Writhing Photons and Berry Phases in Diffusive

We study theoretically the polarization state of light in multiple scattering media in the limit of weak gradients in refractive index. Linearly polarized photons are randomly rotated due to the Berry phase associated with the scattering path. For circularly polarized light independent speckle patterns are found for the two helical states. The statistics of the geometric phase is related to the writhe distribution of semiflexible polymers such as DNA.

Multiple light scattering techniques [1] allow the experimentalist to probe deep into opaque, strongly scattering samples giving information on both static and dynamic correlations. The preferred way of interpreting these experiments is via a field of scalar photons [START_REF] Weitz | Pine in Dynamic Light Scattering: The Method and some Applications[END_REF] which satisfy, in the simplest analytic treatments, a diffusion or transport equation. The phase of the wave associated with each path is just proportional to the path length sampled by each photon. In this letter we show the importance of geometric phases in the evolution of photons in multiple scattering which have as their origin the vector nature of light. We give explicit expressions for the probability distribution of this extra phase in transmission geometry. Rather surprisingly, whilst the basic propagation laws for light in inhomogeneous media go back over 60 years to the work of Rytov [START_REF] Rytov | [END_REF]4], the full implication of his results

has not yet been exploited in diffusive wave scattering. In this letter, we consider the consequences of Rytov's observations on the scattering of circularly and linearly polarized light.

We first summarize our main results before giving a more extended discussion: For circularly polarized light the photon helicity is a conserved quantum number in systems with weak inhomogeneities [START_REF] Rytov | [END_REF] within the eikonal approximation. Each possible, multiple scattered, path through a sample is highly tortuous and thus has associated with it a writhe φ i /2π [4,5]. A Berry phase, e i φ i , then adds to the simple geometric optical path ψ i = q i , calculated in a scalar theory, where q is a wavenumber, i the optical path length and e i = ±1 is the photon helicity. In a transmission geometry this leads to two possible speckle patterns for a given arrangement of scatters as a function of the polarization state of the light. For linearly polarized light the situation is more subtle: For each individual path the geometric phase rotates the plane of polarization [6]. However the final experimental measurement is a measure of intensity, summing over all possible paths. This sum leads to a final polarization state which is in general elliptical rather than linear. We shall thus characterize the evolution of a linearly polarized state as a distribution of polarization states on the Poincaré sphere. Note that a close analog of Rytov's result has been studied in the propagation of polarized light along a fiber optic: A beam of light transmitted along a fiber [6] acquires a non-trivial phase when the tangent of the fiber t(s) plotted on a unit sphere encloses a nonzero area. This experiment is in many ways the simplest realization of the Berry phase and is clearly analogous to the propagation of a single ray in a weakly scattering medium.

We note that there is an important qualitative difference between the evolution of circular and linear polarization states in weakly scattering media. For the former the helicity can be preserved over arbitrarily large distances, whereas we shall conclude that the Berry phase associated with linearly polarized light always leads to a state of random polarization. We thus suggest that the natural setting for experimentally studying polarization effects in multiple scattering media is in critical, opalescent samples where the gradual density gradients allow an exact formulation of the polarization statistics without backscattering from interfaces.

Technically we treat the problem of summing over photon paths via a mapping onto a semiflexible polymer, which treats multiple weak scattering of photons as an angular diffusion process. The Berry phase is calculated from the writhe [START_REF] Fuller | Proc. Natl. Acad. Sci[END_REF] of the photon path using methods introduced to study the statistical mechanics of DNA and other stiff molecules. Our considerations also link up with remarks of [START_REF] Mackintosh | [END_REF] who gave a local argument for the evolution of the polarization vector, in the context of multiple scattering, equivalent to that of Berry's.

Since the DWS technique is very often used to study the properties of colloidal systems we start by explaining how some of the above ideas are applied to such multicenter scattering systems, where the mapping onto a torsionally rigid semiflexible polymer is particularly direct and simple to understand. In the theory of DWS from colloidal samples one defines two characteristic distances. The first, , is the distance between two collisions between a photon and a scattering center. The second, * , measures the distance over which a photon must travel in order to forget its initial direction of propagation. In a simple analogy with stiff polymers one can consider that the length corresponds to a monomer size while * is equivalent to the persistence length of the polymer. In strongly scattering media, with high contrast between the refractive indexes between inclusions and background these two lengths are comparable. However by using particles large compared with the wavelength of light and with low contrast between the dielectric properties of the two media we can easily find samples for which * / is of order ten. In recent experiments [9] in large droplet helium aerosols it is has proven possible to increase * / to over 200. Motivated by this last experimental system we present here arguments as to the polarization statistics of light scattered in a regime of intermediate sample thickness, L, such that L ≤ * in transmission geometry. In such samples photons are scattered many times, but are still propagating largely in the forward direction. This is exactly the geometry studied experimentally in [9].

