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Optimal experimental design

and some related controlproblems ⋆

Luc Pronzato,

Laboratoire I3S, CNRS-Université de Nice-Sophia Antipolis, France

Abstract

This paper traces the strong relations between experimental design and control, such as the use of optimal inputs to obtain
precise parameter estimation in dynamical systems and the introduction of suitably designed perturbations in adaptive control.
The mathematical background of optimal experimental design is briefly presented, and the role of experimental design in the
asymptotic properties of estimators is emphasized. Although most of the paper concerns parametric models, some results are
also presented for statistical learning and prediction with nonparametric models.
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1 Introduction

The design of experiments (DOE) is a well developed
methodology in statistics, to which several books have
been dedicated, see e.g. [42], [167], [125], [4], [149], [44].
See also the series of proceedings of the Model-Oriented
Design and Analysis workshops (Springer Verlag 1987;
Physica Verlag, 1990, 1992, 1995, 1998, 2001, 2004). Its
application to the construction of persistently exciting
inputs for dynamical systems is well known in control
theory (see Chapter 6 of [58], Chapter 14 of [104], Chap-
ter 6 of [188], the book [196] and the recent surveys [53],
[66]). A first objective of this paper is to briefly present
the mathematical background of the methodology and
make it accessible to a wider audience. DOE, which can
can be apprehended as a technique for extracting the
most useful information from data to be collected, is
thus a central (and sometimes hidden) methodology in
every occasion where unknown quantities must be esti-
mated and the choice of a method for this estimation is
open. DOE may therefore serve different purposes and
happens to be a suitable vehicle for establishing links
between problems like optimization, estimation, predic-
tion and control. Hence, a second objective of the paper
is to exhibit links and similarities between seemingly dif-
ferent issues (for instance, we shall see that parameter
estimation and prediction of a model response are es-
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sentially equivalent problems for parametric models and
that the construction of an optimal method for global
optimization can be casted as a stochastic control prob-
lem). At the same time, attention will be drawn to fun-
damental differences that exist between seemingly simi-
lar problems (in particular, evidence will be given of the
gap between using parametric or nonparametric models
for prediction). A third objective is to point out and ex-
plain some inherent difficulties in estimation problems
when combined with optimization or control (hence we
shall see why adaptive control is an intrinsically difficult
subject), indicate some tentative remedies and suggest
possible developments.

Mentioning these three objectives should not shroud the
main message of the paper, which consists in pointing out
prospective research directions for experimental design in
relation with control, in short: classical DOE relies on the
assumption of persistence of excitation but many issues
remain open in other situations; DOE should be driven
by the final purpose of the identification (the intended
model application of [57]) and this should be reflected in
the construction of design criteria; DOE should face the
new challenges raised by nonparametric models and ro-
bust control; algorithms and practical methods for DOE
in non-standard situations are still missing. The program
is rather ambitious, and this survey does not pretend to
be exhaustive (for instance, only the case of scalar ob-
servations is considered; Bayesian techniques are only
slightly touched; measurement errors are assumed to be
independent, although correlated errors would deserve
a special treatment; distributed parameter systems are
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not considered; nonparametric modelling is briefly con-
sidered and for static systems only, etc.). However, ref-
erences are indicated where a detailed enough presen-
tation is lacking. None of the results presented is really
new, but their collection in a single document probably
is, and will hopefully be useful to the reader.

Section 2 presents different types of application of opti-
mal experimental design, partly through examples, and
serves as an introduction to the topic. In particular, the
fourth application concerns optimization and forms a
preliminary illustration of the link between sequential
design and adaptive control. Section 3 concerns statisti-
cal learning and nonparametric modelling, where DOE
is still at an early stage of development. The rest of the
paper mainly deals with parametric models, for which
parameter uncertainty is suitably characterized through
information matrices, due to the asymptotic normality of
parameter estimators and the Cramér-Rao bound. This
is considered in Section 4 for regression models. Section
5 presents the mathematical background of optimal ex-
perimental design for parameter estimation. The case of
dynamical models is considered in Section 6, where the
input is designed to yield the most accurate estimation
of the model parameters, while possibly taking a robust-
control objective into account. Section 7 concerns adap-
tive control: the ultimate objective is process control,
but the construction of the controller requires the esti-
mation of the model parameters. The difficulties are il-
lustrated through a series of simple examples. Optimal
DOE yields input sequences that are optimally (and per-
sistently) exciting. At the same time, by focussing at-
tention on parameter estimation, it reveals the intrinsic
difficulties of adaptive control through the links between
dual (active) control and sequential design. General se-
quential design (for static systems) is briefly considered
in Section 8. Finally, Section 9 suggests further devel-
opments and research directions in DOE, concerning in
particular active learning and nonlinear feedback con-
trol. Here also the presentation is mainly through exam-
ples.

2 Examples of applications of DOE

Although the paper is mainly dedicated to parameter
estimation issues, DOE may have quite different objec-
tives (and it is indeed one of the purposes of the pa-
per to use DOE to exhibit links relating these objec-
tives). They are illustrated through examples which also
serve to progressively introduce the notations. The first
one concerns an extremely simple parameter estimation
problem where the benefit of a suitably designed exper-
iment is spectacular.

2.1 A weighing problem

Suppose we wish to determine the weights of eight ob-
jects with a chemical balance. The result y of a weigh-

ing (the observation) corresponds to the mass on the left
pan of the balance minus the mass on the right pan plus
some measurement error ε. The errors associated with a
series of measurements are assumed to be independently
identically distributed (i.i.d.) with the normal distribu-
tion N (0, σ2). The objects have weights θ̄i, i = 1, . . . , 8.
Each weighing is characterized by a 8-dimensional vec-
tor u with components {u}i equal to 1, −1 or 0 depend-
ing whether object i is on the left pan, the right pan or
is absent from the weighing, and the associated observa-
tion is y = u⊤θ̄ + ε. We thus have a linear model (in the
statistical sense: the response is linear in the parameter

vector θ), and the Least-Squares (LS) estimator θ̂
N

as-
sociated with N observations yk characterized by exper-
imental conditions (design points 1 ) uk, k = 1, . . . , N , is

θ̂
N

= argmin
θ

N
∑

k=1

[yk − u⊤
k θ]2 = M−1

N

N
∑

k=1

ykuk , (1)

with MN =

N
∑

k=1

uku
⊤
k . (2)

We consider two weighing methods. In method a the
eight objets are weighed successively: the vectors ui for
the eight observations coincide with the basis vectors
ei of R

8 and the observations are yi = θ̄i + εi, i =
1, . . . , 8. The estimated weights are simply given by the

observations, that is, θ̂i = yi ∼ N (θ̄i, σ
2). Method b

is slightly more sophisticated. Eight measurements are
performed, each time using a different configuration of
the objets on the two pans so that the vectors ui form a
8 × 8 Hadamard matrix (|{ui}j| = 1 ∀i, j and u⊤

i uj =
0 ∀i 6= j, i, j = 1, . . . , 8). The estimates then satisfy

θ̂i ∼ N (θ̄i, σ
2/8) with 8 observations only. To obtain

the same precision with method a, one would need to
perform eight independent repetitions of the experiment,
requiring 64 observations in total 2 .

In a linear model of this type, the LS estimator (1) is

unbiased: IEθ{θ̂
N} − θ = 0, where IEθ{·} denotes the

mathematical expectation conditionally to θ being the
true vector of unknown parameters. Its covariance ma-

trix is IEθ{(θ̂
N−θ)(θ̂

N−θ)⊤} = σ2M−1
N with MN given

by (2) (note that it does not depend on θ). Choosing an

1 Although design points and experimental variables are
usually denoted by the letter x in the statistical literature,
we shall use the letter u due to the attention given here
to control problems. In this weighing example, uk denotes
the decisions made concerning the k-th observation, which
already reveals the contiguity between experimental design
and control.
2 Note that we implicitly assumed that the range of the
instrument allows to weigh all objects simultaneously in
method b. Also note that the gain would be smaller when
using method b if the variance of the measurement errors
increased with the total weight on the balance.
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experiment that provides a precise estimation of the pa-
rameters thus amounts to choosing N vectors uk such
that (MN is non singular and) “M−1

N is as small as pos-

sible”, in the sense that a scalar function of M−1
N is min-

imized (or a scalar function of MN is maximized), see
Section 5. In the weighing problem above the optimiza-
tion problem is combinatorial since {uk}i ∈ {−1, 0, 1}.
In the design of method b the vectors uk optimize most
“reasonable” criteria Φ(MN ), see, e.g., [29], [162]. This
case will not be considered in the rest of the paper but
corresponds to a topic that has a long and rich history
(it originated in agriculture through the pioneering work
of Fisher, see [46]).

2.2 An example of parameter estimation in a dynamical
model

The example is taken from [39] and concerns a so-called
compartment model, widely used in pharmacokinetics.
A drug x is injected in blood (intravenous infusion) with
an input profile u(t), the drug moves from the central
compartment C (blood) to the peripheral compartment
P , where the respective quantities of drugs at time t
are denoted xC(t) and xP (t). These obey the following
differential equations:

{

dxC(t)
dt = (−KEL− KCP )xC(t) + KPCxP (t) + u(t)

dxP (t)
dt = KCP xC(t) − KPCxP (t)

where KCP , KPC and KEL are unknown parameters.
One observes the drug concentration in blood, that is,
y(t) = xC(t)/V + ε(t) at time t, where the errors ε(ti)
corresponding to different observations are assumed to
be i.i.d. N (0, σ2) and where V denotes the (unknown)
volume of the central compartment. There are thus four
unknown parameters to be estimated, which we denote
θ = (KCP , KPC , KEL, V ). The profile of the input u(t)
is imposed: it consists of a 1 min loading infusion of 75
mg/min followed by a continuous maintenance infusion
of 1.45 mg/min. The experimental variables correspond
to the sampling times ti, 1 ≤ ti ≤ 720 min (the time in-
stants at which the observations — blood samples — are
taken). Suppose that the true parameters take the values
θ̄ = (0.066 min−1, 0.038 min−1, 0.0242 min−1, 30 l).
Two different experimental designs are considered.
The first one, called “conventional”, is given by
t = (5, 10, 30, 60, 120, 180, 360, 720) (in min); the “op-
timal” one (D-optimal for θ̄, see Section 5.1) is
t∗ = (1, 1, 10, 10, 74, 74, 720, 720) (in min). (Note that
both designs contain 8 observations and that t∗ com-
prises repetitions of observations at the same time
— which means that it is implicitly assumed that the
collection of several simultaneous independent measure-
ments is possible.) Figure 1 presents the (approximate)
marginal density for the LS estimator of KEL, see [129],
[139], when σ = 0.2µg/ml. Similar pictures are obtained
for the other parameters.
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Fig. 1. Approximate marginal densities for the LS estimator
K̂EL (dashed line for the conventional design, solid line for
the optimal one); the true value is K̄EL = 0.0242 min−1.

