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Abstract. The asymptotic behaviour of a family of gradient algorithms (including the meth-
ods of steepest descent and minimum residues) for the optimisation of bounded quadratic op-
erators in R

d and Hilbert spaces is analyzed. The results obtained generalize those of Akaike
(1959) in several directions. First, all algorithms in the family are shown to have the same
asymptotic behaviour (convergence to a two-point attractor), which implies in particular that
they have similar asymptotic convergence rates. Second, the analysis also covers the Hilbert
space case. A detailed analysis of the stability property of the attractor is provided.

1. Introduction

The paper generalizes the results presented in [16] to other optimisation algo-
rithms of the gradient type. We introduce a class of algorithms, called P -gradient
algorithms, that differ by the choice of the length of the step made in the gradient
direction. The class includes in particular the usual steepest-descent algorithm
and the method of minimal residues of Krasnosel’skii and Krein [9,10]. We show
that for a quadratic function, the worst asymptotic rate of convergence is the
same for the whole class of algorithms considered. It is also true that, expressed
in the right framework, all the algorithms in the class behave in a very similar
fashion1. This analysis complements that presented in [1], [13,14] and Chapter
7 of [15] which concerns steepest descent. Moreover, the analysis in [16] directly
applies to all algorithms in the class considered, revealing the asymptotic be-
haviour for bounded quadratic operators not only in R

d but also in Hilbert
spaces. The worst case behaviour exhibited is fundamental “bottom-line” in the
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1 Not all algorithms using the gradient direction belong to that class, which in particular
does not include the spectral-gradient algorithm, see [3], proposed by Barzilai and Borwein in
[2]. This method, which has been found in particular examples to allow significant improvement
over standard steepest descent, see [18], thus requires a separate treatment. The same is true for
steepest descent with relaxation or the combination of steepest descent and Barzilai-Borwein
methods, as considered in [19].
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study of optimisation whose understanding is critical for building more complex
and faster algorithms.

The basic idea is renormalisation, as used throughout [15]. The main result
in the finite dimension case is that for any algorithm in the class, in the renor-
malised space one observes convergence to a two-point attractor which lies in
the space spanned by the eigenvectors corresponding to the smallest and largest
eigenvalues of the matrix A of the quadratic operator. The proof for bounded
quadratic operators in Hilbert space stems from the proof for R

d but is consid-
erably more technical. In both cases, as in [1], the method consists of converting
the problem to one containing a special type of operator on measures on the spec-
trum of the operator. The additional technicalities arise from the fact that in the
Hilbert space case the measure, which is associated with the spectral measure
of the operator, may be continuous. Another important result concerns bounds
on convergence rates, named after Kantorovich, see [7]. For all algorithms in the
family considered, the actual asymptotic rate of convergence, although satisfying
Kantorovich bounds, depends on the starting point and is difficult to predict.
This complex behaviour has consequences for the stability of the attractor, which
are discussed following the main results.

The family of gradient algorithms we consider, called P -gradient algorithms,
is introduced in Section 2. Renormalisation is presented there, which, together
with the monotonic sequences of Section 2.4, forms the core of the analysis to
be conducted. The main results are presented in Section 3, first for the case
H = R

d, then for the Hilbert space case. They rely on the convergence property
of successive transformations of a probability measure, which is presented in
Section 4. Again, the two cases H = R

d and H a Hilbert space are distinguished,
the exposition being much simpler in the former case. The stability of attractors
is discussed in Section 5, only in the more general case of a Hilbert space, the case
H = R

d not allowing for a significant simplification of the presentation. Finally,
Section 6 shows the asymptotic equivalence between several rates of convergence
of gradient algorithms. All proofs and some important lemmas are collected in
an appendix.

2. A family of gradient algorithms

2.1. P -gradient algorithms

Let A be a real bounded self-adjoint (symmetric) operator in a real Hilbert space
H with inner product (x, y) and norm given by ‖x‖ = (x, x)1/2. Assume that A
is positive, bounded below, and denote its spectral boundaries by m and M :

m = inf
‖x‖=1

(Ax, x) , M = sup
‖x‖=1

(Ax, x) ,

with 0 < m < M < ∞. The function to be minimized corresponds to the
quadratic form

f(x) =
1

2
(Ax, x) − (x, y) . (1)
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It is minimum at x∗ = A−1y, its directional derivative at x in the direction u is

∇uf(x) = (Ax − y, u) .

The direction of steepest descent at x is −g, with g = g(x) the gradient at x,
namely g = Ax − y. The minimum of f in this direction is obtained for the
optimum step-length

γ =
(g, g)

(Ag, g)
,

which corresponds to the usual steepest-descent algorithm. One iteration of the
steepest descent algorithm is thus

xk+1 = xk − (gk, gk)

(Agk, gk)
gk , (2)

with gk = Axk − y and x0 some initial element in H. We define more generally
the following class of algorithms.

Definition 1. Let P (·) be a real function defined on [m, M ], infinitely differen-
tiable, with Laurent series

P (z) =
∞
∑

−∞

ckzk , ck ∈ R for all k ,

such that 0 <
∑∞

−∞ ckak < ∞ for a ∈ [m, M ]. The k-th iteration of a P -gradient
algorithm is defined by

xk+1 = xk − γkgk (3)

where the step-length γk minimizes (P (A)gk+1, gk+1) with respect to γ, with
gk+1 = g(xk+1) = g(xk − γgk).

Direct calculation gives

γk =
(P (A)Agk, gk)

(P (A)A2gk, gk)
. (4)

Note that AP (A) = P (A)A and that the denominator and numerator of γk are
linear in P (A). Also, γk is scale-invariant in P (A) and γk ∈ [1/M, 1/m].

Taking P (A) = A−1 gives the steepest-descent algorithm. Choosing P (A) =
I, the identity operator, is equivalent to choosing the step-length that mini-
mizes the norm of the gradient gk+1 at the next point. We then obtain the
method of minimal residues introduced in [10] for the solution of linear equa-
tions. For any fixed α ∈ (0, 1), choosing γk that minimizes αf(xk − γgk)+
(1 − α)(g(xk − γgk), g(xk − γgk)) with respect to γ also gives an algorithm in the
family. More generally, we show below how to construct P -gradient algorithms,
with P (·) a polynomial in A, using evaluations of f(·) and g(·) only.
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2.2. Practical construction when P is a polynomial

We consider the case where P (A) = Aq for some integer q ≥ −1. (As men-
tioned, the cases q = −1 and q = 0 respectively correspond to the methods of
steepest-descent and minimal residues.) The extension to P (·) polynomial in A
is straightforward (including also linear combinations with A−1), using (4).

The minimisation of (P (A)gk+1, gk+1), or the calculation of γk in (4), requires
the calculations of terms of the form (Ang, g), with n = q or n = q + 1, q + 2.
As shown below, they are easily obtained from evaluations of g(·) at different
points. Notice that this construction implies that one iteration of the algorithm
will require several evaluations of g(·). The construction proposed below is not
necessarily the most economical one, and evaluations of f(·) and g(·) at different
points could be combined to provide more efficient evaluations of terms (Ang, g).
Our objective here is simply to show that the family of algorithms considered in
the paper is not of purely theoretical interest, and that other algorithms than
the steepest-descent and minimal residues could also be considered in practice.

Let (Ang, g) be the term to be evaluated, n ≥ 1, with g = g(x) the gradient
at the current point x. Define x(0) = x and

x(i+1) = x(i) − βg(x(i)) , i ≥ 0 ,

with β a fixed positive number (for instance, β can be taken equal to the value
of γ at previous iteration of the algorithm). We obtain

g(i) = g(x(i)) = (I − βA)ig .

Define Pi = (g, g(i)) = (g, (I − βA)ig). In matrix notation, Pn = QnGn, where

Pn = (P0, P1, . . . , Pn)⊤ , Gn = ((g, g), (Ag, g), . . . , (Ang, g))⊤

and the entries of the (n + 1)× (n + 1) matrix Qn are the binomial coefficients,

Qn =















1
1 −β
1 −2β β2

1 −3β 3β2 −β3 . . .
...

...
...

...
...















.

The value of (Ang, g) is then directly obtained from Gn = Q−1
n Pn. The entries

of Pn, defined by Pi = (g, g(i)), are also obtained more economically from

P2j = (g(j), g(j)) , P2j+1 = (g(j+1), g(j)) .

Therefore, the evaluation of γk = (P (A)Agk, gk)/(P (A)A2gk, gk), with P (·) a
polynomial of degree q, requires ⌈q/2⌉ + 2 gradient evaluations (including the
one at x(0) = xk).
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2.3. Renormalisation

We can rewrite the iteration (3) as

(xk+1 − x∗) = (xk − x∗) − γkgk ,

with gk = g(xk) = A(xk − x∗), so that

gk+1 = gk − γkAgk = gk − (P (A)Agk, gk)

(P (A)A2gk, gk)
Agk .

