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Recent mid-infrared absorption and electroluminescence experiments on microcavities embedding
quantum wells have shown strong coupling between a cavity photon mode and the transition between
two conduction subbands, being the lowest one filled with a dense two-dimensional electron gas.
Through a non-perturbative quantum theory, here we investigate how the electronic states are
modified by the coupling to the microcavity vacuum field. We show that resonant electron tunneling
from a narrow-band injector can selectively excite superradiant states and produce ultraefficient
polariton electroluminescence.

(June 19, 2008)
Cavity quantum electrodynamics in the strong coupling
regime is presently the subject of many fascinating in-
vestigations in several interesting systems, including ul-
tracold atoms[1], Cooper pair quantum boxes [2] and
semiconductor nanostructures[3]. In the strong coupling
regime, the eigenstates of a cavity system are a coherent
mixing of photonic and electronic excitations. This oc-
curs when the light-matter interaction, quantified by the
so-called vacuum Rabi frequency, is dominant with re-
spect to loss mechanisms for the cavity photon field and
for the electronic transition.

Recently, the strong coupling regime has been demon-
strated also between a planar microcavity mode and an
intersubband transition in a doped semiconductor quan-
tum well. The normal modes of such a system are called
intersubband cavity polaritons [4, 5, 6, 7, 8, 9, 10, 11].
The active electronic transition is between two conduc-
tion subbands, where a dense two-dimensional electron
gas populates the lowest one. Large vacuum Rabi fre-
quencies can be achieved thanks to the giant collec-
tive dipole associated to the dense electron gas and
even an unusual ultra-strong coupling regime can be
reached[8, 9, 12].

Electroluminescence experiments in microcavity-
embedded quantum cascade devices[13] have recently
demonstrated that it is possible to obtain intersubband
cavity polariton emission after resonant electrical excita-
tion even at room temperature. A fundamental question
to address is how the strong interaction with the micro-
cavity vacuum field modifies the quasi-electron states
in the quantum well and how the electron tunneling is
affected. In this Letter, we present a quantum theory to
investigate such fundamental problem. We show that the
electronic eigenstates originate from a Fano-like coupling
between the bare injected electron and the continuum
of cavity polariton modes. Our theory demonstrates
that resonant electron tunnelling from a narrow-band
injector contact can selectively excite polaritonic states
leading to ultraefficient polariton electroluminescence.

In order to describe the system under study, we con-
sider the following second quantization Hamiltonian (for

details on the approximations behind this Hamiltonian
see [14, 15]):

H =
∑

k

~ω1,kc†
1,kc1,k +

∑

k

~ω2,kc†
2,kc2,k +

∑

k

~ωc,qa
†
qaq

+
∑

k,q

~χqaqc1,kc†
2,k+q +

∑

k,q

~χ∗
qa

†
qc2,k+qc†

1,k , (1)

where ~ω1,k = ~
2k2

2m⋆ and ~ω2,k = ~ω12 + ~
2k2

2m⋆ are the
energy dispersions of the two quantum well conduction
subbands as a function of the in-plane wavevector k, m⋆

being the effective mass. The corresponding electron cre-
ation operators are c†

1,k and c†
2,k. ωc,q is the frequency

dispersion of the cavity photonic mode and a†
q is the cor-

responding photon creation operator.
If we wish to study the tunneling injection of one elec-

tron at low temperature, we have to determine the elec-
tron spectral function[16], defined as:

A+

j (k, ω) =
∑

ζ

|〈ζ|c†j k|FN 〉|2δ(ω − ωζ) , (2)

where |FN 〉 is the N-electron Fermi sea ground state times
the vacuum state for the cavity photon field and j = 1, 2
is the conduction subband index. The index ζ labels the
excited (N+1)-electron eigenstates and ~ωζ is the corre-
sponding eigenenergy. As apparent from Eq. (2), the
electron spectral function is the density of quasi-electron
states, weighted by the overlap with the bare electron
state c†j k|FN 〉. This is the key quantity affecting the
electron tunneling and can be non-trivially modified by
interactions like in the case of superconductors. For a
non-interacting electron gas, c†

1 k|FN 〉 and c†
2 k|FN 〉 are

eigenstates of the Hamiltonian and thus all the other
eigenstates are orthogonal to them. Therefore the non-
interacting spectral functions are

A+

1 (k, ω) = δ(ω − ω1(k))θ(k − kF ), (3)

A+

2 (k, ω) = δ(ω − ω2(k)), (4)

where kF is the Fermi wavevector and θ(x) is the Heav-
iside function. The Heaviside function is due to Pauli
blocking: c†