Clearly, the “optimal” design t∗ yields a much more pre-
cise estimation of θ than the conventional one, although
both involve the same number of observations. On the
other hand, with 4 = dim(θ) sampling times only, t∗

does not permit to test the validity of the model. DOE
for model discrimination, which we consider next, is es-
pecially indicated for situations where one hesitates be-
tween several structures.

2.3 Discrimination between model structures

Design for discrimination between model structures will
not be detailed in the paper, only the basic principle of
a simple method is indicated below and one can refer to
[17] and the survey papers [3], [65] for other approaches.
When there are two model structures η(1)(θ1,u) and
η(2)(θ2,u) and the errors are i.i.d., a simple sequential
procedure is as follows, see [5]:

• after the observation of y(u1), . . . , y(uk) estimate θ̂
k

1

and θ̂
k

2 for both models;

• place next point uk+1 where [η(1)(θ̂
k

1 ,u)−η(2)(θ̂
k

2 ,u)]2

is maximum;
• k → k + 1, repeat.
When there are more than two structures in competition,

one should estimate θ̂
k

i for all of them and place the next
point using the two models with the best and second
best fitting, see [6]. The idea is to place the design point
where the predictions of the competitors differ much,
so that when one of the structures is correct (which is
the underlying assumption), next observation should be
close to the prediction of that model and should thus give
evidence that the other structures are wrong. Similar
ideas can be used to design input sequences for detecting
changes in the behavior of dynamical systems, see the
book [82].

2.4 Optimization of a model response

Suppose that one wishes to maximize a function η(θ̄,u)
with respect to u ∈ R

d, with θ̄ ∈ R
p a vector of un-
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known parameters. When a value ui is proposed, the
function is observed through yi = y(ui) = η(θ̄,ui) + εi

with εi a measurement error. Since the problem is to de-
termine u∗ = u∗(θ̄) = arg maxu η(θ̄,u), it seems natu-

ral to first estimate θ̂ = θ̂[y] from a vector of observa-
tions y = [y1, . . . , yN ]⊤ and then predict the optimum

by u∗(θ̂). The question is then which values to use for

the ui’s for estimating θ̂, that is, which criterion to opti-
mize for designing the experiment? It could be (i) based

on the precision of θ̂, or (ii) based on the precision of

u∗(θ̂), or, preferably, (iii) oriented towards the final ob-

jective and based on the cost C(θ̂|θ̄) of using θ̂ when

the true value of θ is θ̄. A possible choice is C(θ̂|θ̄) =

η[θ̄,u∗(θ̄)]−η[θ̄,u∗(θ̂)] ≥ 0, which leads to a design that

minimizes the Bayesian risk R = IE{C(θ̂[y]|θ̄)}, where
the expectation is with respect to y and θ̄ for which a
prior distribution π(·) is assumed, see, e.g., [144] (see also
[27] and the book [132] for a review of Bayesian DOE).

The approaches (i-iii) above are standard in experimen-
tal design: optimization is performed in two steps, first
some design points ui’s are selected for estimation, sec-
ond θ̂ is estimated and used to construct u∗(θ̂). How-
ever, in general each response η(θ̄,ui) is far from the
maximum η[θ̄,u∗(θ̄)] (since the explicit objective of the
design is estimation, not maximization) while in some
situations it is required to have η(θ̄,ui) as large as pos-
sible for every i, that is, ui close to u∗(θ̄), which is un-
known. A sequential approach is then natural: try ui,

observe yi, estimate θ̂
i

= θ̂(yi
1), suggest ui+1 and so

on. . . (Notice that this involves a feedback of informa-
tion in the sequence of design points — the control se-
quence — and thus induces a dynamical aspect although
the initial problem is purely static.) Each ui has two
objectives: help to estimate θ, try to maximize η(θ̄,u).
The design problem thus corresponds to a dual control
problem, to be considered in Section 7.4. When no para-
metric form is known for the function to be maximized,
it is classical to resort to suboptimal methods such as
the Kiefer-Wolfowitz scheme [83], or the response sur-
face methodology which involves linear and quadratic
approximations, see, e.g., [18]. Optimization with a non-
parametric model will be considered in Section 9, com-
bining statistical learning with global optimization.

3 Statistical learning, nonparametric models

One can refer to the books [183], [184], [62] and the
surveys [37], [10] for a detailed exposition of statisti-
cal learning. Based on so-called “training data” D =
{[u1, y(u1)], . . . , [uN , y(uN )]} we wish to predict the re-
sponse y(u) of a process at some unsampled input u us-
ing Nadaraya-Watson regression [118], [189], Radial Ba-
sis Functions (RBF), Support Vector Machine (SVM)
regression or Kriging (Gaussian process). All these ap-
proaches can be casted in the class of kernel methods,

see [185], [186] and [159] for a more precise formulation,
and we only consider the last one, Kriging, due to its
wide flexibility and easy interpretability. The associated
DOE problem is considered in Section 3.2. We denote
ŷD(u) the prediction at u and y = [y(u1), . . . , y(uN )]⊤.

3.1 Gaussian process and Kriging

The method originated in geostatistics, see [86], [107],
and has a long history. When the modelling errors con-
cern a transfer function observed in the Nyquist plane,
the approach possesses strong similarities with the so-
called “stochastic embedding” technique, see, e.g., [59]
and the survey paper [124]. The observations are mod-
elled as y(uk) = θ̄0 + P (uk, ω) + εk, where P (u, ω) de-
notes a second-order stationary zero-mean random pro-
cess with covariance IE{P (u, ω)P (z, ω)} = K(u, z) =
σ2

P C(u − z) and the εk’s are i.i.d., with zero mean and
variance σ2. The best linear unbiased predictor at u is
ŷD(u) = v⊤(u)y, where v(u) minimizes IE{(v⊤y−[θ̄0+

P (u, ω)])2}with the constraint IE{v⊤y} = θ̄0

∑N
i=1 vi =

IE{y(u)} = θ̄0, that is,
∑N

i=1 vi = 1. This optimization
problem is solvable explicitly, which gives

ŷD(u) = v⊤(u)y = θ̂0 + c⊤(u)C−1
y (y − θ̂01) (3)

where Cy = σ2IN + σ2
PCP with IN the N -dimensional

identity matrix and CP the N × N matrix defined by
[CP ]i,j = C(ui−uj), 1 is the N -dimensional vector with
components 1, c(u) = σ2

P [C(u − u1), . . . , C(u − uN )]⊤

and θ̂0 = (1⊤C−1
y y)/(1⊤C−1

y 1) (a weighted LS esti-
mator of θ0). Note that the prediction takes the form

ŷD(u) = θ̂0 +
∑N

k=1 akK(u,uk), i.e., a linear combina-
tion of kernel values. The Mean-Squared-Error (MSE)
of the prediction ŷD(u) at u is given by

ρ2
D(u) = σ2

P −
[

c⊤(u) 1
]

[

Cy 1

1⊤ 0

]−1 [

c(u)

1

]

(4)

and, if σ2 = 0 (i.e., there are no measurement errors εk),
ŷD(ui) = y(ui) and ρ2

D(ui) = 0 for any i. The predic-
tor ŷD(u) is then a perfect interpolator. This method
thus makes statistical inference possible even for purely
deterministic systems, the model uncertainty being rep-
resented by the trajectory of a random process. Since
the publication [157] it has been successfully applied in
many domains of engineering where simulations (com-
puter codes) replace real physical experiments (and mea-
surement errors are thus absent), see, e.g., [158].

If the characteristics of the process P (u, ω) and errors
εk belong to a parametric family, the unknown parame-
ters that are involved can be estimated. For instance, for
a Gaussian process with C(z) parameterized as C(z) =
C(β, z) and for normal errors εk, the parameters β, σ2

P
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and σ2 can be estimated by Maximum Likelihood; see
the book [173], in particular for recommendations con-
cerning the choice of the covariance function C(z). See
also the survey [105] and the papers [195], [181] con-
cerning the asymptotic properties of the estimator. The
method can be extended in several directions: the con-
stant terms θ0 can be replaced by a linear model r⊤(u)θ
(this is called universal Kriging, or intrinsic Kriging
when generalized covariances are used, which is then
equivalent to splines, see [187]), a prior distribution can
be set on θ (Bayesian Kriging, see [38]), the derivative
(gradient) of the response y(u) can also be predicted
from observations y(uk), see [185], or observations of
the derivatives can be used to improve the prediction of
the response, see [114], [106], [102]. Nonparametric mod-
elling can be used in optimization, and an application of
Kriging to global optimization is presented in Section 9.

3.2 DOE for nonparametric models

The approaches can be classified among those that are
model-free (of the space-filling type) and those that use
a model.

