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Abstract. In a no-wait robotic flow-shop, the parts are transferred from a machine to another
one by a robot and the time a part can remain on a machine is fixed. The objective is to
maximize the throughput rate of the cell, i.e. to find optimal cyclic robot moves. In this paper,
we consider identical parts in the balanced case (all processing times are equal). We present
a conjecture which gives the structure of the optimal production cycle and prove it for several
cases. These results confirm Agnetis conjecture which claims that, in a no-wait robotic cell, the
degree of the dominant cycles can be bounded by the number of machines minus one (which
simplifies the search of an optimal production cycle).
Keywords: Hoist Scheduling Problem, no-wait flow shop, flow-shop scheduling, optimal cycles.

1 Introduction

In surface treatment lines, products are immersed in several tanks. The tanks contain chemical
baths like acids which affect the electrical or mechanical properties of the products. This kind of
line is used, for instance, for galvanoplasty or circuit board assembly. The products are mounted
on carriers and transported from a tank to another one by a hoist. The time a part can stay in
a tank is upper and lower bounded. The lower bound indicates the minimum time for a correct
treatment. The upper limit is justified by the chemical properties of the baths. For instance, a
product should not remain too long in an acid bath or the quantity of precious metal deposed
should not be too important in order to minimize the costs.
A classical objective is to find the cyclic hoist moves which yield the maximum throughput.
This problem is usually called Cyclic Hoist Scheduling Problem (CHSP). We shall restrict the
problem to the production of identical parts. (Lei & Wang 1989) showed that the CHSP is
NP-complete. Different methods were proposed to solve this problem: Constraint Logic Pro-
gramming (Baptiste, Legeard, Manier & Varnier 1996), Genetic Algorithm (Lim 1997) or Branch
and Bound Algorithm (Ng 1996). A survey on those problems was proposed by (Baptiste, Bloch
& Varnier 2001).
The problem with unbounded processing windows (infinite upper bound) is usually called the
Robotic Cell Scheduling Problem (RCSP). It was first studied by (Sethi, Sriskandarajah, Sorger,
Blazewicz & Kubiak 1992). For quality reasons, it can be better for all products to remain exactly
the same time in tank Ti (for all i). This constraint can be modelled by a no-wait constraint in
every tank (equal lower and upper bound). For those zero-width processing window problems,
(Agnetis 2000) describes a conjecture which bounds the degree of the optimal cycles and proves
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it for two and three-tank lines. A survey on those problems was proposed by (Crama, Kats,
van de Klundert & Levner 2000).
In this article we will study the no-wait case with equal treatment times in every tank (balanced
line). We propose a conjecture on the optimal cycle (section 3-4) and prove special cases of this
conjecture (section 5). Then (section 6) we describe in details the case m = 5.

2 Problem presentation

Figure 1 shows a surface treatment line with one hoist and m treatment tanks denoted by T1,
T2. . .Tm. The parts are mounted on carriers which are moved from a bath to another one by a
hoist which travels along a rail. Tank T0 (the loading tank) and tank Tm+1 (the unloading tank)
have infinite capacity whereas the other tanks of the line can only contain one carrier at a time.
The line represents a flow-shop with the hoist as the material handling device. All products are
identical. A carrier is picked up at T0 and transferred in succession to T1, T2 etc. until it finally
reaches the output station, Tm+1. The time the products remain in the baths is fixed (no-wait
constraint).

rail

carrier

hoist

T0 (loading tank) T1 T2 T3 Tm-1 Tm Tm+1 (unloading tank)

Figure 1: A surface treatment line

The time a part has to remain in tank Ti is denoted by pi. A line is balanced if all processing
times are equal (pi = p for all 1 ≤ i ≤ m). The travel time of the hoist between two consecutive
tanks is δ. The travel times are additive. Hence, the hoist takes |i− j|δ time units to travel from
Ti to Tj. The loading and unloading times can be neglected compared to the travel time.
The hoist moves are described in term of activities. Activity i (i = 0, 1 . . . m) consists in the
following moves:

• the hoist picks up a carrier from Ti;

• the hoist travels from Ti to Ti+1;

• the hoist loads the carrier onto Ti+1.

We consider cyclic moves of the hoist and define the k-cycles as follows:

Definition 1 A k-cycle Ck is a sequence of activities in which each activity occurs exactly k
times, in which there is exactly one occurrence of activity (i− 1) and one occurrence of activity
(i + 1) between two consecutive (in a cyclic sense) occurrences of activity i (i = 1, 2...m− 1).

