and hydrogen
molar masses.

Next, we applyHenry’s and Raoult’'s lawswhich say that, at equilibrium, the vapor
pressure of a substance varies linearly with its mole foadt solution. InHenry’s lawthe
constant of proportionality is obtained by experiment anRaoult's lawthe constant is the
pressure of the component in its pure state. Here we willmsstdor simplicity, that the
quantity of dissolved hydrogen in the liquid is small; théege laws reduce to the linear
Henry’'s law; which says that the amount of gas dissolved in a given volafriee liquid
phase is directly proportional to the partial pressure af #ame gas in the gas phase:

Py RT, pj=-RT. (27)

o' =H(T)M"pf, (28)



whereH (T) is the Henry’s law constant, depending only on the tempegattor the liquid
phase, we appliRaoult’s lawwhich says that thevater vapor pressuris equal to the vapor
pressure of the pure solvent, at given temperature, melifdy the mole fraction of the
solvent. The water vapor partial pressure of the pure sotlgmends only on the temperature
and therefore is a constant, denoted her@$T ), so we have from definitiorﬂ(g)

W _ AW W __ AW pIW
Py = Py (T)X" = Py (T)—p.WHMW/M“)p.“'

Further on, we can include in formulﬂzg) the presence ofllaap pressure, by using
Kelvin's equation (seel][4]) which gives:

(29)

A o —M"Wpc/(RT,
W Ty — & pe/(RTor) 30

If now, to equations@G)EdZB) anﬂSO) we add the relations

o+ =p, p§+py=pg (31)
and the water compressibility, defined by
w plstd .
= ; 32
A= B () 32

then, we have 8 equationEkZdﬂ(gZ) @), ), j_,g and ) and 10 unknowns:

p|7 pg» p\aly pg»p|h7plwy plypél?pévvpg'

We may, for instance, parametrize all these 10 unknownddiwo phase pressurps
andpg. For this we should combine the Henry Igw](28), the Raouliitdaw ([3d) and [26)
leading to the system of two equations tngkand Py

< o —MY(pg—p1)/ (RT(OW+MPH (T)
W — V(T e M"(pg—p1)/(RT(p"+M"H(T)pg)
Pg = Pyl )p,W+(MWH(T))pg

Pg = PG + Pg.

Itis easy to show that this above system of two equations hascaie solutionpy, pg >0
for any pg > g (T); and solving this system we obtain

Py =f(Pg.P), P5=0(Pg,P).

By (E)Lg we can then writepg, py andpgq as functions ofy andpg, and by ) an@Z)
we can finally expresplh, p" andp as functions of the phase pressures.

Remark 6 The gas phase will appear only if there is a sufficient quanfitlissolved hydro-
gen in the liquid phase, and this quantity is exactly theati&sl gas quantity, at equilibrium,
given by Henry’s law. But when the dissolved gas (hydrogamgntity is smaller than the
quantity of hydrogen at equilibrium, then the Henry law doesapply; andg; is then equal
to zero and could not be taken as unknown. In this situatisiead of saturation, we may
take p,h as independent variable. We notice that Henry-Raoult mbdséd on thermody-
namical equilibrium leads to a similar concepts as the oresldped for establishing Black
Oil model for reservoir modelingl]
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Remark 7In the Henry-Raoult model, if there is no vaporized wafgr= p;, the criteria
for non saturated flow is simple and reads

p|h
MhH (T)

< pg=p +pc(0), (33)

if there is a threshold pressure, ig(0) # 0. The same criterion can be used also if there
is vaporized water, as long as the pressure in porous mediomich larger than vaporized
water pressure.

Remark 8In Henry-Raoult model, above, we were assuming for simplicio complete
evaporation of the water.

2.4.1 Comparison of Equilibrium models

We will now consider in more details a special case, where &g from the Henry-Raoult
model, get back the Black oil model. In both models we willrthese diffusive fluxes devel-
oped in Sectio3. For simplicity, we will neglect (29|)‘I'uence of capillary pressure
and solved gas on water vapor partial pressure, leadingfte fy(T) being a constant.