Define the renormalised variable

z(x) =
Bg(x)

(P (A)Ag(x), g(x))1/2
, (5)

with B = [P (A)A]1/2, the positive square-root of P (A)A, so that (z(x), z(x)) =
1. Also define zk = z(xk),

µk
j = (Ajzk, zk) , j ∈ Z , (6)

so that µk
0 = 1 for any k and γk = µk

0/µk
1 = 1/µk

1 . We obtain

zk+1 =
Bgk+1

(P (A)Agk+1, gk+1)1/2
=

(I − γkA)Bgk

((I − γkA)Bgk, (I − γkA)Bgk)1/2

=
(I − γkA)zk

((I − γkA)zk, (I − γkA)zk)1/2
=

(I − γkA)zk

(1 − 2γkµk
1 + γ2

kµk
2)1/2

,

that is,

zk+1 =
(I − A/µk

1)zk

(µk
2/(µk

1)
2 − 1)1/2

. (7)

This gives the updating formula for the moments

µk+1
j = (Ajzk+1, zk+1) =

µk
j − 2µk

j+1/µk
1 + µk

j+2/(µk
1)2

µk
2/(µk

1)2 − 1
. (8)

In the special case where H = R
d we can assume that A is already diag-

onalised, with eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λd. We can then consider
[zk]2i , with [zk]i the i-th component of zk, as a mass on the eigenvalue λi, with
∑d

i=1[zk]2i = µk
0 = 1. Define the discrete probability measure νk supported on

(λ1, . . . , λd) by νk(λi) = [zk]2i , so that its j-th moment is µk
j , j ∈ Z. We can

then interpret (7) as a transformation νk → νk+1. The asymptotic behaviour of
the sequence (zk) generated by (7) was studied in [1], see also [5] and Chapter
7 of [15]. The main result is that, assuming 0 < λ1 < λ2 ≤ · · · ≤ λd−1 < λd,
the sequence (zk) converges to a two-dimensional plane, spanned by the eigen-
vectors e1, ed associated with λ1 and λd. The attraction property is stated more
precisely in Section 3, also in the Hilbert space case. It is already important
to notice that although the results in the references above were obtained for
the steepest-descent algorithm, the renormalisation (5), which depends on the
chosen P (·), makes them applicable to any algorithm in the family considered.
Also, using the renormalisation just defined we easily obtain (non asymptotic)
results on the monotonicity of the algorithm along its trajectory.
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2.4. Monotonicity of a rate of convergence

Consider the function (P (A)gk+1, gk+1) that γk minimizes, and compute the rate
of convergence rk of the algorithm at iteration k, defined by

rk =
(P (A)gk+1, gk+1)

(P (A)gk, gk)
. (9)

Other rates of convergence will be considered in Section 6 where they will
be shown to be asymptotically equivalent to rk. Direct calculation gives rk =
1 − 1/Lk, with

Lk = µk
1µk

−1

where the moments µk
i are defined by (6). Also, from (8), Lk satisfies

Lk+1 − Lk =
µk

1

D2
k

detMk

with

Dk = µk
2 − (µk

1)2

and

Mk =





µk
−1 µk

0 µk
1

µk
0 µk

1 µk
2

µk
1 µk

2 µk
3



 . (10)

The moment matrix Mk is positive semi-definite so that detMk ≥ 0, and thus
Lk+1 ≥ Lk, that is, both Lk and the rate rk are non-decreasing along the tra-
jectory followed by the algorithm. When H = R

2 (d = 2), detMk = 0 and
rk is constant. When d > 2 or H is a Hilbert space, the rate is monotonically
increasing for a typical x0, indeed, for almost all z0 = z(x0) with respect to the
uniform measure on the unit sphere when H = R

d. Notice that if the rate is
constant over two iterations (detMk = 0), then the measure νk is supported on
two points only, and the iteration (7) for the masses shows that this situation
will continue: the rate will thus remain constant for all subsequent iterations.

Note that Lk and Dk are bounded (since νk has a bounded support), respec-
tively by L∗ and D∗, with L∗ = (M + m)2/(4mM) and D∗ = (M − m)2/4, see
Lemma 1 in Appendix A3. Therefore, since Lk is non-decreasing it converges to
some limit, and

detMk =
(Lk+1 − Lk)D2

k

µk
1

≤ (Lk+1 − Lk)(D∗)2

m
→ 0 , k → ∞ . (11)

In addition to Lk and rk another quantity also turns out to be non-decreasing
along the trajectory. Consider

(P (A)Agk+1, gk+1)

(P (A)A(xk+1 − xk), (xk+1 − xk))
=

(P (A)Agk+1, gk+1)

γ2
k(P (A)Agk, gk)

= µk
2 − (µk

1)2 = Dk .

(12)
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Direct calculation using (7) gives

Dk+1 − Dk =
1

D2
k

detNk

with

Nk =





µk
0 µk

1 µk
2

µk
1 µk

2 µk
3

µk
2 µk

3 µk
4



 .

Again, Nk is positive semi-definite and detNk ≥ 0 so that Dk is also non-
decreasing. It converges to some limit and detNk converges to zero for the same
reasons as above.

Substitution of P (A) for a particular algorithm shows which quantities are
monotonic. For the steepest-descent algorithm, P (A) = A−1, (A−1gk, gk) =
2[f(xk)− f(x∗)], and thus the ratios rk = [f(xk+1)− f(x∗)]/[f(xk)− f(x∗)] and
Dk = (gk+1, gk+1)/((xk+1 −xk), (xk+1 −xk)) are monotonically non-decreasing.
For the method of minimal residues, P (A) = I, and the ratios rk = (gk+1, gk+1)/
(gk, gk) and Dk = (Agk+1, gk+1)/(A(xk+1 − xk), (xk+1 − xk)) are monotonically
non-decreasing.

The monotonicity and boundedness of Lk and Dk makes them suitable for
studying the asymptotic behaviour of the algorithm. This is developed in the
next section.

3. Asymptotic behaviour of gradient algorithms

Consider the case H = R
d, and assume that the minimal and maximal eigenval-

ues of A, λ1 = m, λd = M , are simple. The attraction property can be stated as
follows. Choose z0 = z(x0), the renormalised variable defined by (5) at the initial
point x0, such that (z0, e1) > 0, (z0, ed) > 0, with e1 and ed the eigenvectors
associated with λ1 and λd respectively. Then

z2k → √
p e1 +

√

1 − p ed , z2k+1 →
√

1 − p e1 −
√

p ed when k → ∞ ,

where p is some number in (0, 1), see Section 5 concerning the range of possible
values for p. This property, stated in a more general framework in Theorem 1
below, has important consequences for the asymptotic rate of convergence of
the algorithm, see Section 6. The proof of the attraction property relies on the
convergence of successive transformations of the probability measures νk defined
by [zk]2i . The approaches used in [1,5] to study this convergence do not apply
when H is infinite dimensional, and we shall present a more general proof in
Section 4. It differs somewhat from the one in Chapter 7 of [15], in particular in
the choice of the monotonic sequence, (Lk) instead of (Dk).

The attraction theorem in R
d can be stated as follows. We can assume that

A is diagonalised, and the probability measure νk is then discrete and puts
mass [zk]2i at the eigenvalue λi. Notice that the updating rule (7) is identical for
[zk]i and [zk]j associated with λi = λj , and the corresponding masses can thus
be summed. We can therefore assume that all eigenvalues are different when
studying the evolution of νk, see Theorem 3.
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Theorem 1. Let A be a d×d symmetric matrix, positive definite, with minimum
and maximum eigenvalues m and M such that 0 < m < M < ∞ and apply a
P -gradient algorithm, see Definition 1, for the minimisation of f(x) given by
(1), initialized at x0, with z0 = z(x0), see (5). Assume that

E1z0 6= 0 and Edz0 6= 0 , (13)

where E1 and Ed are the orthogonal projectors on the eigenspaces respectively
associated with λ1 = m and λd = M . Then the asymptotic behaviour of the
renormalised gradient zk = z(xk) is such that

z2k =
√

p u2k +
√

1 − p v2k , z2k+1 =
√

1 − p u2k+1 −
√

p v2k+1 ,

with ‖un‖ = ‖vn‖ = 1 ∀n, ‖Aun − mun‖ → 0, ‖Avn − Mvn‖ → 0 as n → ∞,
and p, some number in (0, 1), depending on z0.

The proof is omitted since we prove later a more general property valid for
H a Hilbert space. A more precise result is obtained when the eigenvalues λ1

and λd are simple: the vector zd converges to the two-dimensional plane defined
by the eigenvectors e1 and ed associated with λ1 and λd.

Corollary 1 Let A be a positive-definite symmetric matrix with ordered eigen-
values

0 < m = λ1 < λ2 ≤ · · · ≤ λd−1 < λd = M

and let e1, ed be the eigenvectors associated with λ1 and λd respectively. Apply
a P -gradient algorithm, see Definition 1, for the minimisation of f(x) given by
(1), initialized at x0 such that z⊤0 e1 6= 0 and z⊤0 ed 6= 0, with z0 = z(x0), see (5).
Then the algorithm attracts to the plane Π spanned by e1 and ed in the following
sense:

w⊤zk → 0 , k → ∞
for any nonzero vector w ∈ Π⊥. Moreover, the sequence (zk) converges to a
two-point cycle.

This corollary is a straightforward consequence of Theorem 1: when λ1 and λd

are simple, with associated eigenvectors e1 and ed, un and vn then respectively
tend to e1 and ed. The result easily generalizes to the case when (13) is not
satisfied. The algorithm then attracts to a two-dimensional plane defined by the
eigenvectors ei and ej associated with the smallest and largest eigenvalues such
that z⊤0 ei 6= 0 and z⊤0 ej 6= 0.

We state now the attraction theorem in the more general case where H is a
Hilbert space. The proof is given in Appendix A1.