Denote by T (Ck) the relative cycle time of the k-cycle Ck, i.e. the total time for the execution of
Ck divided by k. Thus a k-cycle Ck is optimal if it maximizes the throughput rate or equivalently
minimizes the relative cycle time T (Ck) over the set of all possible k-cycles (k = 1, 2, 3. . . ).
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Definition 2 Let S and S ′ be two sets of production cycles. S dominates S ′ if, for any instance,
one has the following property: for every k′-cycle Ck′ of S ′, there exists a k-cycle Ck in S verifying
T (Ck) ≤ T (Ck′).

The description of the cycles in term of activities can be tedious. To simplify this description we
use the symbol

∏
which defines the concatenation of the activities. For example the cycle (3210)

will be written
∏3

i=0(3 − i). The movements of the robot during the cycles can be represented
as in Figure 2 :

• the loaded robot moves are the thick line;

• the empty robot moves are the dotted line.

Figure 2 represents the movements of the robot while executing the 2-cycle (02132301) in a
three-tank line. In this figure, we do not represent the waiting times but only the robot moves.

T0

T1

T2

T3

T4

��
ppppp��

pppppppppp��ppppp��
pppppppppp����

pppppppppppppppppppp����
pppppppppp

Figure 2: Representation of the cycle (02132301)

3 Conjecture on the optimal cycles

In this section we propose a conjecture on the structure of the optimal cycles for a balanced m-
tank line. This conjecture has already been proved for m = 3 (Mangione, Brauner & Penz 2003a)
and m = 4 (Mangione, Brauner & Penz 2003b). The cycles Ca(α), Cb(α), Cc(α) and Ce are
described in detail in section 4.

Conjecture 1 In a balanced no-wait robotic cell with m odd, the following items describe an
optimal cycle.

• for p ∈ [4(k − 1)δ, 4kδ[ and k ≤ m−1
2 , the k-cycle Ca(k) is optimal;

• for p ∈ [4(k − 1)δ, 4(k − 1)δ + 2δ[ and k = m+1
2 , the k-cycle Ca(k) is optimal;

• for p ∈ [4(k − 1)δ, 4(k − 1)δ + 2δ[ and m+1
2 < k ≤ m− 1, the k-cycle Cb(k) is optimal.

• for p ∈ [4(k − 1)δ + 2δ, 4kδ[ and m+1
2 ≤ k ≤ m− 1, the k-cycle Cc(k) is optimal.

• for p ≥ 4(m− 1)δ, the 1-cycle Cd =
∏m

i=0(m− i) is optimal.

Note that, according to Conjecture 1, for any k ≤ (m− 1) there always exist an optimal k-cycle
which confirms Agnetis conjecture (Agnetis 2000).

Conjecture 2 In a balanced no-wait robotic cell with m even, the following items describe an
optimal cycle.

• for p ∈ [4(k − 1)δ, 4kδ[ and k ≤ m
2 , the k-cycle Ca(k) is optimal;

• for p ∈ [4(k − 1)δ, 4(k − 1)δ + 2δ[ and m
2 < k ≤ m − 1, the 1-cycle Ce or the k-cycle Cb(k) is

optimal.
• for p ∈ [4(k− 1)δ + 2δ, 4kδ[ and m

2 < k ≤ m− 1, the 1-cycle Ce or the k-cycle Cc(k) is optimal.
• for p ≥ 4(m− 1)δ, the 1-cycle Cd =

∏m
i=0(m− i) is optimal.
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4 Cycles definition

The α-cycle Ca(α) is defined as follows:

Ca(α) =
α∏

i=1

[
0

i∏
j=1

(i− j + 1)

]
︸ ︷︷ ︸

(1)

∗
m∏

i=α+1

[
α∏

j=1

(i− j + 1)

]
︸ ︷︷ ︸

(2)

∗
α−1∏
i=1

[
α−i∏
j=1

(m− j + 1)

]
︸ ︷︷ ︸

(3)

The cycle time of Ca(α), when it is feasible, is :

T (Ca(α)) =
1

α
[(m + α− 1)p + 2(m + 2α− 1)δ]

From an empty line, the cycle Ca(α) puts α products in the tanks T1, T2 . . . Tα: (1), then trans-
ports all these products to the end of the line (2), and then empties the line (3).

For example, for a five-tank line (m = 5), if p = 7δ (then k = 2) the cycle Ca(2) = 010213243545
is optimal. Figure 3 represents the cycle Ca(2) for m = 5.