1k|FN 〉 = 0 for k < kF .
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FIG. 1: Sketch of the dynamical coupling between quan-
tum states in a microcavity-embedded quantum well (QW)
containing a two-dimensional electron gas (2DEG). The elec-
tron gas partially fills the fundamental quantum well conduc-
tion subband, having a parabolic energy dispersion ~ω1,k as
a function of the electron in-plane wavevector k. The excited
subband has a parallel energy dispersion ~ω2,k. The excited
state obtained by injecting a bare electron in the second sub-
band is not an eigenstate of the system. Due to spontaneous
photon emission and reabsorption processes, such a state is
coupled to a manyfold of states sketched here. Being the
relevant cavity photon wavevectors very small compared to
the Fermi wavevector, spontanous emission can occur only on
narrow emission cone in momentum space. Due to the small
probability of photon absorption by electrons on the border
the Fermi sea, the relevant dynamics takes place only between
the states in the shaded region.

In the interacting case, it is easy to verify that c†
1 k|FN 〉

is still an eigenvector of the Hamiltonian in Eq. (1) and
thus the first subband spectral function is still given by
Eq. (3). Instead for the electrons in the second subband
we have to distinguish between two cases: k well inside
or outside the Fermi sea. In the first case, an electron in

the second subband can not emit a photon because all
the final states in the first subband are occupied (Pauli
blocking), hence the spectral function will be given by the
unperturbed one (Eq. (4)). Well outside the Fermi sea, it
can emit and the spectral function will be modified by the
interaction. A smooth transition between the two cases
will take place for |k − kF | of the order of the resonant
cavity photon wave-vector qres, where ωc(qres) = ω12.
Being the ratio qres/kF typically very small, of the order
of 10−2 [17], we can safely consider an abrupt transition
at the Fermi edge.

For k > kF we need to find all the (N+1)-electron

eigenstates that have a nonzero overlap with c†
2 k|FN 〉.

In order to do this we notice that the Hamiltonian in Eq.
(1) commutes with the number of total fermions N̂F =
∑

j=1,2

∑

k c†j,kcj,k, the total in plane wave-vector opera-
tor K̂ =

∑

j=1,2

∑

k k c†j,kcj,k and the excitation number

operator Q̂ =
∑

k a†
kak + c†

2,kc2,k. Hence the eigenstates
|ζ〉 of H can be also labeled by the corresponding eigen-
values Nζ ,Kζ and Qζ . We will thus identify an eigen-

state of H in the subspace (N̂F = N, K̂ = K, Q̂ = Q)
as |N,K, Q, ζ〉, where the index ζ now runs over all the
eigenstates of the subspace. Having |FN 〉 quantum num-

bers (N,0,0) it is easy to verify that the state c†
2,k|F 〉

is labeled by the quantum numbers (N + 1,k, 1). We
can thus limit ourselves to diagonalize H in this sub-
space, which is spanned by vectors of the form: (i)

c†
2,k0

∏N

j=1
c†
1,kj

|0〉, where |0〉 is the empty conduction

band state and
∑N

j=1
kj = k− k0; (ii) a†

q0

∏N+1

j=1
c†
1,kj

|0〉
with

∑N+1

j=1
kj = k − q0. For a large number of elec-

trons, the exact diagonalization of the Hamiltonian in
this subspace is an unmanageable task. Here, we show
that by a judicious approximation, we can considerably
simplify the diagonalization problem, keeping the rele-
vant non-perturbative physics. Namely, we claim that
the elements of (N + 1,k, 1) subspace can be well ap-
proximated by vectors of the form:

|N + 1,k, 1, ζ〉 =







µζ c†
2 k +

∑

q



αζ(q) a†
qc†

1k−q +
∑

|k′|<kF

βζ (q,k′)c†
2 k′+qc1 k′c†

1k−q











|FN 〉 . (5)

To understand the origin of our approximation, let us
consider the time evolution picture sketched in Fig. 1.
Suppose that initially the system is in its ground state
|FN 〉. After injection of one bare electron, the state of

the system is |C〉 = c†
2k|FN 〉. If k is well inside the

Fermi sphere, as we said before, it can not radiatively
relax into the first subband. Instead, when k > kF , the

injected electron can radiatively decay, emitting a photon
and falling into the first subband. After the first emission
the state will have the form |A,q〉 = a†

qc†
1k−q|FN 〉 . If the

cavity system is closed and only the light-matter interac-
tion is considered, the emitted photon will be reabsorbed.
The system can evolve back to the state |C〉 or into one

vector of the form |B,q,k′〉 = c†
2 k′+q

c1k′c†
1 k−q

|FN 〉. If
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FIG. 2: Electron spectral function A+