3.2.1 Model-free design (space filling)

For U the design set (the admissible set for u), we call
SS ⊂ U the finite set of chosen design points or sites
uk where the observations are made, k = 1, . . . , N .
Maximin-distance design [78] chooses sites SS that
maximize the minimum distance between points of SS,
i.e. minu 6=u′∈SS2 d(u,u′). The chosen sites uk are thus
maximally spread in U (in particular, some points are
set on the boundary of U). When U is a discrete set,
minimax-distance design [78] chooses sites that mini-
mize the maximum distance between a point in U and
SS, i.e. maxz∈U d(z, SS) = maxz∈U minu∈SS d(z,u).
In order to ensure good projection properties in all
directions (for each component of the uk’s), it is rec-
ommended to work in the class of latine hypercube
designs, see [113] (when U is scaled to [0, 1]d, for every
i = 1, . . . , d the components {uk}i, k = 1, . . . , N , then
take all the values 0, 1/(N − 1), 2/(N − 1), . . . , 1).

3.2.2 Model-based design

In order to relate the choice of the design to the quality
of the prediction ŷD(u), a first step is to characterize the
uncertainty on ŷD(u). This raises difficult issues in non-
parametric modelling, in particular due to the difficulty
of deriving a global measure expressing the speed of de-
crease of the MSE of the prediction as N , the number of
observations, increases (we shall see in Section 5.3.4 that
the situation is opposite in the parametric case). A rea-
son is that the effect of the addition of a new observation
is local: when we observe at u, the MSE of the prediction
at z decreases for z close to u (for instance, for Kriging
without measurement errors ρD(u) becomes zero), but

is weakly modified for z far from u. Hence, DOE is often
ignored in the statistical learning literature 3 , where the
set of training data D is generally assumed to be a col-
lection of i.i.d. pairs [uk, y(uk)], see, e.g., [37], [10]. The
local influence just mentioned has the consequence that
an optimal design should (asymptotically) tend to ob-
serve everywhere in U , and distribute the points uk with
a density (i.e. according to a probability measure abso-
lutely continuous with respect to the Lebesgue measure
on U — again, we shall see that the situation is oppo-
site for the parametric case). Few results exist on that
difficult topic, see e.g. [30]: for u scalar, observations
y(uk) = f(uk)+εk with i.i.d. errors εk, and a prediction
of the Nadaraya-Watson type ([118], [189]), a sequential
algorithm is constructed that is asymptotically optimal
(it tends to distribute the points uk with a density pro-
portional to |f ′′(u)|2/9). See also [115], [41] for related
results. The uniform distribution may turn out to be op-
timal when considering minimax optimality over a class
of functions, see [12].

When Kriging is used for prediction, the MSE is given
by (4) and SS can be chosen for instance by minimizing
the maximum MSE maxu∈U ρ2

D(u) (which is related to
minimax-distance design, see [78]) or by minimizing the
integrated MSE

∫

U ρ2
D(u)π(du), with π(·) some proba-

bility density foru, see [156]. Maximum entropy sampling
[163] provides an elegant alternative design method, usu-
ally requiring easier computations. It can be related to
maximin-distance design, see [78].

Notice finally that in general the parameters β, σ2
P and

σ2 in the covariance matrix Cy used in Kriging are esti-
mated fromdata, so that the precision of their estimation
influences the precision of the prediction. This seems to
have received very little attention, although designs for
prediction (space filling for instance) are clearly not ap-
propriate for the precise estimation of these parameters,
see [197].

4 Parametric models and information matrices

Throughout this section we consider regression models
with observations

y(uk) = η(θ̄,uk) + εk , θ̄ ∈ Θ , uk ∈ U , (5)

where the errors εk are independent with zero mean
and variance IEuk

(ε2
k) = σ2(uk), k = 1, 2, . . . (with

3 There exists a literature on active learning, which aims at
selecting training data using techniques from DOE. However,
it seems that when explicit reference to DOE is made, the
attention is restricted to learning with a parametric model,
see in particular [33], [34]. In that case, the underlying as-
sumption that the data are generated by a process whose
structure coincides with that of the model is often hardly
tenable, especially for a behavioral model e.g. of the neural-
network type, see Section 5.3.4 for a discussion.
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0 < a ≤ σ2(u) ≤ b < ∞). The function η(θ,uk) is
known, possibly nonlinear in θ, and θ̄, the true value of
the model parameters, is unknown. The asymptotic be-
havior of the LS estimator, in relation with the design, is
recalled in the next section (precise proofs are generally
rather technical, and we give conditions on the design
that facilitate their construction). Maximum-Likelihood
estimation and estimating functions are considered next.
The extension to dynamical systems requires more tech-
nical developments beyond the scope of this paper. One
can refer e.g. to [58], [104], [24] [171] for a detailed pre-
sentation, including data-recursive estimation methods.
Also, one can refer to the monograph [180] for the identi-
fication of systems with distributed parameters and e.g.
to [90], [151], [152] for optimal input design for such sys-
tems.

4.1 Weighted LS estimation

Consider the weighted LS (WLS) estimator

θ̂
N

WLS = argmin
θ

(1/N)

N
∑

k=1

w(uk)[y(uk) − η(θ,uk)]2

with w(·) a known function, bounded on U . To inves-

tigate the asymptotic properties of θ̂
N

WLS for N → ∞
we need to specify how the design points uk’s are gen-
erated. In that sense, the asymptotic properties of the
estimator are strongly related to the design. The early
and now classical reference [77] makes assumptions on
the finite tail products of the regression function η and
its derivatives, but the results are more easily obtained
at least in two cases:
• (i) (uk) forms a sequence of i.i.d. random variables
(vectors), distributed with a probability measure ξ
(which we call random design);
• (ii) The empirical measure ξN with distribution func-

tion IFξN
(u) =

∑N
i=1, ui<u

(1/N) (where the inequality

ui < u is componentwise) converges strongly (in varia-
tion, see [164], p. 360) to a discrete probability measure
ξ on U , with finite support SSξ = {u ∈ U : ξ({u}) > 0},
that is, limN→∞ ξN ({u}) = ξ({u}) for any u ∈ U .

Note that in case (i) the pairs (εk,uk) are i.i.d. and in
case (ii) there exist a finite number of support points ui

that receive positive weights ξ(ui) > 0, so that, as N
increases, the observations at those ui’s are necessarily
repeated. In both cases the asymptotic distribution of
the estimator is characterized by ξ.

The strong consistency of θ̂
N

WLS , i.e., θ̂
N

WLS
a.s.→ θ̄,

N → ∞, can easily be proved for designs satisfy-
ing (i) or (ii) under continuity and boundedness as-
sumptions on η(θ,u) when the estimability condition
[
∫

U w(u)[η(θ,u) − η(θ′,u)]2 ξ(du) = 0 ⇔ θ′ = θ] is sat-
isfied. Supposing, moreover, that η(θ,u) is two times

continuously differentiable in θ and that the matrix

M1(ξ, θ̄) =

∫

U

w(u)
∂η(θ,u)

∂θ |θ̄

∂η(θ,u)

∂θ⊤
|θ̄

ξ(du)

has full rank, an application of the Central Limit The-
orem to a Taylor series development of ∇θJN (θ), the

gradient of the WLS criterion, around θ̂
N

WLS gives

√
N(θ̂

N

WLS − θ̄)
d→ z ∼ N (0,C(w, ξ, θ̄)) , N → ∞ , (6)

where C(w, ξ, θ) = M−1
1 (ξ, θ)M2(ξ, θ)M−1

1 (ξ, θ) with

M2(ξ, θ) =

∫

U

w2(u)σ2(u)
∂η(θ,u)

∂θ

∂η(θ,u)

∂θ⊤
ξ(du) .

One may notice that C(w, ξ, θ̄) − M−1(ξ, θ̄) is non-
negative definite for any weighting function w(·), where
M(ξ, θ) denotes the matrix

M(ξ, θ) =

∫

U

σ−2(u)
∂η(θ,u)

∂θ

∂η(θ,u)

∂θ⊤
ξ(du) . (7)

The equality C(w, ξ, θ̄) = M−1(ξ, θ̄) is obtained for
w(u) = c σ−2(u), with c a positive constant, and this
choice of w(·) is thus optimal (in terms of asymptotic
variance) among all WLS estimators. This result can be
compared to that obtained for linear regression in Sec-
tion 2.1 where σ2M−1

N was the exact expression for the

variance of θ̂
N

for N finite. In nonlinear regression the

expression C(w, ξ, θ̄)/N for the variance of θ̂
N

is only
valid asymptotically, see (6); moreover, it depends on
the unknown true value θ̄ of the parameters. These re-
sults can easily be extended to situations where also the
variance of the errors depends on the parameters θ of
the response η, that is, IEuk

(ε2
k) = σ2(uk) = βλ(θ̄,uk),

see e.g. [130], [140].

4.2 Maximum-likelihood estimation

Denote ϕuk
(·) the probability density function (pdf)

of the error εk in (5). Due to the independence of er-
rors, we obtain for the vector y of observation the pdf

π(y|θ) =
∏N

k=1 π[y(ui)|θ] =
∏N

k=1 ϕuk
[y(uk)−η(θ,uk)]

and the Maximum-Likelihood (ML) estimator θ̂
N

ML min-

imizes − logπ(y|θ) =
∑N

k=1 − logϕuk
[y(uk)−η(θ,uk)].

Different pdf ϕ yield different estimators (LS for Gaus-
sian errors, L1 estimation for errors with a Laplace dis-
tribution, etc.). Under standard regularity assumptions
on ϕu(·) and for designs satisfying conditions (i) or (ii)

of Section 4.1, θ̂
N

ML
a.s.→ θ̄ and

√
N(θ̂

N

ML − θ̄)
d→ z ∼ N (0,M−1

F (ξ, θ̄)) , N → ∞ , (8)
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with MF (θ, ξ) the Fisher information matrix (average
per sample) given by

MF (θ, ξ) = IEθ

{

1

N

∂ log π(y|θ)

∂θ

∂ log π(y|θ)

∂θ⊤

}

=−IEθ

{

1

N

∂2 log π(y|θ)

∂θ∂θ⊤

}

.