Then we have from] (38)[ (B2) anfi |31)

std std B H(T Mh — (T
o :p|h+p|W:H(T)MhpS+B|pEp|) _ P H+BI(p) é,()p,) (Pg — P ( ))7 (34)

and also from@?),

h mh N MW
Py =Py +Pg = g (P — PG (T)) + 77 By (T). (35)

Therefore, equationﬂ34) a@35) can be written in a fomilar to )-) by defining
the gas formation volume factdy, solution gas/liquid phase ratis and vapor water/gas
phase ratid,, from above thermodynamical relations:

h
R— B.(pﬂ%(pg B (T)) (36)
B RTpgtd 1 pY(T)
B0 = Wh(pg— pCT)) " F pg— pE(T)’ 7

whereF is given by [1]7).
Compared to the Black-Oil model, Sectipn|2.3, here, it isucfeom (3f) that solution
gas/liquid phase ratiBs depends omp, and py and not only orp;.

Remark 9For the case without any water vapor, the correspondingribeynamical model
is obtained simply by takingg1T) = 0 in @), ) anR,=0in equations@Z) ancm23).
In the same way, if we neglect dissolved hydrogen, the cpording thermodynamical
model is obtained simply by takind(T) =0 in @), ), andRs=0in @) and|((23).0
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2.4.2 Model assuming water incompressibility and no waggrovization

In the Henry-Raoult model we assume now that the water ismpeessible and the water
vapor quantity is neglectful; i.e. the gas phase contaihslydrogen, then (see Remd]k 7)
P} = pg and py = PY(T) = 0 in BY) leading toR, = 0. Formulas[(36),[(37). could be
rewritten as

1
Bi=1 Rs=Chpy, 5 =CPg; (38)
]
where we have denoted
H(T)M" mh
Ch:W7 Cv:Fpstd, (39)
and equationsml4jz|15) become:
o1 (Rs) = pS9+Rsp$Y, pg(pg) = Cup§pg. (40)
Similarly to constanE defined by@7), we use the density ratio
B pIstd
G= s (41)

and equationd (p2)] (p3) reduce to

a_s i 71 _ gW/,std
(Dc?t +dlv(q| GJ) =7"/pp, (42)

17} :
D= (SRs+CupgSy) +liv (R + Cupgdg +3) = Z"/p§%,  (43)

_ m _ std std _ ﬂ _ std

a=-K (Dp| (P +Repg )g), Gg =~ (ng Cvpy ng): (44)
_ OSF
= R

where we have denotegf = J and used Rematfk 3 to geD' — GD}", from which it follows
o'=-3/G.

| Here there is only hydrogen in phase gd;a,: pg and Henry’s law assumes thermody-
namical equilibrium in which quantity of dissolved hydroges proportional to gas phase
pressure. In saturated case (where two phases are presamgjHaw read®s = Cipg, and
we can then work with variablggy and§ in equations@Z)-lﬁS).

When the gas phase disappears, the gas pressure dropsituidh@lessure augmented
by entry pressurgyg = pi + pc(0), the liquid can contain any quantity of dissolved hydrogen
P} between zero arhp§d(pi + pe(0)) = H(T)M"(p + pc(0)), from Henry's law (se€] (28)
and definition [(J9)).

And then, when the gas phase is absent (one of the unsateaged)s; = 0, we will
replace saturation, as we did in the Black-Oil model for thee unsaturated case in Sec-

tion[2.3.1, by a new variablRs (see definitions[(28)] (B6)} (39)), such that

std __

Rspg'® = pf

is the mass density of dissolved hydrogen in the liquid phase
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Assuming at standard conditions the gas phase containgigdipgen (hydrogen com-
ponent massgas phase mass) and the liquid phase contains only watér,waiter in-
compressibility and no vaporized water, we see that, in tﬂi&ﬂiin(), Rs = plh/ptd ~
AV$'9/ AV which is exactly the definitiion given in the Black-Oil modBISectio.

The physical meaning d®s then stays the same either in Henry-Raoult or in Black-Oil
models even in the unsaturated case. Moreover, from masg@tion law it follows that
the dissolved hydrogen mass denﬂ,y)gtd is continuous when the gas phase vanishes and
this can be expressed as an unilateral condition:

0<§ <1l O0<R<Chpg, S(Chpg—Rs)=0.

