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1 Introduction

In robotic cells, the products are mounted on carriers and transported between
two machines by a robot. The problem is usually called the robotic cell scheduling
problem. It was introduced by Sethi et al (1992). A survey on those problems was
proposed by Crama et al. (1997). The paper is organised as follows. The description
and the notations of the problem are given in the next section. The following section
deals with the cycle time calculation problem. Methods to build the cycles are given
in section 4 and the last section concludes this study.

2 Problem description and notations

The m machines of the line are denoted by M1, M2. . . Mm [Figure 1]. The loading
machine, M0, and the unloading machine, Mm+1, have infinite capacity whereas the
other machines of the line can only contain one carrier at a time. The robot takes δ

time units to travel between two consecutive machines. Thus the travel time from
Mi to Mj is |i − j|δ time units.
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Fig. 1. Robotic Cells

The line represents a flow-shop with the hoist as the material handling device.
All products are identical. A carrier is picked up at M0 and transferred in succes-
sion to M1, M2 etc. until it finally reaches the output station, Mm+1. The time
the products remain in the baths is unbounded. The minimum time a part has to
remain in machine Mi is denoted by pi.
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The hoist moves are described in term of activities. Activity i (i = 0, 1 . . .m)
consists in the following moves:
• the hoist picks up a carrier from Mi;
• the hoist travels from Mi to Mi+1;
• the hoist loads the carrier onto Mi+1.

We consider cyclic moves of the hoist and define the k-cycles in terms of ac-
tivities. During the execution of a k-cycle (k degree cycle), exactly k carriers are
treated and the state of the line is restored. Therefore all the activities Ai occur
exactly k times.

The state of a system may be represented by a m-vector which ith component
is 0 if the tank i is empty and 1 otherwise. Define the state graphs where the nodes
are the state of the system and the arcs represent the activities of the hoist to go
from a state to another one [Figure 2].
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Fig. 2. State graph for a three tanks line: S3

The relation between a feasible cycle and the state graphs are the following: each
feasible cycle can be represented by a circuit in the state graph and each circuit in
the state graph represents a feasible cycle.

3 Cycle time

The calculation of the cycle time can be divided in two parts. The first part is to
calculate the duration of the robot moves and the second part is to calculate the
waiting times of the robot.

The first part can be done by a simple algorithm in O(k(m + 1)) where k is the
degree of the cycle and m is the number of machines. This algorithm sums the robot
moves while the robot transports the parts and when it travels without. For the
second part, the calculation of the waiting times can be done by a linear program.
For example for the cycle A0, A2, A4, A1, A3 and the processing times [12;12;12;10].
The linear program is the following one (ti is the waiting time in machine i):
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t2 = max(0; 4 − t3)
t4 = max(0; 2 − t2)
t1 = max(0; 4 − t2 − t4)
t3 = max(0; 4 − t4 − t1)

⇐⇒
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









t2 + t3 ≥ 4
t2 + t4 ≥ 2
t2 + t4 + t1 ≥ 4

t4 + t1 + t3 ≥ 4
t2, t4, t1, t3 ≥ 0
Min : z′ = t2 + t4 + t1 + t3

This program can be use for any cycle degree. Moreover we proved that the
waiting times we obtain are the minimum mean waiting times.
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4 Cycle Construction

The objectif of the robotic cells scheduling problem is to find the optimal cycle.
This section section deals with an enumerative method which gives all the feasible
cycles then comparing the cycle times gives the optimal cycle.

4.1 Properties of the state graphs

The following properties can easily be proved:

• The outcome degree in the state graph is bounded as follows:
1 ≤ deg(v)+ ≤ ⌊m+2

2
⌋,

• The k-cycle lengths are m + 1 multiple,
• The number of activity A0 in the state graph is equal to 2m−1

• The number of activities in the state graph is equal to (m − 1).2m−2 + 2.2m−1

4.2 Construction

The relation between the cycles and the state graph can be used to find all the
feasible cycles. Indeed to find all the cycles we just have to find all the circuit in
the state graph.

First we used an algorithm based on a backtrack procedure in tree which begins
to search from activity A0 (algo. # 1). Then we used the following property: if one
searches from a state with π0 products in the line, the number of products in the
line cannot be more than π0 + k and less than π0 − k. This property reduce the
number of possible node in the graph (algo. # 2). Next, during the construction of
a cycle, we delete all the arcs already crossed which prevent from finding a same
cycle several times (algo. # 3). Finally we calculate the number of activities needs
to restore the initial state of the line and then, remove some nodes from the graph
(algo. # 4).

The table 1 gives the number of k-cycles with k ≤ m − 1, and m for 2 to 5.
The number of cycles can be compared with the optimal number of cycles gives by
Brauner (1999). Even if we still find more than the optimal number the algorithms
give good results

m algo. # 1 algo. # 2 algo. # 3 algo. # 4 optimal

2 2 2 2 2 2

3 40 40 28 28 26

4 11440 11440 4952 4952 3940

5 118017288 118017288 35640478 35640478 29604116

Table 1. Number of cycles

The table 2 gives the computation time (in seconds) for the preceeding calcula-
tion.

If we combine this method and the calculation of the cycle time we can find the
optimal cycle for every processing times.
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m algo. # 1 algo. # 2 algo. # 3 algo. # 4

2 0,00 0,00 0,00 0,00

3 0,01 0,00 0,01 0,00

4 0,16 0,18 0,08 0,06

5 4254,07 4655,51 1404,06 807,19

Table 2. Computation time (s)

5 Conclusions and perspectives

In this paper we studied the cyclic robotic cells problem. We proposed a method to
calculate the cycle time and we proposed a method to find all the feasible cycles.
Mixing those two results we proposed a method to find the optimal cycle for small
instances. The next step will be to find a way to calculate the cycle time during the
cycle construction. This method would give bounds which can limit the calculation.
The current direction is to study the “hoist scheduling problem”. In this problem,
the processing times are bounded which decrease the number of feasible arcs in the
state graph.
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