We now derive the mapping which allows us to transpose results known from the statistical mechanics of stiff polymers, including now the torsion as well as bending degrees of freedom. Following [9] we shall model the medium as an ensemble of randomly oriented interfaces neglecting the spherical structure of the aerosol. This was shown to give a good qualitative description of the scattering statistics. Consider the collision between a photon and a single interface. The photon can either be reflected, and thus deviated by a large angle, or refracted by a small angle which can be calculated using geometric optics. The probability of reflection, for a typical impact parameter, is comparable to R = (n -1) 2 /(n + 1) 2 where n is the refractive index of the inclusions relative to that of the background medium. If we write = (n -1) then we see that the intensity of the direct beam should decay over a length which is at most ref = / 2 due to back scattering. A background of photons scattered through large angles is indeed observed experimentally, in addition to the main forward beam [9].

Most of the beam is refracted at the interface. For typical impact parameters the angle of deviation should be comparable to . Since successive deviations of a photon are independent this implies that the direction of propagation of the photon diffuses as it propagates into the medium with angular diffusion coefficient D ∼ 2 / . Thus photons which are not directly reflected at a surface also turn over a length comparable to / 2 which is thus our estimate of * in this weakly scattering limit.

Let us now consider the evolution of an incident linearly polarized beam. The reflectivity of an interface is a function of the plane of polarization with respect to the surface; the transmitted beam has a modified polarization state. In the hypothetical case of perfect transmission the plane of polarization of the refracted beam evolves by parallel transport [START_REF] Mackintosh | [END_REF]10]. Due to the reflections the transmitted amplitudes of the two polarization components (defined relative to the local surface orientation) are comparable to 1-O( 2 ). This leads to a rotation of plane of polarization of the transmitted light by an angle ±O( 2 ) compared to a parallel transported state. In the analogy with a stiff polymer this corresponds to excitation of a torsional mode. In stiff polymers one can define two independent persistence lengths for bend and torsional degrees of freedom, l p and l t . These lengths are usually comparable. For the case of multiple light scattering we see that p ∼ * ∼ / 2 whereas t ∼ / 4 . The "torsional" degree of freedom for photons is frozen out at low dielectric contrast as l t l p , so that as → 0 parallel transport of the transmitted component becomes exact, in agreement with Rytov's treatment of Maxwell's equations in the eikonal approximation. We have thus extended the analogy between stiff polymers [11] and diffusing photon paths by studying the torsional degrees of freedom of the polymer, which are entirely analogous to the polarization states of photons.

The tangent to the curve t(s) is a unit vector and can be considered as living on a unit sphere. We now use the Berry formula linking the area enclosed by the curve t(s) on this sphere with the geometric phase to calculate the probability distribution of phases associated with a samples in the limit L * . The orientation of a photon diffuses [10] as a function of curvilinear distance, so that the probability of orientation obeys the equation

∂P (t, s) ∂s = D 2 ∇ 2 P (t, s) , (1) 
with ∇ 2 the spherical Laplacian and s the optical path length. When the sample is thin compared with * the photons do not diffuse very far from their original propagation direction. We can thus calculate the phase contribution from the Berry phase by looking at the problem of diffusion on a local, planar approximation to the sphere. The probability distribution for the area of random loops on a plane was solved by Levy [10,[START_REF] Levy | Processus Stochastiques et Mouvement Brownien[END_REF] with the result for the probability distribution for the Berry phase:

P(φ) = 1 2DL cosh 2 (φ/DL) . ( 2 
)
From this expression we find the mean square phase as

φ 2 = π 2 L 2 D 2 12 . (3) 
We proceed by studying the Jones vectors describing the electric field of a coherent light source. Vertically and horizontally polarized light is described by the vectors j v = (1, 0) and j h = (0, 1) respectively, whereas circular light corresponds to the vectors j ± = 1/ √ 2 (1, ±i). We are ultimately interested in the intensities of the various polarization states of the transmitted beam which are most easily visualized via the Poincaré sphere, fig (1). The three axes correspond to a series of measurements i 1 = I 0 -I 90 , i 2 = I 45 -I -45 and i 3 = I + -I -. Here, I 0,±45,90 are the normalized intensities measured with with a linear polarizer inclined at the subscripted angle and I ± is the intensity measured with circular analyzers.

As stated above for circularly polarized light e i φ i can simply be added to the phase ψ i so that the transmitted Jones vector can be written in the form

e i(ψi±φi) 1 √ 2 1 ±i (4) 
for the incident state j ± . We now sum over all possible paths to find the total scattered amplitude: The sum of the individual circularly polarized states also gives rise to circularly polarized light as the final state. When L/l * ∼ 2 the geometric phase introduces a relative phase 2φ i between the right and left states comparable to π. We thus understand that the speckle pattern for the two helical states is similar for very thin samples, whereas for thicker samples we find two independent intensity distributions for each circularly polarized state.

If we illuminate with linearly polarized light j v = (1, 0), each transmitted photon is described by its writhe φ i , and the total phase ψ i so that the transmitted state is

e iψi cos φ i sin φ i ≈ e iψi 1 φ i (5) 
where we have specialized to samples with L/ * < 1. ψ is calculated from the statistics of longitudinal fluctuation of a stiff polymer by writing the path length as ∆ = ds 1 + (dr ⊥ /ds) 2 . with r ⊥ the deviation of the path from a straight line. By expanding the square root and studying the correlation function ∆ 2 , [START_REF] Gittes | [END_REF] one finds that the fluctuations of path length, i , for crossing a sample of thickness L are of order L 2 / * , when L < * . Thus ψ i is very large, so that ψ i mod(2π) is very nearly uniformly distributed.