In unsaturated regionwhere§ = 1 (that is§; = 0) we replace variabl§ by Rs, and
equations@Z)ElS) degenerate to:

div (q| - éJ) = Y/ pt, (46)
a_RS i _ gh/Astd.
1) o +d|v(qu| +J) =.7"/pst, (47)
a = -KA (1) (D p— (o™9+ Rspgm)g) ; (48)
_ PF h
J= —RSTD, ORs. (49)

2.5 Saturated/unsaturated state, general formulation

Finally in the saturated region we uspdands, as variables if[ (42)E(k5) but in unsaturated
region we should use other variablgsandRs, in (4)—{49). In order to avoid the change of
variables and equations in different regions as above wemi@introduce a new variable

X = (1-§)Rs+CypgSy; (50)

in view to make equatiorﬂ]fl?)) parabolicih

This new variableX is well defined both in saturated and unsaturated regionseder,
from (33) and [28)Rs = p"/p5td; from (@) C,py = pg/P3t and sincepy = pf, this new
variableX is a "normalized total hydrogen mass density: X = (Sp/'+ Sy0f) /05t It
is easy then to see that parabolicity is possible only if vike fequid pressurey as other
independent variable. Knowing that in saturated c&ge; 0, Rs = Cipg from Henry’s law,
we may writeX defined in @) as:

‘. {<ch<1sg>+cvsg><p.+pc<sg>> f§>0 51)
Rs if §=0.

Since for capillary pressure defined as a function of gasaiin we havey,(S;) > 0, and
since usually, like for hydrogen, i@39) =C,/C;, > 1 we get the following bounds:

a(S) =Ch(1-$) +CS € (GG, d(§)=C/~Cr=Ca>0.  (52)
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Then for anyS; > 0 from &d:

ox _
ng_

and therefore for each > 0 we can find inverse functio®y = §(p, X) which satisfies

Ca(pr+ pe(Sy)) +a(S)pe(S) > 0,

1933>0 for § > 0.

After taking derivatives with respect { andX of (ﬂ) we obtain:

08 aS)’x(p.X) 0 alSy)x(p,X) )

op CaX+a(§)?p(§)’ X CaX+a(§)?p(Sy)’

wherex (py, X) is characteristic function of the seX > Ci,(p + pc(0)) }. In @) we remark
from é) and deflnltlon[[3) thalS;/dp < 0.
Let us note that property

Pe(Sy =0) = +o, (54)

of van Genuchtemp. functions, leads to continuity of the two above partial daives since
we have

0y 0§
M ap — dmyax — O

We now introduce auxiliary functioN(py, X) defined as

CaX
CaX+a(S)?pe(S)

N(pi,X) = X(p,X) €[0,1),

which verifies

X<plyx>+pé<%>a—sg= N(pi,X), pc<sg>‘f,§5 ﬁ

Note that functiorN(pj, X) is continuous under conditiof (54).
Darcy’s fluxes in[(44) and diffusive fluf (45) now take the fommith pg = p + pe(S),

X(pi,X).  (55)

a = -KA(S) (Dpl — (P +Rs(pi, )pgtd)g) 56
g = ~Ag(Sy), (0P + DR(S) ~Cop3pa(m X)) 0
Rs(;u ?ﬁ D' ORs(P1 X): oY

whereS; is a function ofp andX and whereRs, defined as in@B), can now be expressed
in both saturated and unsaturated region as a function oagablesp, andX:

Rs(pr,X) = min(Chpg(p1, X),X),  Pg(p1,X) = pr + pe(S(pr, X))-
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After expanding the capillary pressure gradientE (57) dregradient oRs in (E), we
may write:

s =~ (S (1 R (%) S 210P + p) G20~ Cupf (P X0 ).
_ P(1-§(p,X))F N
J=- WDP%X(PF Pc(sg)a—pl)ﬂpl

P(1-S(p,X))F e 0y OF
N WDP%pC(S@)WDX - ﬁDlh(l—X)Dx_

From ) water component flug¥ and hydrogen component fligf, with the assumptions
of incompressible water and absence of water vapor, reduce t

@' =q + " = — (AL 0p + A1 20X +By), (59)
@" = Raqi +Cypglg + @' = — (Az10p + Az 20X + By), (60)

where the_coefficientsyj (p, X) andB;(p;,X) are given by the following formulas (note
that from [4b)g! = J and @ = —J/G):

d(1-S)F

Aua(p.X) =KA (S) ~ <=5 5 DIGN. (61)
X __ 9(A-§)F1-N_
Alﬁ2(p|7x) - (R5+F)G (%) D| Ch7 (62)
Aoa(pX) <N SR+ KAg()CaN + T YopleN, (69
ool X) —Khg() 3 Gy + T £ 3 DI (64
Ba(p, X) = — KA (S) [0+ Repg g, (65)
Ba(pr,X) = — KA (S)Rs[p™+ Rep§ |9 — KAg(Sy)CI05 P (66)
where we have used (55) ang(S;)(1— x) = 0.
Equations|@|2) 5) become:

G, o - < d
—Q)a—? % —div (A171Dp| + A 0X + Bl) — (Dg (;_)t( = yw/pﬁ‘d (67)
¢>‘;—>t( —div (Az_,lD P+ A2 OX + Bz) =7"/pg". (68)

The gain in this form is tha@B) is a parabolic equationXaince

1-N P(1-§)F1-N
A X)&-& =KE&-ENg(S§) —— — 97 -
is strictly positive in the whole domain if the diffusion aedpillary pressure are not ne-
glected.
If we eliminate diffusive terms from equatioh [67) (the "psere equation”) by forming
%equation for total flow,, defined in @9), that is summing equati(68) and equation
), we obtain

Grot = GO + 0" = (G+Rs)qy +Cypglg = —(Av10p1 + A1 20X +By), (69)

Df'Ch|& 2
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whereG is the density ratio defined iﬂ41), and coefficiefts, A; » andB; are given by:

A 1(P1,X) =Gl + Azt = KA (S)(G+ Re) + Kg(Sy)CugN, (70)
ALa(p1,X) =Ghya+Agz — KAg(Sy) %cvpg, (71)

B1(p1,X) =GB1 + Bz = —KAI (Sy)(G+ Re) [0+ Repg'|g — KAg(S)CiP5 'pgg.  (72)
Now the "pressure equationﬂG?) is transformed to:

9% 9p

. 05, 0X
ap ot —dIV(A171Dp|+A1,2DX+B;L)+¢’(1—G—SJ)—

oX ' ot
_ Gyw/pftd—i-yh/pgtd.
With this last formulation, we see that the "pressure eqma@) is parabolic/elliptic equa-
tion in p; since
Ar1(p,X)& - & = K& - EA(§)(G+Rs) + K& - EAg(S)CugN,

is strictly positive, independently of presence of difusior capillary forces, and the coef-
ficient in front of dp, /dt is positive since, as we remarked @ (53%y/9p < 0.

Finally, the transport of water and hydrogen is describediffgrential equationsmS)
and [68) which are rewritten here, usitg|(60) andi (69), irfohe

-Go (73)

9 .
@5 (X=G(p, X)) +div (o) = GF"/pf'+ 7"/ g, (74)
0_X i h\ _ gh/,std
> +d|v((p ) =7"/p3", (75)

where the fluxes are given bBGO) ar@ (69), while the coefftsiare given by formulas

(61)-{68) and[@o)tF2).
2.5.1 Boundary conditions

Equations 4) anS), given in porous dom&inmust be complemented by initial and
boundary conditions. FoIIowingﬂ[3]), we assume that thertataryd Q is divided in several
disjoint parts: impervious, inflow and outflow boundaries pvesent now a set of standard
boundary conditions on each of these boundary parts.

— On impervious boundarfimp we take Neumann conditions:
G-V =0 and ¢"-v=0. (76)

— On inflow boundary when pure water is injected, we impose fairbgen component
X =0 and for liquid pressure eith@ = pj in Or @ -V = Qq.

— On inflow boundary, when pure gas is injected we h@¥fev = 0 and we can impose
for the pressure, total injection rate which is then equaa® injection rate:

Pror-V=Q =¢-v. (77)

— On the outflow boundary, when liquid is displaced by gas we lpssibility to impose
for gas phaseX = 0 and for liquid pressurg, = p out, Only before gas reaches this
outflow boundary (breakthrough time). Alternatively, witie same Dirichlet condition
for liquid pressure, for gas saturation we can set eithemidgun conditior]S;- v =0,
or Dirichlet conditionS; = 0.
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2.6 Model without capillary pressure, diffusion or gravity

When capillary pressure is neglected, we have only oneymepg= p = p, then definition
(1) of variablex simplifies to:

- [C1-S)+Csyp it §>0 78)
Rs if § =0,
and partial derivativesmSC%) can be calculated explicitely
0 X 17} 1
_&J = X _% ==~ (pvx)v

(?p 7CAp2X(p7 )7 E% *CAp

wherex (p, X) is the characteristic function of saturated region, asreefo
When we neglect capillary pressure, and also diffusive aadity fluxes, systerrm4),
@) reduces to the following two equations

0 .
@ (X~ GF(P. X)) +diV (¢or) = GF"/pf"+ 7"/ o5 (79)
X
O +dv(1"(p.X) @) = F"/p5" (80)
where
Prot = ot (P XKD, 0" = £(p, X) @yor- (81)