2 (k, ω) for the second
subband , for all k > kF . The spectral function, defined in
Eq. (2), is the density of quasi-electron states, weighted by the
overlap with the bare electron state. Inset: the same quantity
on a larger vertical scale. Coupling parameter: Ω0(qres) =

χ(qres)
√

N = 0.1ω12.

k′ is well inside the Fermi sea, when the second sub-
band electron decay, it will go back to state |A,q〉. If
k′ is on the border of the Fermi sea, on the contrary,
it can evolve into a state of the form |D,q,q′,k′〉 =

a†
q′c

†
1 k′+q−q′c1 k′c†

1k−q|FN 〉. The probability of ending in

any of the |D,q,q′,k′〉 states is proportional to the ratio
qres/kF ≪ 1 and is thus negligeable. We can thus look
for vectors of the form shown in Eq. (5). In the subspace
spanned by {|C〉, |A,q, 〉, |B,q,k′〉, |B,q,k′′〉, · · · , }, we
have found[18] that the eigenstates of H with a finite
overlap with the bare electron have the form

|N + 1,k, 1, ζ〉 = µζ c†
2 k|FN 〉 +

∑

q,σ=±

λζ,σ,q|σ, q〉 , (6)

where

|±, q〉 =
∑

|q|=q

(ω±,q − ω12)|A,q〉 + χq

∑

k |B,q,k〉
√

Lq
√

(ω±,q − ω12)
2

+ |χq|2N
(7)

and where ω±,q are the frequencies of the lower and upper
polariton branches with in-plane wavevector q, namely

ω±,q =
ωc,q + ω12

2
±

√

(

ωc,q − ω12

2

)2

+ N |χq|2 . (8)

Hence, the spectral function of the second subband reads

A+

2 (k, ω) =
∑

ζ

|µζ |2δ(ω−ωζ)θ(k−kF )+δ(ω−ω2,k)θ(kF−k).

(9)
The coefficients µζ , λζ,σ,q as well as the eigen-
frequencies ωζ are obtained by the diagonalization
of the matrix representation of H in the subspace
{c†

2,k|FN 〉, |+, q〉|−, q〉, |+, q′〉, |−, q′〉, · · · }, namely:

HN+1,k,1 = ~





















ω1,k + ω12 J∗
+(q)

√
Lq J∗

−(q)
√

Lq J∗
+(q′)

√
Lq′ J∗

−(q′)
√

Lq′ · · ·
J+(q)

√
Lq ω1,k + ω+,q 0 0 0 · · ·

J−(q)
√

Lq 0 ω1,k + ω−,q 0 0 · · ·
J+(q′)

√
Lq′ 0 0 ω1(k) + ω+,q′ 0 · · ·

J−(q′)
√

Lq′ 0 0 0 ~ω1(k) + ω−,q′

. . .
...

...
...

...
. . .

. . .

,





















(10)

where L2 is the sample area and

J∗
±(q) =

χ∗
q(ω±,q − ω12)

√

(ω±,q − ω12)2 + |χq|2N
. (11)

The matrix in Eq. (10) shows that the dressed elec-
tronic states are given by a Fano-like coupling of the
bare electron state in the second subband with the con-
tinuum of cavity polariton modes (associated to all the
different photonic in-plane wavectors q). In Fig. 2, we
show numerical results using a vacuum Rabi frequency
Ω0,qres

= |χqres
|
√

N = 0.1ω12. As it appears from Eq.
(9), the broadening of the spectral function is intrinsic,

being associated to the continuum spectrum of frequen-
cies ωζ corresponding to the quasi-electron states. The
pronounced dip around ω = ω12 in the spectral func-
tion is a quantum interference feature, typical of a Fano
resonance[19].

The states |N + 1,k, 1, ζ〉 have been obtained by di-
agonalizing the Hamiltonian (1), which takes into ac-
count only the coupling between the two-subband elec-
tronic system and the microcavity photon quantum field.
If, as we have assumed, the light-matter interaction is
the strongest one, all other residual couplings can be
treated perturbatively. These residual interactions in-
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FIG. 3: Extracavity electroluminescence spectra Nph(q, ω).
Panel (a): the case of a broadband electrical injector (band-
width equal to ω12, centered at ω = ω12). The other panels
show the results for a narrow-band injector (width 0.05ω12)
centered respectively at ω = ω12 (b), 1.2ω12 (c) and 0.8ω12(d).
The non-radiative relaxation rate 1/τnr has been taken equal
to 0.005ω12 . In all panels, the dashed-dotted lines are the fre-
quency dispersions ω±,q of the two cavity polariton branches.
In the first panel the solid line represents the edge of the light
cone [17].

clude the coupling to the extracavity fields, the interac-
tion with contacts, phonon and impurity scattering as
well as Coulomb electron-electron interactions[20].