If we sum the amplitude eq. ( 5) over a large number of independent paths we see that we find a vector of the form

j f = Ae iψ0 1 φ 0 e iψ1 (6) 
A relative phase between the two components of the vector j f develops because the random sign of φ i . For small, fixed φ 0 the vector j f describes a circle of radius 2φ 0 on the Poincaré sphere as ψ 1 varies between 0 and 2π. We note, in passing, that the full joint distribution function of the writhe and path length, P(φ, ψ), is closely linked with the force-torsion response curves measured in DNA micromanipulation experiments [11] Thus A and Aφ 0 are random variables with φ 0 ∼ φ 2 ∼ L/ * , eq. ( 3). ψ 1 is again uniformly distrubuted. For thin samples this random Jones vector is distributed in a circular disk, centered on the initial vector j v , fig (1). The combination of a Berry phase combined with the widely distributed optical path leads to a state of elliptical polarization. For thick samples we find a (non-uniform) distribution of vectors over the whole Poincaré sphere leading to loss of memory of the initial polarization state in samples thicker than a few times * . Detailed simulations [START_REF] Thesis | Statistique de Polarisation et Effet Faraday en Diffusion Multiple de la Lumière[END_REF][START_REF] Martinez | Localization and Propagation of Classical Waves in Random and Periodic Structures[END_REF] have been performed

to study the decay of polarization in colloidal systems in transmission geometry with parameters corresponding to polystyrene beads in water. It was indeed observed numerically that the evolution of the polarization state proceeds by the formation of a circular distribution on the Poincaré sphere.

The simulations in [START_REF] Thesis | Statistique de Polarisation et Effet Faraday en Diffusion Multiple de la Lumière[END_REF][START_REF] Martinez | Localization and Propagation of Classical Waves in Random and Periodic Structures[END_REF] also found that the polarization state of circularly polarized light decays in thick samples. The authors defined new lengths * * circ and * * plane , while noting that * * circ > * * plane , over which both circular and linear polarization decay. We understand the result that * * ∼ * even for circularly polarized light as being due to back reflection at surfaces. As argued above this leads to a decay in intensity (and helicity flipping) of the beam over the length ref comparable * . If we were to perform similar experiments on samples with slow variations in refractive index, for instance critical, opalescent samples we expect that the reflection occurring at interfaces should be suppressed due to critical broadening. In this case the helicity of photons is preserved over a length which is presumably exponentially large in the eikonal expansion parameter [START_REF] Rytov | [END_REF]. Thus * * circ / * can be arbitrarily large. We reiterate that for experiments with linearly polarized light the geometric phase, together with the phase ψ 1 due to the varying path lengths implies that memory of the linear state must always be lost on a length scale comparable to * .

To conclude we have reached an understanding as to the evolution of the polarization states in multiple scattering situations via a mapping onto a writhing polymer. Despite the extreme simplification of our arguments the results are in agreement with detailed simulations based on a partial wave simulation using Mie diffraction theory [START_REF] Thesis | Statistique de Polarisation et Effet Faraday en Diffusion Multiple de la Lumière[END_REF][START_REF] Martinez | Localization and Propagation of Classical Waves in Random and Periodic Structures[END_REF]. Our results are valid for coherent light sources; the essential step was the combination of the amplitudes of the Jones vectors. In scattering with incoherent sources it is rather the Stokes parameters which should be combined, presumably leading to multicomponent transfer theories such as those discussed in [START_REF] Gorodnichev | [END_REF]. The contrast between multiple polarized scattering with coherent and incoherent sources deserves closer study.

In our rather crude description of the colloidal regime we have neglected diffraction effects, limiting our treatment to extremely large droplets, however many of the qualitative conclusions should hold even for more moderate particle sizes where diffraction is more important: similar conclusions as to the statistics of the photon paths were deduced in [START_REF] Mackintosh | [END_REF] using the Born scattering approximation. It would be particularly interesting to perform simulations in the limit of low optical contrast in order to bring out some of the scaling regimes which may exist in this limit.

Finally we have not considered the nature of the non Gaussian statistics of the polarization states due to the caustics presumably present in weak scattering limits discussed in this letter. A final question that we leave open is the nature of two time correlation functions of the polarization state: As scattering centers move both the writhe of the photons paths and the phase associated with each path vary. Does this variation contain any interesting information on the dynamics of colloidal systems?
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 1 FIG. 1. The Poincaré sphere describing the polarization state of the light. Linearly polarized states correspond to points along the equator while the north and south poles, labeled j+ and j-correspond to circularly polarized light. Other states are elliptically polarized. Multiple scattering of the initial state jv describing linearly polarized light leads to a circularly symmetric distribution of polarization states centered on jv in samples where L/l * < 1
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