Theorem 2. Let A be a bounded real symmetric operator in a Hilbert space H,
positive, with bounds m and M , such that 0 < m < M < ∞ and apply a P -
gradient algorithm, see Definition 1, for the minimisation of f(x) given by (1),
initialized at x0, with z0 = z(x0), see (5). Assume that z0 is such that for any
ǫ, 0 < ǫ < (M − m)/2,

(Em+ǫz0, z0) > 0 and (EM−ǫz0, z0) < 1 , (14)
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with (Eλ) the spectral family of projections associated with A. The asymptotic
behaviour of the renormalised gradient zk = z(xk) is such that

z2k =
√

pu2k +
√

1 − p v2k , z2k+1 =
√

1 − pu2k+1 −
√

p v2k+1 , (15)

with ‖un‖ = ‖vn‖ = 1 ∀n, ‖Aun − mun‖ → 0, ‖Avn − Mvn‖ → 0 as n → ∞,
and p, some number in (0, 1), depending on z0.

4. A property of successive transformations of a probability measure

The two properties established in this section form the cornerstones of the proofs
of the theorems of previous section. We consider first the case of a discrete
measure with finite support, which in terms of convergence of a P -gradient
algorithm corresponds to the case H = R

d. The proof is given in Appendix A2.

Theorem 3. Let ν0 be a discrete probability measure on {λ1, . . . , λd} with

0 < m = λ1 < λ2 < · · · < λd−1 < λd = M < ∞ .

Let [zk]2i denote the mass placed at λi by νk, that is, νk(λi) = [zk]2i . Consider
the transformation T : νk → νk+1 defined by

[zk+1]i =
(1 − λi/µk

1)[zk]i

(µk
2/(µk

1)2 − 1)1/2
(16)

with the moments µk
i defined by (6). Then, when k → ∞,

([z2k]1)
2 → p , ([z2k+1]1)

2 → 1−p and ([z2k]d)
2 → 1−p , ([z2k+1]1)

2 → p (17)

for some p depending on ν0, 0 < p < 1. Furthermore,

p =
1

2
± ρ + 1

ρ − 1

√

1

4
− ρL

(ρ + 1)2

with ρ = M/m and L = limk→∞ µk
1µk

−1.

Note that the limiting value L depends on ν0, so that the value of p that
characterizes the attractor is difficult to predict. The range of possible values for
p is discussed in Section 5.

We consider now the case of an arbitrary measure on an interval, which raises
some additional difficulties compared to previous case. In terms of convergence
of a P -gradient algorithm, it corresponds to the case where H is a Hilbert space:
for Eλ the spectral family associated with the operator A, we define the measure
νk by νk(dλ) = d(Eλzk, zk), m ≤ λ ≤ M .
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Theorem 4. Let ν0 be a probability measure on the family B of Borel sets of
(0,∞), with support [m, M ], so that

m = ess inf(ν0) = sup(α / ν0{x , x < α} = 0) ,

M = ess sup(ν0) = inf(α / ν0{x , x > α} = 0) .

Assume that 0 < m < M < ∞. Consider the transformation T : νk → νk+1

defined by

νk+1(A) =

∫

A

(λ − µk
1)2

Dk
νk(dλ) (18)

for any A ∈ B, where µk
1 =

∫

λ νk(dλ) and Dk = µk
2 − (µk

1)2, with µk
2 =

∫

λ2 νk(dλ). Then, as k → ∞,

ν2k(I) → p , ν2k+1(I) → 1 − p (19)

for all I = [m, x), m < x < M , for some p depending on ν0, 0 < p < 1.

The proof of Theorem 4 is given in Appendix A3.

5. Stability of attractors

The range of possible values for p in the attraction Theorem 1 (H = R
d) is

considered in Theorem 3 of [1] (see also Lemma 3.5 of [14]). Let s(λ) and λ∗

be defined by (20). This theorem states that when λ∗ is not discarded at any
iteration, that is, when µk

1 6= λ∗ for any k, then p ∈ [1/2 − s(λ∗), 1/2 + s(λ∗)]
(note that this assumption cannot be checked). In this section we extend this
result in two directions: (i) we will assume that H is a Hilbert space, (ii) we
study the stability of the attractor defined by p in Theorem 2. We shall use the
following definition of stability, see [6] p. 444, [11], p. 7.

Definition 2. A fixed point ν∗ for a mapping T (·) on a metric space with dis-
tance d(·, ·) will be called stable if ∀ǫ > 0, ∃α > 0 such that for any ν0 for which
d(ν0, ν

∗) < α, d(T n(ν0), ν
∗) < ǫ for all n > 0. A fixed point ν∗ is unstable if it

is not stable.

We shall use the distance d(ν, ν′) given by the Lévy-Prokhorov metric, see
[20] p. 349. In our case (measures supported on [m, M ]), d(ν, ν′) becomes the
Lévy distance between the distribution functions F, F ′ associated with ν, ν′,
which we denote

L(F, F ′) = inf{ǫ : F ′(x − ǫ) − ǫ ≤ F (x) ≤ F ′(x + ǫ) + ǫ , ∀x} .

In the case where one of the two measures is the discrete measure ν∗
p concentrated

on m, M , with ν∗
p(m) = p, ν∗

p(M) = 1 − p, we get

d(ν, ν∗
p) = L(F, F ∗

p )

= inf{ǫ : F (x) ≤ p + ǫ for x < M − ǫ and p − ǫ ≤ F (x) for m + ǫ ≤ x} ,

with F ∗
p the distribution function associated with ν∗

p . We then have proved the
following, see Appendix A4.
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Theorem 5. Consider the situation of Theorem 4, with ν0 any probability mea-
sure supported on some closed subset SSA of [m, M ] and

ess inf(ν0) = m , ess sup(ν0) = M .

(i) The measure ν∗
p is a fixed point for the mapping T 2.

(ii) Consider the set Iu defined by

Iu =

(

0,
1

2
− s(λ∗)

)

∪
(

1

2
+ s(λ∗), 1

)

,

where

s(λ) =

√

(M − λ)2 + (λ − m)2

2(M − m)
, λ∗ = min

λ∈SSA

s(λ) . (20)

Any fixed point ν∗
p with p in Iu corresponds to an unstable fixed point for T 2.

(iii) Any point in the interval

Is =

(

1

2
− s(λ∗),

1

2
+ s(λ∗)

)

(21)

corresponds to a stable ν∗
p for the mapping T 2.

Remark 1. The convergence d(νk, ν∗
p ) → 0 is equivalent to weak convergence

νk
w−→ ν∗

p in the usual sense. If zk is associated with the spectral measure νk

and z∗p with ν∗
p , then, in the Hilbert space this is equivalent to (zk − z∗p , y) → 0

for any y ∈ H, whereas strong convergence would require ‖zk − z∗p‖ → 0. For

R
d, the two types of convergence are equivalent, and thus Corollary 1 implies

strong convergence. However, for H a Hilbert space the equivalence is false, and
indeed strong convergence generally does not hold. The stability property (iii) is
thus a weak statement when H is a Hilbert space. The L2 metric in H induces
the Hellinger metric on the space of spectral measures, which defines the same
topology as the distance in variation, see [20], p. 364. Strong convergence in H
is thus related to distance in variation in the space of spectral measures and is
clearly difficult to obtain — except in the special situation where ν0 has positive
mass at {m} and {M} and presents a spectral gap: ν0[(m, m + ǫ)] = 0 and
ν0[(M − ǫ, M)] = 0 for some ǫ > 0.

We have νk+2(dλ) = H(νk, λ)νk(dλ), with H(νk, λ) given by (29) in Ap-
pendix A4. One may then notice that when ν0 is a discrete probability measure,
the condition H(ν∗

p , λ) > 1 used in the proof of the instability part of the the-
orem, see Appendix A4, corresponds to a condition on the eigenvalues of the
Jacobian of the transformation T 2, see [15].

Note that the stability interval Is always contains the interval
(

1

2
− 1

2
√

2
,

1

2
+

1

2
√

2

)

≈ (0.14645, 0.85355) .

Numerical simulations for H = R
3, with A having eigenvalues m < λ < M , show

that for any initial density of x0 in R
d associated with a density of z0 reasonably
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Fig. 1. Empirical density of attractors (full line) and ϕ(p), see (22), for d = 3 (m = 1, λ = 4,
M = 10)

spread on the unit sphere, the density of the values of p corresponding to stable
attractors ν∗

p can be approximated by

ϕ(p) = C log[min{1, H(ν∗
p , λ)}] =

{

C log H(ν∗
p , λ) if p ∈ Is

0 otherwise ,
(22)

where C is a normalisation constant and H(ν∗
p , λ) is given by (30). Figure 1

shows the empirical density of attractors (full line) together with ϕ(p) (dashed
line) in the case m = 1, λ = 4, M = 10. The support of this density coincides
with the stability interval Is given by (21). When d > 3, the density of attractors
depends on the initial density of x0.

6. Rates of convergence

We first state a property showing that different definitions of rates of convergence
are asymptotically equivalent, see Appendix A5 for the proof.

Theorem 6. Let W be a bounded positive self-adjoint operator in H, with bounds
c and C such that 0 < c < C < ∞. Assume that W commutes with A (when
H = R

d, W is a d × d positive-definite matrix with minimum and maximum
eigenvalues respectively c and C). Define

Rk(W ) =
(Wgk+1, gk+1)

(Wgk, gk)
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if ‖gk‖ 6= 0 and Rk(W ) = 1 otherwise. Apply a P -gradient algorithm (3), ini-
tialized at x0, with γk given by (4), for the minimisation of f(x) given by (1),
with minimum value at x∗. Then the limit

R(W, x0, x
∗) = lim

n→∞

[

n−1
∏

k=0

Rk(W )

]1/n

exists for all x0, x
∗ in H and R(W, x0, x

∗) = R(x0, x
∗) does not depend on W .