In the particular case of the regression model considered
here we obtain

MF (ξ, θ) =

∫

U

I(u)
∂η(θ,u)

∂θ

∂η(θ,u)

∂θ⊤
ξ(du) (9)

with I(u) =
∫

[ϕ′
u
(z)]2/ϕu(z) dz the Fisher information

for location of the pdf ϕu. From the Cramér-Rao in-
equality, M−1

F (ξ, θ) forms a lower-bound on the covari-

ance matrix of any unbiased estimator θ̂
N

of θ, i.e.,

IEθ{(θ̂
N −θ)(θ̂

N −θ)⊤}−M−1
F (ξ, θ)/N is non-negative

definite for any estimator θ̂
N

such that IEθ{θ̂
N} = θ.

When the errors εk are normal N (0, σ2(uk)), I(u) =
σ−2(u) and ML estimation coincides with WLS with op-
timal weights (and MF (ξ, θ) coincides with (7)). When
they are i.i.d., that is ϕu = ϕ for any u, I(u) = I con-
stant, and

MF (ξ, θ) = I
∫

U

∂η(θ,u)

∂θ

∂η(θ,u)

∂θ⊤
ξ(du) . (10)

4.2.1 Estimating functions

Estimating functions form a very generally applicable
set of tools for parameter estimation in stochastic mod-
els. As the example below will illustrate, they can yield
very simple estimators for dynamical systems. One can
refer to [63] for a general exposition of the methodology,
see also the discussion paper [103] that comprises a short
historical perspective. Instrumental variables methods
(see, e.g., [169], [170] and Chapter 8 of [171]) used in dy-
namical systems as an alternative to LS estimation when
the regressors and errors are correlated (so that the LS
estimator is biased) can be considered as methods for
constructing unbiased estimating functions. Their im-
plementation often involves the construction of regres-
sors obtained through simulations with previous values
of parameter estimates, but simpler constructions are
possible.

Consider a discrete-time system with scalar state and
input, respectively xi and ui, defined by the recurrence
equation

xi+1 = xi + T [ui + θ̄(xi + 1)] , i = 0, 1, 2 . . . (11)

with known sampling period T and initial state x0. The
observations are given by yi = xi+εi for i ≥ 1, where (εi)

denotes a sequence of i.i.d. errors normal N (0, σ2). The
unknown parameter θ̄ can be estimated by LS (which
corresponds to ML estimation since the errors are nor-
mal), but recursive LS cannot be used since xi depends
nonlinearly in θ̄. However, simpler estimators can be
used if one is prepared to loose some precision for the
estimation. For instance, substitute yi for the state xi in
(11) and form the equation in θ

gi+1(θ) = yi+1 − yi − T [ui + θ(yi + 1)] = 0 ; (12)

k successive observations then give Gk(θ) = 1
k

∑k
i=1 gi(θ)

= 0. Since Gk(θ) is linear in the yi’s, IEθ{Gk(θ)} = 0
for any θ, and Gk(θ) is called an unbiased estimating
function 4 , see, e.g., [103]. Since Gk(θ) is linear in θ, the

solution θ̃k of Gk(θ) = 0 is simply given by

θ̃k =
(yk − y0)/(kT )− (

∑k−1
i=0 ui)/k

1 + (
∑k−1

i=0 yi)/k
(13)

(provided that the denominator is different from zero)
and forms an estimator for θ̄. Notice that the true value
θ̄ satisfies a similar equation with the yi’s replaced by
the noise-free values xi. Estimation by θ̃k is less pre-
cise than LS estimation, see Figure 3 in Section 9, but
requires much less computations. Would other parame-
ters be present in the model, other estimating functions
would be required. For instance, a function of the type

Gk,α(θ) =
∑k

i=1 iαgi(θ) would put more stress on the
transient (respectively long-term) behavior of the sys-
tem when α < 0 (respectively α > 0). Also, the multipli-
cation of gi(θ) by a known function of ui gives a new esti-
mating function. When information on the noise statis-
tics is available, it is desirable for the (asymptotic) preci-
sion of the estimation to choose Gk as (proportional to)
an approximation of the score function ∂ log π(y|θ)/∂θ
with π(y|θ) the pdf of the observations y1, . . . , yk, see,
e.g., [36] p. 274 and [103].

There seems to be a revival of interest for estimating
functions, partly due to the elegant algebraic framework
recently developed for time-continuous linear systems
(differential equations); see [47] where estimating func-
tions are constructed through Laplace transforms. How-
ever, in this algebraic setting only multiplications by s or
s−1 and differentiation with respect to s are considered
(with s the Laplace variable), which seems unnecessar-
ily restrictive. Consider for instance the time-continuous
version of (11),

ẋ = u + θ̄(x + 1) , x(0) = x0 , (14)

4 Nonlinearity in the observations is allowed, provided that
the bias is suitably corrected; for instance the function
g′

i+1(θ) = (1+ yi)gi+1(θ)+σ2(1+Tθ) with gi+1(θ) given by
(12) satisfies IEθ{g

′

i+1(θ)} = 0 for any θ when the errors εi are

i.i.d. with zero mean and variance σ2, and (1/k)
∑k

i=1 g′

i(θ)
is an unbiased estimating function for θ.
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where ẋ denotes differentiation with respect to time. Its
Laplace transform is sX(s) = U(s)+ θ̄X(s)+s−1θ̄+x0,
which can be first multiplied by s, then differentiated
two times with respect to s and the result multiplied by
s−2 to avoid derivation with respect to time. This gives a
estimating function comprising double integrations with
respect to time. Multiple integrations may be avoided by
noticing that the multiplication of the initial differential
equation by any function of time preserves the linearity
of the estimating function with respect to both θ and
the state (provided that the integrals involved are well
defined). For instance, when u̇ is a known function of
time, the multiplication of (14) by the input u followed
by integration with respect to time gives the estimat-

ing function [x(t)u(t) − x0u0]/t − (1/t)
∫ t

0 [x(τ)u̇(τ) +

u2(τ)] dτ = (θ/t)
∫ t

0 u(τ)[1 + x(τ)] dτ , which is linear
in x. Infinitely many unbiased estimating functions can
thus be easily constructed in this way. (Note that, due
to linearity, the introduction of process noise in (14) as
ẋ(t) = u(t)+θ̄[x(t)+1]+dBt(ω), with Bt(ω) a Brownian
motion, leaves the estimating function above unbiased.)

The analysis of the asymptotic behavior of the estimator

θ̃
k

associated with an estimating function is straightfor-
ward when the function is unbiased and linear in θ. The
expression of the asymptotic variance of the estimator
can be used to select suitable experiments in terms of
the precision of the estimation, as it is the case for LS
or ML estimation. However, in general the asymptotic
variance of the estimator takes a more complicated form
than M−1(ξ, θ) or M−1

F (ξ, θ), see (7, 10), so that DOE
for such estimators does not seem to have been consid-
ered so far. The recent revival of interest for this method
might provide some motivation for such developments
(see also Section 9).

4.3 DOE

To obtain a precise estimation of θ one should first use
a good estimator (WLS with weights proportional to
σ−2, or ML) and second select a good design 5 ξ∗. In
the next section we shall consider classical DOE for pa-
rameter estimation, which is based on the information
matrix (10) 6 . Hence, we shall choose ξ∗ that optimizes

5 We shall thus follow the standard approach, in which the
estimator is chosen first, and an optimal design is then con-
structed for that given estimator (even though it may be
optimal for different estimators); this can be justified under
rather general conditions, see [119].
6 Note that defining η̃(θ,u) = σ−1(u)η(θ,u) and η̃(θ,u) =
√

I(u)η(θ,u) one can respectively write the matrices (7)
and (9) in the same form as (10). Also notice that classi-
cal DOE uses the covariance matrix with the simplest ex-
pression: DOE for WLS estimation is more complicated for
non-optimal weights than for the optimal ones, compare
C(w, ξ, θ) to M

−1(ξ, θ) in Section 4.1. Similarly, the asymp-
totic covariance matrix for a general M -estimator (see, e.g.,

Φ[MF (ξ, θ)], for some criterion function Φ(·). For mod-
els nonlinear in θ, this raises two difficulties: (i) the cri-
terion function, and thus ξ∗, depends on a guessed value
θ for θ̄. This is called local DOE (the design ξ∗ is opti-
mal locally, when θ̄ is close to θ), some alternatives to
local optimal design will be presented in Section 5.3.5;
(ii) the method relies on the asymptotic properties of the
estimator. More accurate approximations of the preci-
sion of the estimation exist, see e.g. [126], but are com-
plicated and seldom used for DOE, see [128], [138] (see
also the recent work [25] concerning the finite sample
size properties of estimators, which raises challenging
DOE issues). They will not be considered here. For dy-
namical systems with correlated observations or contain-
ing an autoregressive part, classical DOE also relies on
the information matrix, which has then a more compli-
cated expression, see Section 6. Also, the calculation of
the asymptotic covariance of some estimators requires
specific developments that are not presented here, see
e.g. [58], [104], [24] for recursive estimation methods.
For Bayesian estimation, a standard approach for DOE
consists in replacing MF (ξ, θ) by MF (ξ, θ) + Ω−1/N ,
with Ω the prior covariance matrix for θ, see e.g. [132],
[27]. Note finally the central role of the design concern-
ing the asymptotic properties of estimators. In partic-
ular, the conditions (i) and (ii) of Section 4.1 on the
design imply some stationarity of the “inputs” uk and
guarantee the persistence of excitation, which can be ex-
pressed as a condition on the minimum eigenvalue of the
information matrix: lim infN→∞ λmin[MF (ξN , θ)] > 0,
with ξN the empirical measure of u1, . . . ,uN (that is,
lim infN→∞ λmin(MN )/N > 0 for the linear regression
model of Section 2.1, see (2)).