T0

T1

T2

T3

T4

T5

T6

��
��
pppppppppp��ppppp��

pppppppppp��ppppp��
pppppppppp��ppppp��

pppppppppp��ppppp��
pppppppppp����

pppppppppppppppppppppppppppppp
Figure 3: Ca(2) for m = 5

The α-cycles Cb(α) are defined as follows:

Cb(α) =
2(α−1)−m∏

i=0

[i(i− 1) . . . 0 m(m− 1) . . . (m− (2(α− 1)−m) + i)] (1)

α−1∏
i=2α−m−1

[i(i− 1) . . . 0] (2)

m∏
i=α

[i(i− 1) . . . (i− α + 1)] (3)

2α−m−1∏
i=α−2

[m(m− 1) . . . (m− i)] (4)

Cb(α) =

2(α−1)−m∏
i=0

 i∏
j=0

(i − j) ∗
2(α−1)−m−i∏

j=0

(m − j)

 ∗
α−1∏

i=2α−m−1

 i∏
j=0

(i − j)

 ∗
m∏

i=α

α−1∏
j=0

(i − j)

 ∗
2α−m−1∏

i=α−2

 i∏
j=0

(m − j)

 (5)

The cycle Cb(α) is composed of the following moves :

• (1) : α products begin to enter the line while the previous ones leave it;
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• (2) : The α products finish to enter the line;

• (3) : The α products are treated until the first one arrives at the last tank;

• (4) : The products leave the line until enough are out for the hoist to enter new ones.

Expression (5) is another way to express Cb(α). The cycle time of Cb(α) is T (Cb(α)) =
1
α
[(2m− α)p + 4mδ].

For example in a five-tank line if p = 13δ then k = 4 and the dominant cycle is the cycle Cb(4).
Part (1) of Cb(4) is the sequence 054105, part (2) is the sequence 2103210, part (3) is the sequence
4321 5432 and part (4) is the sequence 543. The cycle Cb(4) = 054105210321043215432543 is
represented on Figure 4.

T0

T1

T2

T3

T4

T5

T6

��
ppppppppp

ppppppppp
pp��pppppppppp��pppppppppppppppppppp��pppppppppp��ppppppppp

ppppppppp
pp��pppppppppppppppppppp��pppppppppp��pppppppppp��ppppppppp

p��pppppppppp��pppppppppp��pppppppppp��ppppppppp
pppppp��

pppppppppp��pppppppppp��pppppppppp��ppppppppp
pppppp��

pppppppppp��pppppppppp��pppppppppp��ppppppppp
p��pppppppppp��pppppppppp��pppppppppppppppppppp

Figure 4: Cb(4) for m = 5 and p ∈ [12δ; 14δ[

The α-cycle Cc(α) is defined as follows:

Cc(α) =
2α−m−1∏

i=0

[i(i− 1) . . . 0 m(m− 1) . . . (m− (2α−m− 1) + i)]

α−1∏
i=2α−m

[i(i− 1) . . . 0]

m∏
i=α

[i(i− 1) . . . (i− α + 1)]

2α−m∏
i=α−2

[m(m− 1) . . . (m− i)]

Cc(α) =

2α−m−1∏
i=0

 i∏
j=0

(i − j) ∗
2α−m−1−i∏

j=0

(m − j)

 ∗
α−1∏

i=2α−m

 i∏
j=0

(i − j)

 ∗
m∏

i=α

α−1∏
j=0

(i − j)

 ∗
2α−m∏
i=α−2

 i∏
j=0

(m − j)


The cycle time of Cc(α) is T (Cc(α)) = 1

α
[(2m− α− 1)p + (4m− 2)δ].

The 1-cycle Ce begins with a product in every two tanks and the robot transports a product
from T0 to T1, then transports a product from T2 to T3, etc. . .When all products are moved,
the robot goes back to tank T1 and moves again every products in the line. This cycle can be
defined as follows :

Ce =

m/2∏
i=0

2i ∗
m/2−1∏

i=0

(2i + 1)

The cycle time of Ce is : T (Ce) = 2m−1
m

p + 4δ.
Figure 5 is an example of Ce for a four machine line.
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Figure 5: Example of Ce for m = 4

5 Proof of some cases of the conjecture

In this section, we prove parts of Conjecture 1 and Conjecture 2.

5.1 Optimal cycles for k ≤ m+2
4

Theorem 1 For p ∈ [4(k − 1)δ, 4kδ[ and k ≤ m+2
4

the k-cycle Ca(k) is optimal.