Total mobility Aot (p, X) and hydrogen fractional flow functorf§(p, X) are defined by:
Mot (P, X) = A (S) (G +Rs(p, X)) +Ag(S)Cup,
A"(p,X)

AP X) = M(S)R(PX) + Ag(SICP. - F1(pX) = 75

System [(79){(81) is very close to immiscible two-phaseesystsee for instancé][3]); the
only difference in hydrogen transport equati@ (80) is trespnce oRs(p, X) in fractional
flow function f"(p, X), and if we write pressure equatioﬂ(?g) in the form

dp f GX X _~gw/astd gD std
Cap? ot TV () + @ F) 5 = G/ T b, (82)
then we see that the presence of dissolved gas introducé®add’source” term in total
flow equation [(79), namelg(1— Gy /(Cap))dX /dt.

Remark 10Considering the boundary conditions defined in the previmction; on the
boundary part where there is hydrogen outflow, to impose &t condition onX will
lead to a boundary layer.

Gx®

3 Numerical simulations

This section presents two test cases and their simulatiging the new formulation given
by system 4),@5). Both test cases are not build to coorespvith particular real sit-
uations but rather to illustrate the gas appearance phermméssuming horizontal two
dimensional problems gravity effects are neglected in ba#fes. The first test case is a one
dimensional like situation where hydrogen is injected tigto an inflow boundary and the
second test case is a two dimensional situation where hgdraginjected via a volume
source term.
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3.1 Setting test cases
3.1.1 Physical data

In the two test cases we consider the same isotropic porod&imevith a uniform absolute
permeability tensoK = k wherek is scalar and a uniform porosi®. The capillary pres-
sure function p, is given by the van Genuchten model (s@ [12]) and relatvepability
functions,kr andkrg, are given by the van Genuchten-Mualem model (5de [12][ad. [1
According to these models we have :

2m

po=F (s,;l/’“—l)l/n, ki = vSe (1- (1~ /™)) andkrg = IS¢ (1-§/")

S-S 1

with Se:m and m:lfﬁ
T T r

where parameterg, n, §; and Sy, depend on the porous medium. Values of parameters
describing the considered porous medium and fluid chariatitsr are given in Tablﬂ 1.
Fluid temperature is fixed t&6 = 30XK.

Porous medium parameters Fluid characteristics
Parameter Value Parameter Value
k 51020 n? D! 310°° /s
@ 015 (-) L 11073 Pas
P 210  Pa g 910 Pas
n 149 (-) || H(T=30XK) | 7.6510°% mol/Pa/m®
Sr 04 (-) M 102 kg/mol
Sur 0 () Mg 21073 kg/mol
pte 103 kg/m®
pstd 8102 kg/m?

Table 1 Values of porous medium parameters and fluid charactexistic

3.1.2 Testcase 1

In the first test case we consider the dom&h = [Om ; 200m] x [-10m ; 10m] with an
impervious boundarﬁir},p = [0Om; 200m] x {—10m, 10m}, an inflow boundary;! = {Om} x
[~10m ; 10m| and an outflow boundary, = {200m} x [~10m ; 10m|. The following
boundary conditions are imposed :

— @ot-V = ¢"-v =0 on the impervious boundar‘yr%p,
— @ot-v = ¢"-v =Qf} on the inflow boundary;,
- X =0andp = p,, on the outflow boundary,

whereQj} and p,{out are constant scalars. Source terms are fixed to z&fb= 7" = 0).
Initial conditions areX(t = 0) = 0 andp,(t =0) = p,{out on Q1. The boundary parameters
are fixed toQf} = 1.510°° m/yearsandp},, = 1¢° Pa
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3.1.3 Test case 2

In the second test case we consider the dorin- [0m; 200m] x [—100m; 100m] with an
outflow boundary 2, = 922 and whereB? = [90m; 110m] x [—10m; 10m is the support
of hydrogen source term. On the outflow boundBgy we imposeX = 0 andp, = po.-
Source terms are defined " = FhZXsﬁ and.Z#" = 0. Initial conditions areX(t = 0) =0

andp; (t = 0) = p,, On Q2. Herep?, andFR? are constant scalars fixed g, , = 10° Pa
andF? = 8 10 ¥ kg/m®/s~ 2.5 10-° kg/m® /year.