5 DOE for parameter estimation

5.1 Design criteria

We consider criteria for designing optimal experiments
(for parameter estimation) that are scalar functions of
the (Fisher) information matrix (average, per sample)
(10) 7 . For N observations at the design points ui ∈ U ,
i = 1, . . . , N , we shall denote UN

1 = (u1, . . . ,uN ), which
is called a finite (or discrete) design of size N , or N -point
design. The associated information matrix is then

MF (UN
1 , θ) =

I
N

N
∑

i=1

∂η(θ,ui)

∂θ

∂η(θ,ui)

∂θ⊤
. (15)

[72]) is more complicated than for ML.
7 Notice that the analytic form of the sensitivities
∂η(θ,u)/∂θ of the model response is not required: for a
model given by differential equations, like in Section 2.2, or
by difference equations, the sensitivities can be obtained by
simulation, together with the model response itself; see, e.g.,
Chapter 4 of [188].
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The admissible design set U is sometimes a finite set,
U = {u1, . . . ,uK}, K < ∞. We shall more generally
assume that U is a compact subset of R

d. For a linear
regression model with i.i.d. errors N (0, σ2), the ellip-

soid R(θ̂
N

LS, α) = {θ / (θ− θ̂
N

LS)⊤MF (UN
1 )(θ− θ̂

N

LS) ≤
X 2

α(p)/N}, where X 2
α(p) has the probability α to be ex-

ceeded by a random variable chi-square distributed with

p degrees of freedom, satisfies Pr{θ̄ ∈ R(θ̂
N

LS , α)} = α,
and this is asymptotically true in nonlinear situations 8 .

Most of classical design criteria are related to character-
istics of (asymptotic) confidence ellipsoids. Minimizing
Φ(M) = trace[M−1] corresponds to minimizing the sum
of the squared lengthes of the axes of (asymptotic) con-
fidence ellipsoids for θ and is called A-optimal design
(minimizing Φ(M) = trace[Q⊤QM−1] with Q some
weighting matrix is called L-optimal design, see [31]
for an early reference). Minimizing the longest axis of
(asymptotic) confidence ellipsoids for θ is equivalent to
maximizing the minimum eigenvalue of M and is called
E-optimal design. D-optimal design maximizes det(M),
or equivalently minimizes the volume of (asymptotic)
confidence ellipsoids for θ (their volume being pro-

portional to 1/
√

detM). This approach is very much
used, in particular due to the invariance of a D-optimal
experiment by re-parametrization of the model (since

detM(ξ, θ′) = detM(ξ, θ)[det(∂θ′/∂θ⊤)]−2). Most of-
ten D-optimal experiments consist of replications of a
small number of different experimental conditions. This
has been illustrated by the example of Section 2.2 for
which p = 4 and four sampling times were duplicated in
the D-optimal design t∗.

5.2 Algorithms for discrete design

Consider the regression model (5) with i.i.d. errors and
N observations at UN

1 = (u1, . . . ,uN ) where the sup-
port points ui belong to U ⊂ R

d. The Fisher informa-
tion matrix MF (UN

1 , θ) is then given by (15). The (lo-
cal) design problem consists in optimizing Ψθ(U

N
1 ) =

Φ[MF (UN
1 , θ)] for a given θ, with respect to UN

1 ∈
R

N×d. If the problem dimension N × d is not too large,
standard optimization algorithms can be used (note,
however, that constraints may exist in the definition of
the admissible set U and that local optima exist is gen-
eral). When N × d is large, specific algorithms are rec-
ommended. They are usually of the exchange type, see
[42], [108]. Since several local optima exist in general,
these methods provide locally optimal solutions only.

8 Such confidence regions for θ can be transformed into
simultaneous confidence regions for functions of θ, see in
particular [160], [14].

5.3 Approximate design theory

5.3.1 Design measures

Suppose that replications of observations exist, so that
several ui’s coincide in (15). Let m < N denote the
number of different ui’s, so that

MF (UN
1 , θ) = I

m
∑

i=1

ri

N

∂η(θ,ui)

∂θ

∂η(θ,ui)

∂θ⊤

with ri/N the proportion of observations collected at ui,
which can be considered as the percentage of experimen-
tal effort at ui, or the weight of the support point ui. De-
note λ(ui) this weight. The design UN

1 is then character-
ized by the support points u1, . . . ,um and their associ-
ated weights λ(u1), . . . , λ(um) satisfying

∑m
i=1 λ(ui) =

1, that is, a normalized discrete distribution on the ui’s,
with the constraints λ(ui) = ri/N , i = 1, . . . , m. Releas-
ing these constraints, one defines an approximate design
as a discrete probability measure with support points ui

and weights λi (with
∑m

i=1 λi = 1). Releasing now the
discreteness constraint, a design measure is simply de-
fined as any probability measure ξ on U , see [84], and
MF (ξ, θ) takes the form (10). Now, MF (ξ, θ) belongs to
the convex hull of the set M1 of rank-one matrices of the
form M(δu, θ) = I [∂η(θ,u)/∂θ] [∂η(θ,u)/∂θ

⊤]. It is a
p×p symmetric matrix, and thus belongs to a p(p+1)/2-
dimensional space. Therefore, from Caratheodory’sThe-
orem, it can be written as the linear combination of
p(p + 1)/2 + 1 elements of M1 at most; that is

MF (ξ, θ) = I
m
∑

i=1

λi
∂η(θ,ui)

∂θ

∂η(θ,ui)

∂θ⊤
, (16)

with m ≤ p(p + 1)/2 + 1. The information matrix as-
sociated with any design measure ξ can thus always be
considered as obtained from a discrete probability mea-
sure with p(p + 1)/2 + 1 support points at most. This is
true in particular for the optimal design 9 . Given such
a discrete design measure ξ with m support points, a
discrete design UN

1 with repetitions can be obtained by
choosing the numbers of repetitions ri such that ri/N
is an approximation 10 of λi, the weight of ui for ξ, see,
e.g., [150].

The property that the matrices in the sum (16) have
rank one is not fundamental here and is only due

9 In general the situation is even more favorable. For in-
stance, if ξD is D-optimal (it maximizes detMF (ξ, θ)), then
MF (ξD, θ) is on the boundary of the convex closure of M1

and p(p + 1)/2 support points are enough.
10 This is at the origin of the name approximate design theory.
However, a design ξ (even with a density) can sometimes
be implemented without any approximation: this is the case
in Section 6.2 where ξ corresponds to the power spectral
density of the input signal.
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to the fact that we considered single-output mod-
els (i.e., scalar observations). In the multiple-output
case with independent errors, say with y(u) of di-
mension q corrupted by errors having the q × q co-
variance matrix Σ(u), the model response is a q-
dimensional vector η(θ,u) and the information matrix
for WLS estimation with weights Σ−1(u) is M(ξ, θ) =
∫

U
[∂η⊤(θ,u)/∂θ]Σ−1(u) [∂η(θ,u)/∂θ⊤] ξ(du), to be

compared with (7) obtained in the single-output case,
see, e.g., [42], Section 1.7 and Chapter 5. Caratheodory’s
Theorem still applies and, with the same notations as
above, we can write

M(ξ, θ) =

m
∑

i=1

λi
∂η⊤(θ,ui)

∂θ
Σ−1(ui)

∂η(θ,ui)

∂θ⊤
,

with again m ≤ p(p+1)/2+1. All the results concerning
DOE for scalar observations thus easily generalize to the
multiple-output situation.

5.3.2 Properties

Only the main properties are indicated, one may refer
to the books [42], [167], [125], [4], [149], [44] for more
detailed developments. Suppose that the design crite-
rion Φ[M] to be minimized (respectively maximized) is
strictly convex (respectively concave). For instance for
D-optimality, maximizing det[M] is equivalent to maxi-
mizing log det[M] and, for any positive-definite matrices
M1, M2 such that M1 6= M2, ∀α, 0 < α < 1, log det[(1−
α)M1 + αM2] > (1−α) log det[M1] + α log det[M2], so
that Φ[·] = log det[·] is a strictly concave function. Since
MF (ξ, θ) belongs to a convex set, the optimal matrix
M∗

F = MF (ξ∗, θ) for Φ is unique (which usually does not
imply that the optimal design ξ∗ is unique; however, the
set of optimal design measures is convex). The unique-
ness of the optimum and differentiability of the criterion
directly yield a necessary and sufficient condition for op-
timality, and in the case of D-optimality we obtain the
following, known as Kiefer-Wolfowitz Equivalence Theo-
rem [85] (other equivalence theorems are easily obtained
for other design criteria having suitable regularity and
the appropriate convexity or concavity property).

Theorem 1 The following statements are equivalent:
(1) ξD is D-optimal for θ,
(2) maxu∈U dθ(u, ξD) = p,
(3) ξD minimizes maxu∈U dθ(u, ξD),
where dθ(u, ξ) is defined by

dθ(u, ξ) = I ∂η(θ,u)

∂θ⊤
M−1

F (ξ, θ)
∂η(θ,u)

∂θ
. (17)

Moreover, for any support point ui of ξD, dθ(ui, ξD) = p.

Note that condition (2) is easily checked when u is scalar
by plotting dθ(u, ξ) as a function of u.

Theorem 1 relates optimality in the parameter space to
optimality in the space of observations, in the following

sense. Let θ̂
N

ML be obtained for a design ξ, the variance

of the prediction η(θ̂
N

ML,u) of the response at u is then

such that Nvar[η(θ̂
N

ML,u)] tends to

∂η(θ,u)

∂θ⊤
|θ̄

M−1
F (ξ, θ̄)

∂η(θ,u)

∂θ |θ̄
=

dθ̄(u, ξ)

I (18)

when N → ∞, see (8). Therefore, a D-optimal experi-
ment also minimizes the maximum of the (asymptotic)
variance of the prediction over the experimental domain
U . This is called G-optimality, and Theorem 1 thus ex-
presses the equivalence between D and G-optimality. (It
is also related to maximum entropy sampling considered
in Section 3.2.2, see [193].)

Suppose that the observations are collected sequentially
and that the choice of the design points can be made
accordingly (sequential design). After the collection of
y(u1), . . . , y(uN ), which gives the parameter estimates

θ̂
N

and the prediction η(θ̂
N

,u), in order to improve the
precision of the prediction the next observation should

intuitively be placed where var[η(θ̂
N

,u)] is large, that is,
where dθ̂N (u, ξN ) is large, with ξN the empirical measure
for the first N design points. This receives a theoretical
justification in the algorithms presented below.