In particular,

R(W, x0, x
∗) = lim

n→∞

(

n−1
∏

k=0

rk

)1/n

with rk defined by (9).

From the results of Section 3, we have

R(W, x0, x
∗) = r(p) =

p(1 − p)(ρ − 1)2

[p + ρ(1 − p)][(1 − p) + ρp]

for any W , where p defines the attractor, see (15), and ρ = M/m is the condition
number of the operator. The function r(p) is symmetric with respect to 1/2 and
monotonously increasing from 0 to 1/2, see Figure 2. The worst asymptotic rate
is thus obtained at p = 1/2:

Rmax =

(

ρ − 1

ρ + 1

)2

. (23)

Note that ∀k, rk ≤ Rmax since rk is not decreasing, see Section 2.4. For a
typical x0 (such that the convergence is not finite, that is, such that r(p) 6= 0),
the stability analysis of Section 5 shows that only values of p in Is given by (21)
may correspond to stable attractors. The range of possible values of R(p) is thus
[Rmin, Rmax], where Rmax, given by (23), is obtained for p = 1/2 and

Rmin ≤ R∗
min = R(1/2 + 1/[2

√
2]) =

(ρ − 1)2

(ρ + 1)2 + 4ρ
.

Figure 3 presents the range [R∗
min, Rmax] as a function of 1/ρ, the upper curve

corresponding to Rmax and the lower to R∗
min. The maximum size of the range

is 3 − 2
√

2 ≃ 0.1716, obtained at ρ = 1 + 2
√

2 + 2
√

2 +
√

2 ≃ 7.5239. These
results confirm the experimental observation that the rate of convergence of the
gradient algorithm is generally close to its worst value Rmax, see [14]. The same
property is true for any P -gradient algorithm.

Remark 2. A similar analysis for Dk defined by (12), which is also not decreasing,
shows that Dk → D(p) = p(1 − p)(M − m)2 as k → ∞, with Dk ≤ D∗ =
D(1/2) = (M − m)2/4 for all k. Also, for any typical x0 such that p ∈ Is given
by (21), we have D(p) ≥ D(1/2 + 1/[2

√
2]) = (M − m)2/8.
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Fig. 2. r(p) as a function of p, for ρ = 2 (bottom curve), 4, 8 and 16 (top)

Another quantity of interest is given by

∆N = log(Rmax/Rmin)/[log(Rmax) log(Rmin)] .

Indeed, for N large enough, (WgN , gN )/(Wg0, g0) ≃ r(p)N , the number N of
iterations required for obtaining a ratio (WgN , gN)/(Wg0, g0) = ǫ (ǫ ≪ 1) is
approximately log(ǫ)/ log[r(p)] and ∆N | log(ǫ)| thus indicates the length of the
interval of possible values for N due to the range of possible values for p. Direct
calculation gives ∆N | log(Rmax)| < 1/2 for any ρ and

∆N = ρ/8 − 1/4 + O(1/ρ) , 1/ log(Rmax) = −ρ/4 + O(1/ρ)

for large ρ. Therefore, the number of iterations required by a P -gradient algo-
rithm to achieve a given precision ǫ << 1 varies at most by a factor 2 depending
on the (typical) starting point x0, factors of variation close to 2 being possible
only when ρ is large.

The average value of R(W, x0, x
∗) for z0 = z(x0) uniformly distributed on

the unit sphere is the same for any P -gradient algorithm, more generally, the
distribution of R(W, x0, x

∗) associated with a particular distribution of z0 does
not depend on the particular P -gradient algorithm considered. Moreover, numer-
ical simulations show that the average value of R(I, x0, x

∗) is the same for the
steepest-descent (P (A) = A−1) and minimum residues (P (A) = I) algorithms
for x0 uniformly distributed on the sphere ‖x0−x∗‖ = 1. The small deviations in
average performance between different P -gradient algorithms can only be related
to the fact that a fixed distribution for x0 corresponds to different distributions
for z(x0).
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Fig. 3. Range [R∗

min
, Rmax] of possible values of the asymptotic rate r(p) as a function of 1/ρ

Remark 3. It is known that the introduction of a relaxation coefficient γ, with
0 < γ < 1, in the steepest-descent algorithm totally changes its behaviour,
see, e.g., Chapter 7 of [15]; the algorithm (2) then becomes xk+1 = xk −
γ[(gk, gk)/(Agk, gk)]gk. For H = R

d and a fixed A, depending on the value
of γ, the renormalized process either converges to periodic orbits (the same for
almost all starting points) or exhibits a chaotic behaviour, with the classical
period-doubling phenomenon in the case d = 2. In higher dimensions, repeated
numerical trials show that the process typically no longer converges to the 2-
dimensional plane spanned by (e1, ed). A detailed analysis for d = 2 and experi-
mental results for d > 2 also show that relaxation (with γ close to 1) considerably
improves the rate of convergence. Similar results hold more generally for all P -
gradient algorithms, with the iteration (3) transformed into xk+1 = xk − γγkgk,
with γ the (fixed) relaxation coefficient and γk given by (4). Steepest descent
with random relaxation coefficient γ ∈ (0, 2) is considered in [19], avoiding the
two point attraction and significantly improving the behavior of ordinary steep-
est descent.

Appendix

A1. Proof of Theorem 2. The proof relies on Theorem 4 (Theorem 3 when
H = R

d), which concerns successive transformations applied to a probability
measure.

Since A is self-adjoint, its spectrum SSA is a closed subset of the interval
[m, M ] of the real line and m, M ∈ SSA. Let Eλ be the spectral family associated
with A, and define the spectral measure νk by νk(dλ) = d(Eλzk, zk), m ≤ λ ≤ M .
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Since (zk, zk) =
∫M

m
νk(dλ) = 1, νk is a probability measure on the Borel sets of

(0,∞), with νk([m, M ]) = 1 ∀k. This representation gives

µ1 = (Azk, zk) =

∫

λ νk(dλ) , µ2 = (A2zk, zk) =

∫

λ2 νk(dλ)

where integration is over [m, M ] unless otherwise specified. Therefore, for any
Borel set A the transformation (7) gives in terms of νk:

νk+1(A) =

∫

A

[

λ −
∫

λ′ νk(dλ′)
]2

νk(dλ)
∫

λ′2 νk(dλ′) −
[∫

λ′ νk(dλ′)
]2 .

The conditions (14) on z0 are equivalent to ess inf(ν0) = m and ess sup(ν0) = M ,
see Theorem 4, and the updating rule for νk can be written as (18). Theorem 4
then implies (19), which can be written as: ∀ǫ > 0, ǫ ≤ β = (M − m)/2,

(Em+ǫz2k, z2k) → p , (EM−ǫz2k, z2k) → p ,

(Em+ǫz2k+1, z2k+1) → 1 − p , (EM−ǫz2k+1, z2k+1) → 1 − p ,

as k → ∞, where p depends on z0, 0 < p < 1. Define p2k = (Em+βz2k, z2k),
p2k+1 = 1 − (Em+βz2k+1, z2k+1), and the angles ϕ, ϕn by cosϕ =

√
p, sin ϕ =√

1 − p, cosϕn =
√

pn, sin ϕn =
√

1 − pn, ∀n. Also define s2k = Em+βz2k/ cosϕ2k,
s2k+1 = Em+βz2k+1/ sinϕ2k+1, t2k = (z2k−Em+βz2k)/ sinϕ2k, t2k+1 = −(z2k+1−
Em+βz2k+1)/ cosϕ2k+1. This gives pn → p as n → ∞, ‖sn‖ = ‖tn‖ = 1 ∀n, and
z2k = cosϕ2k s2k + sinϕ2k t2k, z2k+1 = sin ϕ2k+1 s2k+1 − cosϕ2k+1 t2k+1. Also,

‖Asn − msn‖2 =

∫

(λ − m)2 d(Eλsn, sn) ,

which, for n = 2k and any ǫ, 0 < ǫ < β, gives

‖As2k − ms2k‖2 =

∫ m+β

m

(λ − m)2

p2k
d(Eλz2k, z2k)

=

∫ m+ǫ

m

(λ − m)2

p2k
d(Eλz2k, z2k) +

∫ m+β

m+ǫ

(λ − m)2

p2k
d(Eλz2k, z2k)

≤ ǫ2

p2k
+

β2

p2k

[

p2k −
∫ m+ǫ

m

d(Eλz2k, z2k)

]

.

Since p2k → p and
∫m+ǫ

m
d(Eλz2k, z2k) → p as k → ∞, ‖As2k − ms2k‖ → 0 as

k → ∞. Similarly, ‖As2k+1 −ms2k+1‖ → 0 as k → ∞ and ‖Atn −Mtn‖ → 0 as
n → ∞. Consider now

un = cosϑn sn + sin ϑn tn , vn = − sinϑn sn + cosϑn tn .