3.2 Numerical results

System @),@5) is a coupled nonlinear partial differ@rgguation system. Numerical sim-
ulations use an implicit scheme for time discretizationnadivolume scheme (using Multi
Point Flux Approximation) for space discretization and aMidm-Raphson like method to
solve nonlinearities. All computations are performed wifith Cast3m software (sdﬂ[lS]).

In both cases we present, at several times, spatial evotutibthe liquid pressure, the
total hydrogen molar density and the gas saturation aloaditle %, = [Om; 200m| x
{Om}. Computations are performed since the time0 up to the stationary state.

3.2.1 Results and comments

Results of test case 1 are plotted on figtﬂeﬂ 1, 2|]and 3tatakhydrogen molar density
std

24X (Figl}), theliquid pressure py (Fig}) and thegas saturationS; (Fig[) are plotted

at timest = 1 10%, 25 10%, 5 1¢%, 1.1 1%, 2.5 1P and 5 18 years Results of test case 2

are plotted on figureld 4} 5 afifl 6. The total hydrogen moIarideﬁ;N;X (FigQ}), the liquid
pressurep (Figﬁ) and the gas saturati®y (Figﬁ) are plotted at times=50.1, 125, 355,
2820, 2 16 and 16 years

In both cases, we can identify three characteristic times :=aT; the gas phase ap-
pears; at = T, the maximum liquid pressure is reachedt at Tz the system is close to the
stationary state. For test case 1, we have

Ty~ 210 years T, ~ 1.1 1(° yearsandT; ~ 5 1(° years
for test case 2, we have
T, ~ 90years T, ~ 355yearsandT; ~ 10° years
Global behaviors of both cases are similar and can be surneabais follow :

— For 0<t < T; : only total hydrogen density increases while liquid pressand gas
saturation stay constant; during this stage: Cyp; and all the domain is saturated in
water & = 0).

— Fromt =Ty, X > C,p in a part of the domain meaninig that gas phase ex&ts-(0)
in this part.

— ForT; <t <T,: while gas phase appears, liquid pressure increases amdzeropres-
sure gradient appears what corresponds to a fluid displateaneording to the Darcy-
Muskat law. Total hydrogen density and gas saturation asgend the unsaturated area
grows.
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— ForT, <t : while total hydrogen density and gas saturation contiouadrease, liquid
pressure and pressure gradient decrease. Whemn, the system reach a stationary state
where saturated and unsaturated areas coexist and liqgdyse gradient is null.
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Fig. 1 Test case 1 : spatial evolution along the lifg,; of the total hydrogen molar densif—,%—x at several
timest (in years)
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Fig. 2 Test case 1 : spatial evolution along the lifg; of the liquid pressurgy at several times (in years)
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Fig. 3 Test case 1 : spatial evolution along the lifgy; of the gas saturatioy at several times (in years)
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Fig. 4 Test case 2 : spatial evolution along the liffg,; of the total hydrogen molar densi%x at several
timest (in years)

4 Concluding remarks

From balance equations, constitutive relations and espsif state, assuming thermody-
namical equilibrium, we have derived a model for descrihingderground gas migration in
water saturated or unsaturated porous media, includifigsaih of components in phases
and capillary effects. In the last part of this paper, nuoarsimulations on simplified sit-
uations inspired by the "Couplex-gas” benchme@ [14], slwdence of its ability : - to
describe gas (hydrogen) generation and migration - anctét the difficult problem, as it
appeared in the results of ”Couplex-gaEl [14], of corresilpulating evolution of the un-
saturated region, in a deep geological repository, crdagaghs generation. A forthcoming
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Fig. 5 Test case 2 : spatial evolution along the ligfg; of the liquid pressurgy at several times (in years)

‘ ‘
O t=5.01E+01
350 < v t=1.26E+02 |
4 O 1=3.55E+02
A (=2.82E+03
3+ < 4
S % t=2.00E+04
4 < t=1.00E+05
& 25¢ 4 * 4 g
5
g of < % A * 4 |
5
2 4 4
< « A %
o 15} A g
S * *
1r q * A < 1
% A Y *
05} a4 1
4 *
BBV VB VG LT GO B OO
d 200 40 ° 60 80 100 ~ 120 140 160 180

abcissa (m)

Fig. 6 Test case 2 : spatial evolution along the liffy: of the gas saturatio; at several times (in years)

paper will be devoted to the use of this model for solving tBedplex-gas” benchmarﬂ14]
and other 3-D situations of gas migration in water saturatednsaturated porous media,
including the design a of numerical test cases synthesthmgnain challenges appearing in
gas generation and migration.
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