5.3.3 Algorithms

The presentation is for D-optimality, but most al-
gorithms easily generalize to other criteria. Let ξk

denote the design measure at iteration k of the al-
gorithm. The steepest-ascent direction at ξk corre-
sponds to the delta measure that puts mass 1 at
u∗

k+1 = arg maxu∈U dθ(u, ξk). Hence, at iteration k,
algorithms of the steepest-ascent type add the support
point u∗

k to ξk as follows:

Fedorov–Wynn Algorithm:
• Step 1 : Choose ξ1 not degenerate (detMF (ξ1, θ) 6= 0),
and ǫ such that 0 < ǫ << 1, set k = 1.
• Step 2 : Compute u∗

k+1 = arg maxu∈U dθ(u, ξk). If

dθ(u
∗
k+1, ξ

k) < p + ǫ, stop: ξk is almost D-optimal.

• Step 3 : Set ξk+1 = (1 − αk)ξk + αkδu∗

k+1
, k → k + 1,

return to Step 2.

Fedorov’s algorithm corresponds to choosing the step-
length α∗

k that maximizes log detMF (ξk+1, θ), which
gives α∗

k = [dθ(u
∗
k+1, ξ

k)−p]/{p[dθ(u
∗
k+1, ξ

k)−1]} (note
that 0 < α∗

k < 1/p) and ensures monotonic convergence
towards a D-optimal measure ξD, see [42].

Wynn’s algorithm corresponds to a sequence satisfying
0 < αk < 1, limk→∞ αk = 0 and

∑∞
i=1 αk = ∞, see

10



[192] (the convergence is then not monotonic). One may
notice that in sequential design where the design points
enter MF (UN

1 , θ) given by (15) one at a time, one has

MF (Uk+1
1 , θ) =

k

k + 1
MF (Uk

1 , θ)

+
1

k + 1
I ∂η(θ,uk+1)

∂θ

∂η(θ,uk+1)

∂θ⊤

and, when uk+1 = arg maxu∈U dθ(u, ξk), this corre-
sponds to Wynn’s algorithm with αk = 1/(k + 1).

Contrary to the exchange algorithms of Section 5.2, these
steepest-ascent methods guarantee convergence to the
optimum. However, in practice they are rather slow (in
particular due to the fact that a support point present
at iteration k is never totally removed in subsequent it-
erations — since αk < 1 for any k) and faster methods,
still of the steepest-ascent type, have been proposed, see
e.g. [13], [111], [112] and [44] p. 49. An acceleration of
the algorithms can also be obtained by using a submod-
ularity property of the design criterion, see [154], or by
removing design points that cannot support a D-optimal
design measure, see [61].

When the set U is finite (which can be obtained by a
suitable discretization), say with cardinality K, the op-
timal design problem in the approximate design frame-
work corresponds to the minimization of a convex func-
tion of K positive weights λi with sum equal one, and any
convex optimization algorithm can be used. The recent
progress in interior point methods, see for instance the
survey [48] and the books [120], [40], [190], [194], provide
alternatives to the usual sequential quadratic program-
ming algorithm. In control theory these methods have
lead to the development of tools based on linear matrix
inequalities, see, e.g., [20], which in turn have been sug-
gested for D-optimal design, see [182] and Chapter 7 of
[21]. Alternatively, a simple updating rule can sometimes
be used for the optimization of a design criterion over a
finite set U = {u1, . . . ,uK}. For instance, convergence
to a D-optimal measure is guaranteed when the weight
λk

i of ui at iteration k is updated as

λk+1
i = λk

i

dθ(u
i, ξk)

p
, (19)

where ξk is the measure defined by the support points ui

and their associated weights λk
i , and dθ(u, ξ) is given by

(17), see [176], [168], [177] and Chapter 5 of [125]. (Note

that
∑K

i=1 λk+1
i = 1 and that λk+1

i > 0 when λk
i > 0.)

The extension to the case where information matrices
associated with single points have ranks larger than one
(see Section 5.3.1) is considered in [180].

Finally, it is worthwhile noticing that D-optimal design
is connected with a minimum-ellipsoid problem. Indeed,

using Lagrangian theory one can easily show that the
construction of ξD that maximizes the determinant of
MF (ξ, θ) given by (10) with respect to the probability
measure ξ on U is equivalent to the construction of the
minimum-volume ellipsoid, centered at the origin, that
contains the set SSθ = {∂η(θ,u)/∂θ : u ∈ U} ⊂ R

p,
see [165]. The construction of the minimum-volume el-
lipsoid centered at 0 containing a given set U ⊂ R

p thus
corresponds to a D-optimal design problem on U for the
linear regression model η(θ,u) = u⊤θ. In the case where
the center of the ellipsoid is free, one can show equiva-
lence with a D-optimal design in a (p + 1)-dimensional
space where the regression model is η(θ,u) = (1 u⊤)θ,
θ ∈ R

p+1, see [166], [175]. Algorithms with iterations of
the type (19) are then strongly connected with steepest-
descent type algorithms when minimizing a quadratic
function, see [147], [148] and Chapter 7 of [146]. In sys-
tem identification, minimum-volume ellipsoids find ap-
plications in parameter bounding (or parameter estima-
tion with bounded errors), see, e.g., [145] and [153] for
an application to robust control.

5.3.4 Active learning with parametric models

When learning with a parametric model, the predic-

tion ŷD(u) at u is η(θ̂
N

,u) with θ̂
N

estimated from
the data D = {[u1, y(u1)], . . . , [uN , y(uN)]}. As Theo-
rem 1 shows, the precision of the prediction is directly
related to the precision of the estimation of the model
parameters θ: a D-optimal design minimizes the max-
imum (asymptotic) variance 11 of ŷD(u) for u ∈ U .
Similar properties hold for other measures of the pre-
cision of the prediction. Consider for instance the inte-
grated (asymptotic) variance of the prediction with re-
spect to some given probability measure π (that may
express the importance given to different values of u in
U). It is given by Ψθ,H(ξ) = trace

{

HM−1(ξ, θ)
}

, where

H = H(θ) =
∫

U
[∂η(θ,u)/∂θ] [∂η(θ,u)/∂θ⊤] π(du), see

(18), and its minimization corresponds to a L-optimal
design problem, see Section 5.1. The following paramet-
ric learning problem is addressed in [81]: the measure
π is unknown, n samples ui from π are used, together
with the associated observations, to estimate θ and H,

respectively by θ̂
n

and Ĥn(θ̂
n
), N −n samples are then

chosen optimally for Ψθ̂n,Ĥn(ξ). It is shown that the op-

timal balance between the two sample sizes corresponds
to n being proportional to

√
N . When the samples ui

are cheap and only the observations y(ui) are expensive,
one may decide on-line to collect an observation or not

for updating the estimate θ̂
n

and the information ma-
trix Mn. A sequential selection rule is proposed in [136],

11 We could also speak of MSE since in parametric models
the estimators are usually unbiased for models linear in θ,
and for nonlinear models (under the condition of persistence
of excitation) the squared bias decreases as 1/N2 whereas
the variance decreases as 1/N , see [19].
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which is asymptotically optimal when a given propor-
tion n = ⌊αN⌋ of samples, α ∈ (0, 1), can be accepted
in a sequence of length N , N → ∞.

There exists a fundamental difference between learning
with parametric and nonparametric models. For para-
metric models, the MSE of the prediction globally de-
creases as 1/N , and precise predictions are obtained for
optimal designs which, from Caratheodory’s Theorem
(see Section 5.3.1) are concentrated on a finite number
of sites. These are the points ui that carry the maxi-
mum information about θ useful for prediction, in terms
of the selected design criterion. On the opposite, precise
predictions for nonparametric models are obtained when
the observation sites are spread over U , see Section 3.2.2.
Note, however, that parametric methods rely on the ex-
tremely strong assumption that the data are generated by
a model with known structure. Since optimal designs will
tend to repeat observations at the same sites (whatever
the method used for their construction), modelling errors
will not be detected. This makes optimal design theory
of very delicate use when the model is of the behavioral
type, e.g. a neural network as in [33], [34]. A recent ap-
proach [52] based on bagging (Bootstrap Aggregating,
see [23]) seems to open promising perspectives.

5.3.5 Dependence in θ in nonlinear situations

We already stressed the point that in nonlinear situa-
tions the Fisher information matrix depends on θ, so
that an optimal design for estimation depends on the
unknown value of the parameters to be estimated. So
far, only local optimal design has been considered, where
the experiment is designed for a nominal value θ. Sev-
eral methods can be used to reduce the effect of the de-
pendence in the assumed θ. A first simple approach is

to use a finite set Θ = {θ(1), . . . , θ(m)} of nominal val-
ues and to design m locally optimal experiments ξ∗

θ(i) for

the θ(i)’s in Θ. This permits to appreciate the strength
of the dependence of the optimal experiment in θ, and
several ξ∗

θ(i) ’s can eventually be combined to form a sin-
gle experiment. More sophisticated approaches rely on
average or minimax optimality.

In average-optimal design, the criterion Ψθ(ξ) =
Φ[MF (ξ, θ)] is replaced by its expectation IEπ{Ψθ(ξ)} =
∫

Φ[MF (ξ, θ)] π(dθ) for some suitably chosen prior π,
see, e.g., [43], [26], [27]. (Note that when the Fisher
information matrix MF (ξ, θ) is used, it means that the
prior is not used for estimation and the method is not
really Bayesian.) In minimax-optimal design, Ψθ(ξ) (to
be minimized) is replaced by its worst possible value
maxθ∈Θ Φ[MF (ξ, θ)] when θ belongs to a given feasible

set Θ, see, e.g., [43]. Compared to local design, these ap-
proaches do not create any special difficulty (other than
heavier computations) for discrete design, see Section
5.2: no special property of the design criterion is used,
but the algorithms only yield local optima. Of course,

for computational reasons the situation is simpler when
π is a discrete measure and Θ is a finite set 12 . Con-
cerning approximate design theory (Section 5.3), the
convexity (or concavity) of Φ is preserved, Equivalence
Theorems can still be obtained (Section 5.3.2) and glob-
ally convergent algorithms can be constructed (Section
5.3.3), see, e.g., [44]. A noticeable difference with local
design, however, concerns the number of support points
of the optimum design which is no longer bounded by
p(p + 1)/2 + 1 (see, e.g., Appendix A in [155]). Also,
algorithms for minimax-optimal design are more com-
plicated than for local optimal design, in particular
since the steepest-ascent direction does not necessarily
correspond to a one-point delta measure.