Straightforward calculations show that ϑn = ϕn − ϕ gives (15) with ‖un‖ =
‖vn‖ = 1 ∀n. Also

‖Aun − mun‖ ≤ | cosϑn|‖Asn − msn‖ + | sin ϑn|(M − m) ,
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and, since ‖Asn −msn‖ → 0, ϑn → 0 as n → ∞, ‖Aun −mun‖ → 0 as n → ∞.
Similarly, ‖Avn − Mvn‖ → 0 as n → ∞.

A2. Proof of Theorem 3. We first prove that the mass of νk tends to concen-
trate on two eigenvalues only. When ν0 is non degenerate, L1 > 1 from Jensen
inequality, and thus, since (Lk) is non-decreasing, see Section 2.4, Lk ≥ L1 > 1.
Now, from Lagrange identity (

∑

a2
i )(
∑

b2
i ) =

∑

i<j(aibj − ajbi)
2 + (

∑

aibi)
2

Lk =

(

d
∑

i=1

λi[zk]2i

) (

d
∑

i=1

[zk]2i /λi

)

=
∑

i<j

[zk]2i [zk]2j

(√
λi

√

λj

−
√

λj√
λi

)2

+

(

d
∑

i=1

[zk]2i

)2

=
∑

i<j

[zk]2i [zk]2j
(λi − λj)

2

λiλj
+ 1 .

Let ik and jk denote the indices that achieve maxi<j [zk]2i [zk]2j . We have

Lk ≤ [zk]2ik
[zk]2jk

∑

i<j

(λi − λj)
2

λiλj
+ 1

and thus

[zk]2ik
[zk]2jk

≥ δ =
L1 − 1

∑

i<j
(λi−λj)2

λiλj

.

Moreover, [zk]2ik
+ [zk]2jk

< 1 gives

δ < [zk]2ik
< 1 − δ and δ < [zk]2jk

< 1 − δ .

Consider the matrix Mk given by (10). Its determinant can be written as

detMk =
∑

i<j<l

[zk]2i [zk]2j [zk]2l
(λi − λj)

2(λi − λl)
2(λj − λl)

2

λiλjλl

≥ [zk]2ik
[zk]2jk

(λik
− λjk

)2
∑

i6=ik,jk

[zk]2i
(λi − λik

)2(λi − λjk
)2

λiλik
λjk

≥ δ
δ6
λ

M3

∑

i6=ik,jk

[zk]2i

where
δλ = min

i,j
|λi − λj | .

Since detMk → 0 as k → ∞, see (11), we get
∑

i6=ik ,jk
[zk]2i → 0 as k → ∞. The

mass thus tends to concentrate on λik
, λjk

.
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Next we prove that ik and jk eventually become fixed. From the result above,
∀ǫ > 0, ∃kǫ such that

∑

i6=ik ,jk
[zk]2i < ǫ, k > kǫ.

Consider the updating equation (16). We have for any i, (µk
1 − λi)

2 ≤ (M −
m)2. Also, Dk = µk

2 − (µk
1)2 ≥ D0, see Section 2.4. This gives for i 6= ik, jk and

k > kǫ

[zk+1]
2
i < ǫ

(M − m)2

D0
.

Taking ǫ1 = δD0/(M − m)2 we obtain [zk+1]
2
i < δ for i 6= ik, jk and k > kǫ1 .

Since [zk+1]
2
ik+1

> δ and [zk+1]
2
jk+1

> δ, i 6∈ {ik, jk} implies i 6∈ {ik+1, jk+1},
k > kǫ1 and thus {ik, jk} = {i∗, j∗} for k > kǫ1 .

We show now that {i∗, j∗} = {1, d}. Assume that i∗ < j∗ < d (which implies
[zk]2d → 0, k → ∞). We need to show that (λd − µk

1)2 > (λj∗ − µk
1)2 for k large

enough. We have

µk
1 = λi∗ [zk]2i∗ +λj∗ [zk]2j∗ +

∑

i6=i∗,j∗

λi[zk]2i ≤ λi∗ [zk]2i∗ +λj∗ [zk]2j∗ +λd

∑

i6=i∗,j∗

[zk]2i .

Take ǫ2 = min{ǫ1, δδλ/λd}. For k > kǫ2 we have

µk
1 ≤ λi∗ [zk]2i∗+λj∗ [zk]2j∗+λdǫ2 ≤ λi∗δ+λj∗(1−δ)+λdǫ2 ≤ λj∗−δδλ+λdǫ2 ≤ λj∗

and thus (λd − µk
1)2 > (λj∗ − µk

1)2. From (16), this gives for k > kǫ2

(

[zk+1]d
[zk]d

)2

=
(λd − µk

1)2

Dk
>

(λj∗ − µk
1)2

Dk
=

(

[zk+1]j∗

[zk]j∗

)2

and thus
(

[zk+1]j∗

[zk+1]d

)2

<

(

[zk]j∗

[zk]d

)2

.

We arrived at a contradiction since [zk]2d → 0 and [zk]2j∗ is bounded from below
by δ. Therefore j∗ = d. Similarly, i∗ = 1.

Finally, let L denote limk→∞ Lk, see Section 2.4. There are only two discrete
measures with nonzero masses on λ1 and λd and such that µ1µ−1 = L,

ν(1) =

{

λ1 λd

p 1 − p

}

and ν(2) =

{

λ1 λd

1 − p p

}

with

p =
1

2
− ρ + 1

ρ − 1

√

1

4
− ρL

(ρ + 1)2

and ρ = M/m. Direct calculation shows that νk = ν(1) gives νk+1 = ν(2), hence
the convergence of νk to the cyclic attractor ν(1) → ν(2) → ν(1) → · · ·

A3. The proof of Theorem 4 is more technical than that of Theorem 3 and relies
on a series of lemmas stated below.
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Lemma 1. Let ν be any probability distribution on [m, M ], 0 < m ≤ M < ∞
with moments µi =

∫

λiν(dλ), i ∈ Z (µ0 = 1). Then,

µ2 − µ2
1 ≤ D∗ = (M − m)2/4 (24)

µ1µ−1 ≤ L∗ = (M + m)2/(4mM) . (25)

Proof. The proof relies on standard results in experimental design theory, see,
e.g., [4,21]. Consider the two linear regression models η1(θ, λ) = θ0 + θ1λ and
η2(θ, λ) = θ0/

√
λ + θ1

√
λ, with θ0, θ1 the model parameters and λ the design

variable, λ ∈ [m, M ]. D-optimum design (approximate theory) aims at deter-
mining a probability measure on [m, M ] that maximizes the determinant of the
information matrix associated with a particular model, here respectively

I1(ν) =

(

µ0 µ1

µ1 µ2

)

and I2(ν) =

(

µ−1 µ0

µ0 µ1

)

.

The function log det I(ν) is concave on the set of probability measures on [m, M ],
and its maximum is unique. The Kiefer-Wolfowitz General Equivalence Theorem
[8] gives a characterization of the measure ν∗ that maximizes det I1(ν) = µ2−µ2

1

and det I2(ν) = µ1µ−1 − 1. In this case it corresponds to the two point measure,
supported at m and M , with both masses equal to 1/2. Direct calculation gives
(24,25). One may notice that (25) corresponds to the Kantorovich inequality, see
[7] and [12], p. 151. (A full development of this connection is presented in [17].)

Lemma 2. Let ν be any probability distribution on [m, M ], 0 < m ≤ M < ∞.
Assume that there exists an interval I ⊆ [m, M ], |I| ≤ α and ν(I) ≥ 1 − ǫ,
ǫ ∈ [0, 1]. Then, Var(ν) ≤ α2/4 + 2ǫM2.

Proof. Define µ1 =
∫

[m,M ]
λ ν(dλ), µI =

∫

I
λ ν(dλ). Then µ1 = µI+

∫

[m,M ]\I
λ ν(dλ).

Therefore, µI ≤ µ1 ≤ µI + ǫM . We get

Var(ν) =

∫

(λ − µ1)
2 ν(dλ) ≤

∫

I

(λ − µ1)
2 ν(dλ) + (M − m)2ǫ

=

∫

I

(λ − µI)2 ν(dλ) + (µ1 − µI)2ν(I) + (M − m)2ǫ .

Lemma 1 implies
∫

I(λ − µI)2 ν(dλ) ≤ α2/4 and (µ1 − µI)2 ≤ ǫ2M2 gives

Var(ν) ≤ α2/4 + ǫ2M2 + M2ǫ ≤ α2/4 + 2ǫM2 .

Lemma 3. Let ν be any probability distribution on [m, M ], 0 < m ≤ M < ∞.
Assume that Var(ν) ≤ ǫ. Then, there exist an interval I such that |I| ≤ ǫ1/4

and ν(I) ≥ 1 − 4
√

ǫ

Proof. Take I = [µ1− ǫ1/4/2, µ1 + ǫ1/4/2], µ1 =
∫

λ ν(dλ), and apply the Cheby-
shev inequality.
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Lemma 4. Let ν be any distribution on [m, M ], 0 < m ≤ M < ∞. Define
µi =

∫

λi ν(dλ) and

M =





µ−1 µ0 µ1

µ0 µ1 µ2

µ1 µ2 µ3



 .