The states |N + 1,k, 1, ζ〉 can be excited by resonant
electron tunneling. Treating the tunneling coupling per-

turbatively, we find that the injection rate reads

Γinj(k, ζ) =
2π

~
|µζ |2|V tc

k |2ρinj(ωζ)nF (ωζ), (12)

where V tc
k is the tunneling coupling matrix element,

ρinj(ω) is the density of electronic states inside the con-
tact and nf(ω) its Fermi distribution. ρinj(ω)nf (ω) de-
termines the spectral shape of the injector. µζ comes
from Eq. (9).

The finite transmission of the cavity mirrors is respon-
sible for a finite lifetime for the cavity photons and con-
sequently for the dressed states |N + 1,k, 1, ζ〉. By using
the Fermi golden rule and a quasi-mode coupling to the
extracavity field, we find that the radiative lifetime τr,k,ζ

reads:

1

τr,k,ζ

=
2π

~

∑

q,qz

|αζ(q)|2|V qm
q,qz

|2δ(~ωζ − ~ωq,qz
)θ(k − kF ),

where V qm
q,qz

is the quasi-mode coupling matrix element,
ωq,qz

the extracavity photon frequency and αζ(q) =
〈A,q|N + 1,k, 1, ζ〉 as defined in Eq. (5). Having calcu-
lated the tunneling injection rate and the radiative life-
time for the different states, we are able to evaluate the
electroluminescence spectra. It is convenient to introduce
the normalized photon emission distribution correspond-
ing to each eigenstate |N + 1,k, 1, ζ〉, namely

L(q, ζ) = N
∑

qz

|αζ(q)|2|V qm
q,qz

|2δ(~ωζ − ~ωph
q,qz

),(13)

where the normalization N is fixed by imposing
∑

q L(q, ζ) = 1. The number of photons with in-plane
wave-vector q and frequency ω emitted per unit time is

Nph(q, ω) =
1

π

∑

k,ζ

Γinj(k, ζ)L(q, ζ)
1/τr,k,ζ

(ω − ωζ)2 + (1/τr,k,ζ + 1/τnr,k,ζ)2
, (14)

where the last factor accounts for the Lorentzian broad-
ening due to radiative and non-radiative processes.
τnr,k,ζ is the non-radiative lifetime of the electronic ex-
citations and Γinj(k, ζ) is given by Eq. (12). Fig. 3
reports representative electroluminescence spectra in the
case of a broadband (panel a) and narrowband (panel
b,c,d) injector. In the broadband case, the emission is
resonant at the intersubband cavity polariton frequen-
cies (dashed lines) and it is significant in a wide range of
in-plane wavectors[14]. In contrast, in the case of narrow-
band electrical injector our theory shows that the photon
in-plane momentum and the energy of the cavity polari-
ton emission can be selectively excited by the resonant

electron tunneling process, in agreement with what sug-
gested by recent experiments [13].

In free-space, the quantum efficiency of electrolumi-
nescent devices based on intersubband transitions is poor
(≈ 10−5 in the mid-infrared) due to the slow radiative re-
combination of long wavelength transitions. In the micro-
cavity case, the efficiency of the emission from an excited
state |N +1,k, 1, ζ〉 is given by (1+ τr,k,ζ/τnr,k,ζ)

−1. Be-
ing 1/τnr,k,ζ essentially proportional to the matter com-
ponent of the excitation and 1/τr,k,ζ to its photonic frac-
tion, we have found that it is possible to obtain a quan-
tum efficiency approaching unity by selectively injecting
electrons into dressed states with a high photonic frac-
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tion. In particular, this is achievable by avoiding injec-
tion resonant with the central peak of the electron spec-
tral function in Fig.2, which corresponds to states with
strong overlap with the bare electron state.

In conclusion, we have determined in a non-
perturbative way the quasi-electron states in a
microcavity-embedded two-dimensional electron gas.
Such states originate from a Fano-like coupling between
the bare electron state and the continuum of cavity po-
lariton excitations. We have proven that these states can
be selectively excited by resonant electron tunneling and
that the use of narrow-band injector may give rise to ul-
trahigh efficient polariton electroluminescence.
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