A third possible approach to circumvent the dependence
in θ consists in designing the experiment sequentially
(see the examples in Sections 2.3 and 2.4), which is par-
ticularly well suited for nonparametric models, both in
terms of prediction and estimation of the model, see Sec-
tion 3.2.2. Sequential DOE for regression models is con-
sidered into more details in Section 8.

6 Control in DOE: optimal inputs for parameter
estimation in dynamical models

In this section, the choice of the input is (part of) the
design, UN

1 or ξ depending whether discrete or approx-
imate design is used. One can refer in particular to the
book [196] and Chapter 6 of [58] for detailed develop-
ments. The presentation is for single-input single-output
systems, but the results can be extended to multi-input
multi-output systems. The attention is on the construc-
tion of the Fisher information matrix, the inverse of
which corresponds to the asymptotic covariance of the
ML estimator, see Section 4. For control-oriented appli-
cations it is important to relate the experimental design
criterion to the ultimate control objective, see, e.g., [50],
[53]. This is considered in Section 6.2.

6.1 Input design in the time domain

Consider a Box and Jenkins model, with observations

yk = F (θ̄, z)uk + G(θ̄, z)εk

where the errors εk are i.i.d. N (0, σ2), and F (θ, z) and
G(θ, z) are rational fractions in z−1 with G stable with a
stable inverse. Suppose that σ2 is unknown. An extended
vector of parameters β = (θ⊤ σ2)⊤ must then be esti-
mated, and one can assume that G(θ,∞) = 1 without
any loss of generality. For suitable input sequences (such

12 When Θ is a compact set of R
p, a relaxation algorithm

is suggested in [143] for minimax-optimal design; stochastic
approximation can be used for average-optimal design, see
[142].
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that the experiment is informative enough, see [104], p.

361), NVar(β̂
N

ML) → M−1
F (ξ, β̄), N → ∞, with β̄ the

unknown true value of β and

MF (ξ, β) = IEβ

{

1

N

∂ log π(y|β)

∂β

∂ log π(y|β)

∂β⊤

}

.

Using the independence and normality of the errors and
the fact that σ2 does not depend on θ, we obtain

MF (ξ, β) =

(

MF (ξ, θ) 0

0⊤ 1
2σ4

)

with MF (ξ, θ) = IEθ

{

1

Nσ2

N
∑

k=1

∂ek(θ)

∂θ

∂ek(θ)

∂θ⊤

}

and ek(θ) the prediction error ek(θ) = G−1(θ, z)[yk −
F (θ, z)uk]. The fact that σ2 is unknown has therefore no
influence on the (asymptotic) precision of the estimation
of θ. Assuming that the identification is performed in
open loop (that is, there is no feedback) 13 and that F
and G have no common parameters (that is, θ can be

partitioned into θ = (θ⊤
F θ⊤

G)⊤, with pF components in
θF and pG in θG), we then obtain

MF (ξ, θ) =

(

MF
F (ξ, θ) O

O MG
F (ξ, θ)

)

with

MF
F (ξ, θ) =

1

Nσ2

N
∑

k=1

[

G−1(θ, z)
∂F (θ, z)

∂θF
uk

]

×
[

G−1(θ, z)
∂F (θ, z)

∂θ⊤
F

uk

]

(20)

and MG
F (ξ, θ) not depending on {uk}, see, e.g., [58], p.

131.The asymptotic covariancematrixM−1
F (ξ, θ) is thus

partitioned into two blocks, and the input sequence (uk)
has no effect on the precision of the estimation of the
parameters θG in G. A D-optimal input sequence maxi-

mizes detMF
F (ξ, θ) = det

[

1/(Nσ2)
∑N

k=1 vkv
⊤
k

]

where

vk is a vector of (linearly) filtered inputs,

vk = G−1(θ, z)
∂F (θ, z)

∂θF
uk , (21)

usually with power or amplitude constraints on uk. This
corresponds to an optimal control problem in the time
domain and standard techniques from control theory can
be used for its solution.

13 One may refer, e.g., to Chapter 6 of [58], [56], [57], [67],
[49], [50] [76] for results concerning closed-loop experiments.

6.2 Input design in the frequency domain

We consider the same framework as in previous
section, with the information matrix of interest
MF

F (ξ, θ) given by (20). Suppose that the system out-
put is uniformly sampled at period T and denote
MF

F (ξ, θ) = limN→∞ MF
F (ξ, θ)/T the average Fisher

information matrix per time unit. It can be written
as MF

F (ξ, θ) = 1/(2πσ2)
∫ π

−π
Pv(ω) dω with Pv(ω)

the power spectral density of vk given by (21), or

MF
F (ξ, θ) = 1/π

∫ π

0 M̃
F

F (ω, θ)Pu(ω) dω with Pu(ω) the
power spectral density of u and

M̃
F

F (ω, θ) =
1

σ2
Re

{

∂F (θ, ejω)

∂θF
G−1(θ, ejω)

× G−1(θ, e−jω)
∂F (θ, e−jω)

∂θ⊤
F

}

.

The framework is thus the the same as for approximate
design theory of Section 5.3: the experimental domain
U becomes the frequency domain R

+ and to the design
measure ξ corresponds the power spectral density Pu.
An optimal input with discrete spectrum always exists;
it has a finite number of support points 14 (frequencies)
and associated weights (input power). The optimal in-
put can thus be searched in the class of signals consist-
ing of finite combinations of sinusoidal components, and
the algorithms for its construction are identical to those
of Section 5.3.3. Notice, however, that no approximation
is now involved in the implementation of the “approxi-
mate” design. Once an optimal spectrum has been spec-
ified, the construction of signal with this spectrum can
obey practical considerations, for instance on the ampli-
tude of the signal, see [9]. Alternatively, the input spec-
trum can be decomposed on a suitable basis of rational
transfer functions and the optimization of Pu performed
with respect to the linear coefficients of the decomposi-
tion, see [74], [75]. Notice that the problem can also be
taken the other way round: one may wish to minimize
the input power subject to a constraint on the precision
of the estimation, expressed through M−1

F (ξ, θ), see e.g.,
[15], [16].

The design criteria presented in Section 5.1 are related
to the definition of confidence regions, or uncertainty
sets, for the model parameters. When the intended
application of the identification is the control of a dy-
namical system, it seems advisable to relate the DOE to
control-oriented uncertainty sets, see in particular [53]
for an inspired exposition. First note that according to
the expression (18) the variance of the transfer function
F (θ, ejω) at the frequency ω is approximately VF (ω) =

(1/N)[∂F (θ, ejω)/∂θ⊤
F ] [MF

F (ξ, θ)]−1 [∂F (θ, ejω)/∂θF ].

14 One can show that the upper bound on their number can
be reduced from pF (pF + 1)/2 to pF , the number of param-
eters in F , see [58], p. 138.
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Several H∞-related design criteria can then be de-
rived. For instance, a robust-control constraint of
the form ‖W (ejω)∆F (θ, ejω)/F (θ, ejω)‖∞ < 1, with
∆F (θ, ejω)/F (θ, ejω) the relative error on F (θ, ejω)
due to the estimation of θ and W (ejω) a weighting func-
tion, leads to z⊤(θ, ejω)[MF

F (ξ, θ)]−1z(θ, ejω) < 1 ∀ω,

with z(θ, ejω) = (1/
√

N)|W (ejω)|[∂F (θ, ejω)/∂θF ].
This type of constraint can be expressed as a linear ma-
trix inequality in MF

F (ξ, θ), and, using the KYP lemma,
the problem can be reformulated as having a finite
number of constraints, see [75]. Notice that minimizing
maxω z⊤(θ, ejω)[MF

F (ξ, θ)]−1z(θ, ejω) can be compared
to E-optimum design, see Section 5.1, which minimizes
max{z:z⊤z=1} z⊤[MF

F (ξ, θ)]−1z. When |W (ejω)| = 1

(uniform weighting) and G(θ, ejω) = 1 (white noise), it
corresponds to G-optimal design, and thus to D-optimal
design, see Section 5.3.2. It is also strongly related to
the minimax-optimal design of Section 5.3.5, (where the
worst-case is now considered with respect to ω), see [44]
and [143] for algorithms. Alternatively, the asymptotic
confidence regions for θ can be transformed into uncer-
tainty sets SSF (θ, ξ) for the transfer function F (θ, ejω).
The worst-case ν-gap over this set can then be com-
puted, with the property that the smaller this number,
the larger the set of controllers that stabilize all transfer
functions in SSF (θ, ξ) [54], [55] (see also [153] for re-
lated results). Designing experiments that minimize the
worst-case ν-gap is considered in [64] where the problem
is shown to be amenable to convex optimization.

The dependence of the design criteria in the unknown pa-
rameters of the model is a major issue for optimal input
design, as it is more generally the case for models with a
nonlinear parametrization (it explains why input spec-
tra with few sinusoidal components are often considered
as unpleasant). The methods suggested in Section 5.3.5
to face this difficulty can be applied here too. In particu-
lar, input spectra having a small number of components
can be avoided by designing optimal inputs for different
nominal values for θ and combining the optimal spec-
tra that are obtained, or by using average or minimax-
optimal design [155]. One can also design the experiment
sequentially (see Section 8); in general, each design step
involves many observations and a few steps only are re-
quired to achieve suitable performance, see, e.g. [8].