Assume that L = µ−1µ1 > 1 (which, by Jensen’s inequality, holds when ν is not
degenerate at a single point) and detM < ǫ. Then, there exist two intervals I1

and I2 such that

(i) |Ii| ≤
(M − m)ǫ1/4

m9/4(L − 1)3/2
, i = 1, 2 , ν(I1) + ν(I2) ≥ 1 − 4

√
ǫM3/2 ,

(ii) max
x∈Ii

|x − µ−1| >
3(L − 1)m2

4(M − m)
, i = 1, 2 , (26)

(iii) for ǫ < ǫ∗ =
4(L − 1)8M8m16

[32(L − 1)3 + M4(M − m)2]2
,

ν(Ii) ≥
m2(L − 1)

4M2
, i = 1, 2 , (27)

and max
x∈I1,y∈I2

|x − y| > m
√

2(L − 1) .

Proof.
(i) Consider the measure ν′ defined by ν′(A) = (1/µ−1)

∫

A(1/λ)ν(dλ) for any
Borel set A ⊂ [m, M ], and denote its moments by µ′

i = (1/µ−1)
∫

λi−1ν(dλ) =
µi−1/µ−1. Note that for any Borel set A

1

Mµ−1
ν(A) ≤ ν′(A) ≤ 1

mµ−1
ν(A) .

We have

M′ =





µ′
0 µ′

1 µ′
2

µ′
1 µ′

2 µ′
3

µ′
2 µ′

3 µ′
4



 = M/µ−1

and thus detM′ = detM/µ3
−1. Also define D′ = µ′

2 − (µ′
1)

2, a =
√

D′, b =

(µ′
1µ

′
2 − µ′

3)/
√

D′, c = aµ′
2 + bµ′

1 = [(µ′
2)

2 − µ′
1µ

′
3]/

√
D′ (note that a > 0, b < 0

and c < 0) and η = F (ζ) = aζ2 +bζ−c, with ζ having the distribution ν′. Direct
calculation gives E′{η} =

∫

η(ζ)ν′(dζ) = 0 and Var′(η) = E′{η2} − (E′{η})2 =
detM′, so that detM < ǫ implies Var′(η) < ǫ′ = ǫ/µ3

−1. From Lemma 3,

the interval I = [−(ǫ′)1/4/2, (ǫ′)1/4/2] is such that Pr{η ∈ I} ≥ 1 − 4
√

ǫ′.
Also, from the mean-value theorem, there exist λ1 < λ2 such that λi ∈ [m, M ]
and aλ2

i + bλi − c = 0, i = 1, 2. Direct calculation gives F (µ′
1) = F (µ−1) =

a(µ′
1)

2 + bµ′
1 − c = −(D′)3/2, and thus

m ≤ λ1 < 1/µ−1 < λ2 ≤ M .

Take β = (M − m)(ǫ′)1/4/[2(D′)3/2], we get

F (λ1 + β) < −(ǫ′)1/4/2 , F (λ1 − β) > (ǫ′)1/4/2 ,

F (λ2 + β) > (ǫ′)1/4/2 , F (λ2 − β) < −(ǫ′)1/4/2 ,
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and ν(I1) + ν(I2) ≥ 1 − 4
√

ǫM3/2 when Ii = [λi − β, λi + β], i = 1, 2, with

|Ii| = 2β = (M − m)ǫ1/4µ
9/4
−1 /(L − 1)3/2 ≤ (M − m)ǫ1/4/[m9/4/(L − 1)3/2].

(ii) Define y1 = µ′
1 − λ1, y2 = λ2 − µ′

1, so that maxx∈I1 |x − µ−1| > y1 and
maxx∈I2 |x − µ−1| > y2. We have F (λ) = a(λ − λ1)(λ − λ2) and thus y1y2 =
−F (µ′

1)/a = D′. Also, |y2−y1| < y1+y2 ≤ M −m, so that D′ > yi(yi +M −m),
i = 1, 2, and thus

yi >
M − m

2

[
√

1 +
4D′

(M − m)2
− 1

]

>
D′

M − m

(

1 − D′

(M − m)2

)

, i = 1, 2 .

Lemma 1 gives D′ < (M − m)2/4, so that

yi > 3D′/[4(M − m)] > 3(L − 1)m2/[4(M − m)] , i = 1, 2 .

(iii) Define γ = ν′(I2), part (i) implies ν′(I1) > 1−4
√

ǫ′−γ, and from Lemma 2

D′ ≤ (M − m)2
√

ǫ′

4(D′)3
+ 2(4

√
ǫ′ + γ)M2 ,

which gives

γ ≥ D′

2M2
−
√

ǫ′
[

(M − m)2

8(D′)3M2
+ 4

]

,

and thus γ ≥ D′/(4M2) > (L − 1)m2/[4M2] for ǫ < ǫ∗ < [4(D′)8]/[(M − m)2 +
32(D′)3M2]2, see (27).

Define now ∆ = maxx∈I1,y∈I2 |x− y|. Lemma 2 gives D′ ≤ ∆2/4 + 8
√

ǫ′M2,

which implies ∆2 ≥ 4D′ − 32M2
√

ǫ′. Since ǫ < ǫ∗ implies
√

ǫ′ < D′/(16M2), we
get ∆2 > 2(L − 1)m2.

Proof of Theorem 4. The proof follows the same lines as that of Theorem 3
and is divided into four parts. In (i), we construct sequences of intervals Lk =
[mk, mk + δ] and Rk = [Mk − δ, Mk] in which the measure νk will tend to
concentrate. In (ii) we prove that Rk ∩Rk+1 6= ∅ and in (iii) that the sequence
Mk is non-decreasing. Finally, the limiting behaviour of νk is derived in (iv).

(i) We have seen in Section 2.4 that detMk → 0 as k → ∞, with Mk given by
(10). Therefore, given ǫ, ∃Kǫ such that ∀k > Kǫ, detMk < ǫ. Define Lk = µk

1µk
−1

and note that Lk > 1 because no νk is degenerate at a single point. Using
Lemma 4, for ǫ small enough, for any k > Kǫ there exist two intervals Ik

1 , Ik
2 ,

with width at most

δ = δ(ǫ) =
(M − m)ǫ1/4

m9/4(L0 − 1)3/2
,

and such that νk(Ik
1 ) + νk(Ik

2 ) ≥ 1 − 4
√

ǫM3/2, νk(Ik
1 ) ≥ m2(Lk − 1)/(4M2),

νk(Ik
2 ) ≥ m2(Lk −1)/(4M2). Also, maxx∈Ik

1 ,y∈Ik
2
|x−y| ≥ m

√

2(Lk − 1). With-

out any loss of generality, assume that Ik
1 is the interval on the left. Define
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L(x) = [x, x + δ], R(x) = [x − δ, x],

X k
L = Argmax

x
{νk[L(x)] , L(x) ∩ Ik

1 6= ∅} ,

X k
R = Argmax

x
{νk[R(x)] , R(x) ∩ Ik

2 6= ∅} ,

and mk = minX k
L , Mk = maxX k

R, Lk = L(mk), Rk = R(Mk); that is, Mk is the
right endpoint of an interval Rk, intersecting Ik

2 , with maximum measure, and
similarly for mk and Lk. Note that νk(Lk) + νk(Rk) ≥ 1 − 4

√
ǫM3/2, νk(Lk) ≥

m2(Lk − 1)/(4M2) and νk(Rk) ≥ m2(Lk − 1)/(4M2). The situation is the same
for the two sequences of intervals (Lk) and (Rk), and we concentrate on (Rk)
in the rest of the proof.

(ii) We show now that Rk ∩ Rk+1 6= ∅. Again for ǫ small enough µk
1 /∈ Rk and

λ − µk
1 ≥ Mk − δ − µk

1 on Rk so that

νk+1(Rk) =

∫

Rk

(λ − µk
1)2

Dk
νk(dλ) ≥ νk(Rk)

Dk
(Mk − δ − µk

1)2

≥ m2(Lk − 1)

4M2D∗
(Mk − δ − µk

1)2

with D∗ the maximum possible value of Dk, D∗ = (M − m)2/4, see Lemma 1.
By construction, maxx∈I2

k
|x − µk

1 | ≤ Mk + δ − µk
1 , and thus, from Lemma 4,

Mk − µk
1 + δ >

3m2(Lk − 1)

4(M − m)
≥ 3m2(L0 − 1)

4(M − m)
= C . (28)

Choosing ǫ such that δ < C/4 gives Mk − δ − µk
1 > C/2 and thus

νk+1(Rk) >
m2(Lk − 1)

4M2D∗

C2

4
≥ ν∗

R =
9m6(L0 − 1)3

16M2(M − m)4
.

Choosing now ǫ such that 4
√

ǫM3/2 < ν∗
R we obtain Rk ∩ Rk+1 6= ∅ for any

k > Kǫ.

(iii) We prove now that the sequence (Mk) is not decreasing starting at some
Kǫ for ǫ small enough. Take k > Kǫ and assume that Mk+1 = Mk − β, β > 0.
Then note that β < δ since Rk ∩Rk+1 6= ∅ by (ii) above. Consider the difference
νk+1(Rk) − νk+1(Rk+1) = νk+1([Mk − β, Mk]) − νk+1([Mk − δ − β, Mk − δ]).
Assume first that νk+1([Mk − δ−β, Mk − δ]) = 0, then νk+1(Rk) > νk+1(Rk+1),
which is impossible by construction. We can thus consider the following ratio

νk+1([Mk − β, Mk])

νk+1([Mk − δ − β, Mk − δ])
=

∫Mk

Mk−β(λ − µk
1)2 νk(dλ)

∫Mk−δ

Mk−δ−β
(λ − µk

1)2 νk(dλ)

≥ (Mk − β − µk
1)2

(Mk − δ − µk
1)2

νk([Mk − β, Mk])

νk([Mk − δ − β, Mk − δ])
.