Proof:
If p ∈ [4(k−1)δ; 4kδ[, then, at the same time, the maximum number of products on the line is k.
Moreover the maximum distance between two products is strictly smaller than m+1

2
i.e., when a

product leaves the line, all products on the line are at a machine with index greater than m+1
2

.
Therefore, from this moment, no products can enter the line as long as a product is still on the
line. Hence the line has to be completely emptied during every cycle.
It implies that in every α-cycle the α products which enter the line are exactly the α products
that leave the line.
Brauner and Finke (Brauner & Finke 2001) proved that, during the execution of a cycle, if the
line is emptied more than once then, the cycle is dominated by the best sub-cycle. The value
of p and the previous remark impose that the line has to be emptied, at least, every k products
which means that for a α-cycle (α > k) the line must be emptied at least twice. Therefore the
α-cycles with α > k are dominated by a β-cycles with β ≤ k.
Consider an α-cycle C(α) with α ≤ k. This cycle moves at most α products at the same time.
Then we can deduce a lower bound for T (C(α)) :

αT (C(α)) ≥ mp + 2(m + 1)δ︸ ︷︷ ︸
the first product crosses the line

+ (p + 4δ)(α− 1)︸ ︷︷ ︸
exit of the (α−1) other products

Then

T (C(α)) ≥ 1

α
[(m + α− 1)p + 2(m + 2α− 1)δ] = f(α)

f(α) = p + 4δ + (m− 1)
p + 2δ

α

Since f is a decreasing function, it is minimum for α maximum. But we know that, for α > k,
the α-cycles are dominated. Therefore f is minimum for α = k. Since T (Ca(k)) reaches this
lower bound, Ca(k) is dominant.

2
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5.2 Optimal cycles for p ≥ 4(m− 1)δ

For p ≥ 4(m− 1)δ the cycle Cd =
∏i=0

m (m− i) is dominant with a cycle time of p + 4δ (Crama
et al. 2000).

Remains to prove the other items of Conjecture 1 and Conjecture 2.

6 Example for m = 5

To illustrate the previous results we consider the example of m = 5. In order to compute the
optimal cycles, use the following method. If p = 13δ, then the value of the division of p by 4
is 3, which means that the dominating cycle is a k-cycle (k = (3 + 1) = 4). As the remainder
of this division is strictly lower than 2 then the dominant cycle is a Cb type cycle. The optimal
cycle for p = 13δ is the cycle Cb(4) (figure 10).
The dominant cycles are given in Table 1 and illustrated in Figures 6 - 12. The grey cells still
have to be proved.

Table 1: Dominant cycles for m = 5
p [0, 4δ[ [4δ, 8δ[ [8δ, 10δ[ [10δ, 12δ[ [12δ, 14δ[ [14δ, 16δ[ ≥ 16δ

Cycle Ca(1) Ca(2) Ca(3) Cc(3) Cb(4) Cc(4) Cd

Temps de cycle 5p+12δ 6p/2+8δ 7p/3+20δ/3 6p/3+18δ/3 6p/4+20δ/4 5p/4+18δ/4 p+4δ
k 1 2 3 3 4 4 1

T0

T1

T2

T3

T4

T5

T6

��
��
��
��
��
��
pppppppppppppppppppppppppppppp

Figure 6: Ca(1) for m = 5 and p < 4δ
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Figure 7: Ca(2) for m = 5 and p ∈ [4δ; 8δ[
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Figure 8: Ca(3) for m = 5 and p ∈ [8δ, 10δ[
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Figure 9: Cc(3) for m = 5 and p ∈ [10δ; 12δ[
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Figure 10: Cb(4) for m = 5 and p ∈ [12δ; 14δ[
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Figure 11: Cc(4) for m = 5 and p ∈ [14δ; 16δ[

T0

T1

T2

T3

T4

T5

T6

��
ppppppppp

ppppppppp
pp��pppppppppp��pppppppppp��pppppppppp��pppppppppp��pppppppppp

Figure 12: Cd for m = 5 and p ≥ 16δ
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7 Conclusion

In this paper, we studied the robotic flow shop. We concentrated our works on the balanced no-
wait case (all treatment times are fixed and equal). We proposed a conjecture on the structure of
the optimal cyclic robot moves and proved the optimality with a lower bound method for some
values of the treatment time p. Those results confirm the conjecture by Agnetis which claims
that, in a no-wait robotic cell, the k-cycles with k ≤ m − 1 are dominant. The next objectives
will be to prove the conjecture for any value of p and to analyze the extension of this conjecture
to unbalanced lines.
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