Asymptotic behaviour of a family of gradient algorithms in R
d and Hilbert spaces 23

Since Mk−δ−µk
1 ≥ C−2δ ≥ 2δ for C > 4δ, see (28), and β < δ, (Mk−β−µk

1)
2 >

(Mk − δ − µk
1)2. Also, by construction,

0 ≤ νk([Mk − β, Mk]) − νk([Mk − δ − β, Mk − δ])

= νk([Mk − β, Mk]) − νk([Mk − δ − β, Mk − δ]) .

This gives
νk+1([Mk − β, Mk])

νk+1([Mk − δ − β, Mk − δ])
> 1 .

Therefore, β > 0 leads to νk+1(Rk) > νk+1(Rk+1), which is impossible. We thus
obtain Mk+1 ≥ Mk for k > Kǫ.

(iv) Since the sequence (Mk) is non-decreasing and bounded from above (by
M), it has a limit M∗ ≥ M . The same is true for mk, and mk → m∗ as k → ∞.
We have thus proved that for any δ small enough and any k larger than some
Kδ,

νk([M∗ − δ, M∗]) + νk([m∗, m∗ + δ]) ≥ 1 − 4M3/2m9/2(L0 − 1)3δ2

(M − m)2
.

Assume that M∗ < M . This would imply νk([M − δ, M ]) → 0 as k → ∞ for
δ < M − M∗. On the other hand,

νk+1([M − δ, M ])

νk+1([M∗ − δ, M∗])
>

νk([M − δ, M ])

νk([M∗ − δ, M∗])
,

which leads to a contradiction since νk([M − δ, M ])/νk([M∗ − δ, M∗]) is then
increasing and νk([M∗ − δ, M∗]) is bounded from below. Therefore, M∗ = M ,
and similarly m∗ = m, with, for δ small enough and any k larger than some Kδ,
νk([m + δ, M − δ]) < 4M3/2m9/2(L0 − 1)3δ2/(M − m)2. Finally, from Helly’s
Theorem, see [20], p. 319, from the sequence (νk) we can extract a subsequence
(νki

) that is weakly convergent, and from the result above the associated limit
has necessarily the form ν∗

p , where ν∗
p is the discrete measure concentrated on

the two points m, M , with ν∗
p (m) = p, ν∗

p(M) = 1 − p. Since Lki
converges to

some L, ν∗
p is such that the associated value of µ1µ−1 is equal to L, which only

leaves two possibilities for p (and 1 − p):

p =
1

2
± ρ + 1

ρ − 1

√

1

4
− ρL

(ρ + 1)2

where ρ = M/m. Applying the transformation T , we get νki+1 = T (νki
) →

T (ν∗
p) = ν∗

1−p.

A4. Proof of Theorem 5.
(i) It is straightforward to check that T 2(ν∗

p ) = ν∗
p , ∀p ∈ (0, 1).
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(ii) We assume that SSA is not reduced to {m, M} (otherwise Iu = ∅). We have
νk+2(dλ) = H(νk, λ)νk(dλ), with

H(νk, λ) =
(λ − µk

1)2(λ − µk+1
1 )2

DkDk+1
(29)

see (18), with µk
1 , Dk defined as in Theorem 4. For νk = ν∗

p , it gives

H(ν∗
p , λ) =

[M(1 − p) + mp − λ]2[Mp + m(1 − p) − λ]2

p2(1 − p)2(M − m)4
. (30)

One can then check that for any p ∈ Iu, maxλ∈SSA
H(ν∗

p , λ) = H(ν∗
p , λ∗) > 1,

with λ∗ = minλ∈SSA
s(λ). Therefore, for any p ∈ Iu, one can choose ǫ small

enough, such that d(νk, ν∗
p) < ǫ implies νk+2([a, b]) > Kpνk([a, b]), for some

Kp > 1 and some a, b such that m + ǫ < a < b < M − ǫ and [a, b] ∩ SSA 6= ∅.
For any α > 0, α < 1 − p, take an initial measure ν0 putting mass p at m,
1− p−α at M and α in the interval [a, b]. It satisfies d(ν0, ν

∗
p) < α, and, for any

m, either d(ν2m, ν∗
p) > ǫ or ν2(m+1)([a, b]) > Kpν2m([a, b]). The later case gives

ν2m([a, b]) > 2ǫ, and thus d(ν2m, ν∗
p) > ǫ, as soon as m > log(2ǫ/α)/ log(Kp),

which shows that ν∗
p is unstable.

(iii) Part (a) concerns the case where a spectral gap is present, with point mass
at m and M . The proof for the general situation is more technical and is sketched
in part (b).

(a) Assume that the measure ν0 has a spectral gap: ν0 = 0 on (m, m+s) and
(M − s, M) for some s > 0. Take γ < s and assume that d(ν0, ν

∗
p) < α < γ with

p ∈ Is. The arguments go as follows. First we bound ν2{(m+γ, M−γ]} by 2K0α
for some K0 < 1, then we bound ν2{(M−γ, M ]} by 1−p+K1α for some K1 < ∞.
We show that d(ν2, ν

∗
p2

) < K0α for some p2 such that |p2 − p| < (K0 + K1)α.
Stability will then follow by an induction argument.

The maximum value of H(ν0, λ) for λ varying in [m + γ, M − γ] may be
reached for some λ∗ ∈ (µ0

1, µ
1
1) or at one of the two points m + γ, M − γ. Now,

for α small enough H(ν0, λ) will be close to H(ν∗
p , λ) given by (30), and p ∈ Is

implies

max
λ∈SSA∩(µ0

1,µ1
1)

H(ν0, λ) < 1 . (31)

Consider the function H(ν0, λ) at λ = M − γ. We can write

H(ν0, M − γ) = H(ν∗
p , M)− γ

dH(ν∗
p , λ)

dλ |λ=M
+ FH(ν∗

p ; ν0, M) + O(γ2) , (32)

with FH(ν∗
p ; ν0, M) the directional derivative of H(ν, M) at ν∗

p in the direction
ν0,

FH(ν∗
p ; ν0, M) = lim

β→0+

H [(1 − β)ν∗
p + βν0, M ] − H(ν∗

p , M)

β
.
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Define FH(ν∗
p , x, λ) = FH(ν∗

p ; δx, λ) with δx the delta measure supported at x.
We have

FH(ν∗
p ; ν0, M) =

∫ M

m

FH(ν∗
p , x, M)νk(dx) ,

which we decompose in three parts:

FH(ν∗
p ; ν0, M) =

∫ m+γ

m

FH(ν∗
p , x, M)ν0(dx) +

∫ M−γ

m+γ

FH(ν∗
p , x, M)ν0(dx)

+

∫ M

M−γ

FH(ν∗
p , x, M)ν0(dx) .

Direct calculation gives

FH(ν∗
p , x, M) =

(x − m)2(M − x)[x − m + (2p − 1)(M − m)]

p2(1 − p)2(M − m)4

so that FH(ν∗
p , m, M) = FH(ν∗

p , M, M) = 0 and FH(ν∗
p ; ν0, M) < F ∗ν0{(m +

γ, M − γ]} with F ∗ = maxp∈Is, x∈[m,M ] FH(ν∗
p , x, M) < ∞. Also, d(ν0, ν

∗
p ) < α

implies ν0{(m+γ, M −γ]} = ν0{(m+α, M −α]} < 2α, so that FH(ν∗
p ; ν0, M) <

2αF ∗. Now,

H(ν∗
p , M) = 1 ,

dH(ν∗
p , λ)

dλ |λ=M
=

2

p(1 − p)(M − m)
,

which, together with (32) gives for γ small enough

H(ν0, M − γ) < 1 + 2αF ∗ − γ

p(1 − p)(M − m)

and thus

H(ν0, M − γ) < 1 − γ

2p(1 − p)(M − m)

for α < γ/[4F ∗p(1 − p)(M − m)].
The situation is similar at m+ γ. Together with (31) this implies for α small

enough

max
λ∈SSA∩[m+γ,M−γ]

H(ν0, λ) < K0 < 1

and therefore,

ν2{(m + γ, M − γ]} < 2K0α (33)

with K0 < 1 not depending on α.
Consider now the interval (M − γ, M ]. We have

ν2{(M − γ, M ]} = ν2(M) = H(ν0, M)ν0{(M − γ, M ]} = H(ν0, M)ν0(M) ,

with d(ν0, ν
∗
p) < α implying ν0(M) < 1 − p + α, and

H(ν0, M) = H(ν∗
p , M) + FH(ν∗

p ; ν0, M) + O(α2) < 1 + 2αF ∗ + O(α2) .
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This gives for α small enough

ν2{(M − γ, M ]} < 1 − p + K1α

for some K1 < ∞. Similarly, ν2{[m, m + γ]} < p + K1α.
Define p0 = p, p2 = [ν2(m) − ν2(M) + 1]/2, α0 = α. We obtain

−K0α0 < ν2(m) − p2 < 0 , −K0α0 < ν2(M) − (1 − p2) < 0

which together with (33) implies

d(ν2, ν
∗
p) < α2 = K0α0 .

Moreover, |p2 − p0| < (K0 + K1)α0.
For α small enough, p2 ∈ Is and we can then repeat the same arguments.

This gives for any m
d(ν2m, ν∗

p2m
) < α2m = Km

0 α

with

| p2m − p | < (K0 + K1)

m−1
∑

i=0

α2i = (K0 + K1)
1 − Km

0

1 − K0
α <

K0 + K1

1 − K0
α

and p2m ∈ Is, for α small enough. For any p ∈ Is and any ǫ > 0, taking ν0 such
that d(ν0, ν

∗
p ) < α with α small enough thus implies d(ν2m, ν∗

p) < ǫ for any m,
and ν∗

p is thus stable.

(b) Consider now the general situation. The proof follows the same lines
as in case (a), but more technicalities are required since we need to consider
measures of intervals of the form [m, m + γ] and (M − γ, M ], with γ decreasing
in a suitable way as the number of iterations of the mapping T 2 increases.

Assume that

ν2k{(m + γ2k, M − γ2k]} < 2α2k ,

ν2k{[m, m + γ2k]} < p2k + α2k ,

ν2k{(M − γ2k, M ]} < 1 − p2k + α2k .

for some p2k ∈ Is and some α2k, γ2k. Note that it implies d(ν2k, ν∗
p2k

) < γ2k and
that for k = 0, α0, γ0 can be chosen arbitrarily small, with d(ν0, ν

∗
p ) < α0 for

some p ∈ Is.
Consider one application of the mapping T 2 at a generic iteration k. We can

write H(ν2k, M) = H(ν∗
p2k

, M) + FH(ν∗
p2k

; ν2k, M) + O(γ2
2k) with

FH(ν∗
p2k

; ν2k, M) =

∫ m+γ2k

m

FH(ν∗
p2k

, x, M)ν2k(dx)

+

∫ M−γ2k

m+γ2k

FH(ν∗
p2k

, x, M)ν2k(dx)

+

∫ M

M−γ2k

FH(ν∗
p2k

, x, M)ν2k(dx) .
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The first integral term is of the order O(γ2
2k) (since FH(ν∗

p2k
, m, M) = 0 and

dFH(ν∗
p2k

, z, M)/dz|z=m = 0), the second is bounded by 2α2kF ∗ +O(γ2
2k), as in

case (a). For the third term, for which x is close to M , we can use the linear
approximation

FH(ν∗
p2k

, x, M) = (x − M)
dFH(ν∗

p2k
, z, M)

dz |z=M
+ O(γ2

2k)

=
−2(x − M)

p2k(1 − p2k)2(M − m)
+ O(γ2

2k)

which gives

∫ M

M−γ2k

FH(ν∗
p2k

, x, M)ν2k(dx) =
2

p2k(1 − p2k)2(M − m)
I2k(M) + O(γ2

2k)

where I2k(M) =
∫ γ2k

0 zν′
2k(dz) with ν′

2k the measure obtained after applying the
transformation x 7→ z = M − x. We have thus obtained

H(ν2k, M) < 1 + 2α2kF ∗ +
2I2k(M)

p2k(1 − p2k)2(M − m)
+ O(γ2

2k) . (34)

Consider now the behavior of I2k(M) as k increases. We assume that ν2k remains
in some neighborhood V(p) of ν∗

p , which we shall be able to guarantee afterwards.

Define A2k(M) = I2k(M)[
∫ γ2k

0 ν′
2k(dz)]−1. It satisfies I2k(M) < A2k(M) < γ2k.

Also, γ2(k+1) < γ2k implies

A2(k+1)(M) =

∫ γ2(k+1)

0 zH(ν2k, M − z)ν′
2k(dz)

∫ γ2(k+1)

0 H(ν2k, M − z)ν′
2k(dz)

<

∫ γ2k

0 zH(ν2k, M − z)ν′
2k(dz)

∫ γ2k

0 H(ν2k, M − z)ν′
2k(dz)

,

and, since H(ν2k, M − z) decreases for z close to zero,

A2(k+1)(M) <

∫ γ2k

0
z H(ν2k,M−z)

H(ν2k,M) ν′
2k(dz)

∫ γ2k

0
ν′
2k(dz)

.

We can bound the speed of decrease of H(ν2k, M − z): H(ν, M − z)/H(ν, M) <
1 − az for some a > 0, any z in [0, γ0] and any ν ∈ V(p). This gives

A2(k+1)(M) <

∫ γ2k

0 z(1 − az)ν′
2k(dz)

∫ γ2k

0
ν′
2k(dz)

.

Repeating the same arguments we get for any n > 0,

A2(k+n)(M) < Ā2(k+n)(M) =

∫ γ2k

0
z(1 − az)nν′

2k(dz)
∫ γ2k

0
ν′
2k(dz)

,

with Ā2(k+n)(M) decreasing with n. Direct calculation gives
∑∞

n=0 Ā2(k+n)(M) =
1/a, and therefore I2k(M) < Ā2k(M) = o(1/k).



28 Luc Pronzato et al.

Similarly to case (a), we can write

H(ν2k, M − γ2(k+1)) = H(ν2k, M) − 2γ2(k+1)

p2k(1 − p2k)(M − m)
+ O(γ2

2k) ,

with H(ν2k, M) bounded by (34). Assume that γ2k is such that Ā2k(M) = o(γ2k)
and α2k = o(γ2k). We obtain for p2k close enough to p

H(ν2k, M − γ2(k+1)) < β2(k+1) = 1 − γ2(k+1)

p(1 − p)(M − m)
. (35)

We thus get the following bounds on the measure of subintervals of interest at
the next iteration:

ν2(k+1){(m + γ2(k+1), M − γ2(k+1)]} < 2 max{β2(k+1), K0}α2k (36)

where K0 = maxν2k∈V(p) maxλ∈SSA∩(µ2k
1 ,µ2k+1

1 ) H(ν2k, λ), and K0 < 1 for p in Is

and V(p) small enough, see part (a);

ν2(k+1){(M − γ2(k+1), M ]} < ν2(k+1){(M − γ2k, M ]}
< H(ν2k, M)ν2k{(M − γ2k, M ]}

<

[

1 + 2α2kF ∗ +
2Ā2k(M)

p2k(1 − p2k)2(M − m)
+ O(γ2

2k)

]

ν2k{(M − γ2k, M ]}

< ν2k{(M − γ2k, M ]} + Bα2k + CĀ2k(M) + Dγ2
2k

for some B, C, D < ∞. Similarly, we obtain

ν2(k+1){[m, m + γ2(k+1)]} < ν2k{[m, m + γ2k]} + Bα2k + CĀ2k(m) + Dγ2
2k

where Ā2k(m) is defined similarly to Ā2k(M). Define p2(k+1) as

p2(k+1) =
ν2(k+1){[m, m + γ2(k+1)]} − ν2(k+1){(M − γ2(k+1), M ]} + 1

2
,

it gives

0 < p2(k+1) − ν2(k+1){[m, m + γ2(k+1)]} < max{β2(k+1), K0}α2k ,

0 < 1 − p2(k+1) − ν2(k+1){(M − γ2(k+1), M ]} < max{β2(k+1), K0}α2k .

Together with (36) it implies d(ν2(k+1), ν
∗
p2(k+1)

) < γ2(k+1) < γ2k, with

|p2(k+1) − p2k| < ∆2k = [B + 1 + max{β2(k+1), K0}]α2k + CĀ′
2k + Dγ2

2k ,

where Ā′
2k = max{Ā2k(m), Ā2k(M)} and

∑

k Ā′
2k < ∞.

Define α2(k+1) = max{β2(k+1), K0}α2k and take γ2k = 1/kq with q < 1, so
that Ā′

2k = o(γ2k). From the definition of β2(k+1), see (35),
∑

k α2k < ∞ and
α2k = o(γ2k). Since

∑

k Ā′
2k < ∞, taking q > 1/2 in the definition of γ2k ensures

∑

k ∆2k < ∞. We can repeat the same argument, and d(ν2(k+n), ν
∗
p2(k+n)

) <

γ2(k+n) which tends to zero as n increases, with |p2(k+n) − p2k| remaining finite.
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ν2(k+n) thus remains in some neighborhood V(p) of ν∗
p for any n, and V(p) can

be made arbitrarily small by choosing α0 and γ0 small enough.

A5. Proof of Theorem 6. Assume that x0 is such that for some k ≥ 0, ‖gk+1‖ = 0
with ‖gi‖ > 0 for all i ≤ k (that is, xk+1 = x∗ and xi 6= x∗ for i ≤ k). This
implies Rk(W ) = 0 for any W , and therefore R(W, x0, x

∗) = R(x0, x
∗) = 0.

Assume now that ‖gk‖ > 0 for all k. Consider

Vn =

[

n−1
∏

k=0

Rk(W )

]1/n

=

[

n−1
∏

k=0

(Wgk+1, gk+1)

(Wgk, gk)

]1/n

=

[

(Wgn, gn)

(Wg0, g0)

]1/n

.

We have,
∀z ∈ H , c‖z‖2 ≤ (Wz, z) ≤ C‖z‖2 ,

and thus

(c/C)1/n

[

(gn, gn)

(g0, g0)

]1/n

≤ Vn ≤ (C/c)1/n

[

(gn, gn)

(g0, g0)

]1/n

.

Since (c/C)1/n → 1 and (C/c)1/n → 1 as n → ∞, lim infn→∞ Vn and lim supn→∞

Vn do not depend on W . Take W = P (A); it gives Rk(W ) = rk = 1− 1/Lk, see
(9), which is not decreasing, and thus limn→∞ Vn = 1 − 1/L for any W .
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