When on-line adaptation is possible, adjusting the con-
troller while data are collected and the uncertainty on
the model decreases can be expected to achieve better
performance than non-adaptive robust control. Ideally,
one would wish to have uncertainty sets shrinking to-
wards a single point representing the true model (or the
model closest to the true system for the model class con-
sidered), so that a robust controller adapted to smaller
and smaller uncertainty sets becomes less and less con-
servative. While the determination of such robust-and-
adaptive controllers is still an open issue, a first step in
the construction is to investigate the properties of the

parameter estimates in adaptive procedures.

7 DOE in adaptive control

The results of Sections 5 and 6 rely on the asymptotic
properties of the estimator: the asymptotic variance of

θ̂
N

ML was supposed to be given by M−1
F /N , which is true

when the design (input) sequence satisfies some “sta-
tionarity” condition (the assumption of random design
was used in Section 5 and a condition of persistence of
excitation in Section 6). However, this condition may fail
to hold: a typical example is adaptive control, where the
input has another objective than estimation. The issues
that it raises are investigated hereafter. We first present
a series of simple examples that illustrate the variety of
the difficulties.

7.1 Examples of difficulties

It is rather well-known that the usual asymptotic nor-
mality of the LS estimator may fail to hold for de-
signs such that MF (UN

1 ) is nonsingular for any N
but converges to a singular matrix, that is, such that
λmin[MF (UN

1 )] → 0 as N → ∞, see [131]. We shall not
develop this point but rather focuss on the difficulties
raised by the sequential construction of the design.

Consider the following well-known example (see, e.g.,
[96], [99]) of a linear regression model with observations
yk = θ̄1+θ̄2uk+εk where the errors εk are i.i.d. with zero
mean and variance 1. The input (design points uk) sat-
isfies u1 = 0 and un+1 = (1/n)

∑n
i=1 ui +(c/n)

∑n
i=1 εi.

Then, one can prove that {θ̂N

LS}1
a.s.→ θ̄1 +

∑∞
i=1 εi/i and

{θ̂N

LS}2
a.s.→ θ̄2 − 1/c, N → ∞. That is, {θ̂N

LS}1 con-

verges to a random variable and {θ̂N

LS}2 to a non-random
constant different from θ̄2. The non-consistency of the
LS estimator is due to the dependence of un+1 on pre-
vious εi’s, that is, to the presence of feedback control
(in terms of DOE, the design is sequential). Although

MN =
∑N

i=1(1 ui)
⊤(1 ui) is such that λmin(MN ) → ∞,

it does not grows fast enough (in particular, the infor-
mation matrix M(UN

1 ) = MN/N tends to become sin-
gular). Although this example might seem quite artifi-
cial, one must notice that adaptive control as used e.g.
in self-tuning strategies, may raise similar difficulties.

7.1.1 ARX model and self-tuning regulator

Consider a model with observations satisfying yk =
a1yk−1 + · · ·+ ana

yk−na
+ b1uk−1 + · · ·+ bnb

uk−nb
+ εk,

which we can write yk = r⊤k θ̄ + εk, with θ̄ =
(b1, b2, . . . , a1, a2, . . .)

⊤ and rk = (uk−1, . . . , uk−nb
,

yk−1, . . . , yk−na
)⊤. The objective of minimum-variance

control is to minimize RN =
∑N

k=1(yk − εk)2. The in-
put sequence (uk) is then said to be globally convergent
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if RN/N
a.s.→ 0 as N → ∞, see [100], [101], [60]. If θ̄ is

known (with b1 6= 0) the optimal controller corresponds
to u∗

k = −(a1yk + · · · + ana
yk+1−na

+ b2uk−1 + · · · +
bnb

uk+1−nb
)/b1. But then r⊤k θ̄ = 0 for all k, the matrix

MN =
∑N

k=1 rkr
⊤
k is singular (since θ̄

⊤
MN θ̄ = 0) and

θ̄ is not estimable. If certainty equivalence is forced by

using at step k the optimal control calculated for θ̂
k

LS,
then additional perturbations must be introduced to
guarantee that λmin(MN ) tends to infinity fast enough,
see, e.g., [1]. Using a persistently exciting input uk, pos-
sibly with optimal features via the approach of Section
6, permits to avoid this difficulty but is in conflict with
the global convergence property [100], in particular
since ‖θ̄‖2λmin(MN) < RN , see [60].

7.1.2 Self-tuning optimizer

Consider a linear regression model with observations
yk = r⊤(uk)θ̄+εk. The objective is to maximize a func-
tion f(u, θ̄) with respect to u. If θ̄ were known, the
value u∗ = u∗(θ̄) = argmaxu f(u, θ̄) could be used
(for instance, u∗ = −θ̄1/(2θ̄2) when f(u, θ) = θ0 +
θ1u + θ2u

2). Since θ̄ is unknown, it must be estimated
from the observations yk, k = 1, 2, . . . Again, the matrix

MN =
∑N

k=1 r(uk)r⊤(uk) is singular when the control
is fixed, that is when uk = u∗(θ) (constant) for all k,
and θ is then not estimable. Suppose that forced cer-
tainty equivalence is used with LS estimation, that is

uk+1 = u∗(θ̂
k

LS). Perturbations should then be intro-
duced to ensure consistency (e.g. randomly, see [22] for
the quadratic case f(u, θ) = θ0 + θ1u + θ2u

2). The per-
sistency of excitation is here in conflict with the perfor-

mance objective (1/n)
∑n

i=1 f(ui, θ̄)
a.s.→ f(u∗, θ̄), n →

∞. Self-tuning regulation of dynamical systems is con-
sidered in [89] and [87] for time-continuous systems and
in [32] for discrete-time systems. With a periodic distur-
bance of magnitude α playing the role of a persistently
exciting input signal, the output exponentially converges
to a neighborhood O(α2) of the extremum.

7.2 Nonlinear feedback control is not the answer

Nonlinear-Feedback Control (NFC) offers a set of tech-
niques for stabilizing systems with unknown parame-
ters, see in particular the book [88]. The stability of the
closed-loop is proved using Lyapunov techniques and,
although not explicitly expressed in the construction of
the feedback control, an estimator of the model parame-
ters is obtained, which differs from standard estimation
methods. At first sight one might think that NFC brings
a suitable answer to adaptive control issues. However,
stability is not consistency and it is the aim of this sec-
tion to show that a direct application of NFC is bound
to fail in the presence of random disturbances. Combin-
ing NFC with more traditional estimation methods and
suitably exciting perturbations then forms interesting
perspectives, see Section 9.

The presentation is made through (a slight modification
of) one of the simplest examples in [88]. Consider the
dynamical system (14), with known initial state x0 and
unknown parameter θ̄ ∈ R. The problem is to construct
a control u = u(t) that drives x to zero. (Notice that if θ̄
were known, u = −(a + θ̄)x − θ̄ with a > 0 would solve
the problem since substitution in (14) gives the stable
system ẋ = −ax.) The following method is suggested
in [88]: (i) construct an auxiliary controller that obeys
˙̂
θ = x(x+1), (ii) consider θ̂ as an estimator of θ̄ and use

FCE control with θ̂, that is, u = −(a+θ̂)x−θ̂, a > 0. The
stability of this NFC can be checked through the behav-

ior of the Lyapunov function V (x, θ̂) = x2/2+(θ−θ̂)2/2.

It satisfies V̇ (x, θ̂) = −ax2, which implies that x tends

to zero, as required. Then, θ̂ + u tends to zero (from
the expression of u), and θ̄ + u also tends to zero (from

Lasalle principle). Therefore, the estimation error θ̂ − θ̄
tends to zero 15 . In the simulations that follow we sim-
ply use a discretized Euler approximation of the differen-
tial equation (14) and of the associated continuous-time
controller, although it should be emphasized that some
care is needed in general when implementing a digital
controller on a continuous-time model, see, e.g., [122].
The discretization of (14) gives the recurrence equation
(11), where xk = x(kT ) and uk = u(kT ). We take θ̄ = 1
and x0 = 1, the sampling period T is taken equal to
0.01 s. (Notice that the open-loop system is unstable.)
The NFC is discretized as

θ̂k+1 = θ̂k + Txk(xk + 1) ,

uk = −(a + θ̂k)xk − θ̂k ,
(22)

where θ̂k = θ̂(kT ). We take θ̂0 = 2 and a = 1 s−1. (Al-
though the book [88] only concerns the stabilization of
continuous-time systems, one can easily check that the

fixed point xk = 0, θ̂k = θ̄ of the controlled discretized
model above is Lyapunov-asymptotically stable.) Simu-
lation results are presented in Figure 2. The initial de-
crease of the state variable (solid line) is in agreement
with the time-constant a−1 = 1 s and, for t > 8 s, the pa-
rameter estimates (dashed line) and state become very
close to the targets, respectively θ̄ = 1 and zero.

Suppose now that the state is observed through y0 =
x0 and yk = xk + εk for k ≥ 1, where (εk) denotes a
sequence of i.i.d. errors normal N (0, σ2) (setting σ2 =
S2T one may suppose for instance that εk is S times
the integral of a realization of the standard Brownian
motion between 0 and T ). We take σ = x0/2 = 0.5, a
rather extreme situation, to emphasize the influence of
measurement errors. The evolutions of xk (dash-dotted

15 In the example on p. 3–4 of [88], ẋ = u + θ̄x,
˙̂
θ = x2

and u = −(a + θ̂)x, a > 0, so that x tends to zero but not

necessarily the estimation error θ̂ − θ̄.
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Fig. 2. Evolution of xk (solid line) and θ̂k (dashed line) as
functions of k for the system (11) with NFC (22) (θ̄ = 1,

θ̂0 = 2, x0 = 1, a = 1, sampling period T = 0.01 s). The
curves in dash-dotted line and dotted line respectively show

xk and θ̂k when yk is substituted for xk in (22).

line) and θ̂k (dotted line) when yk is substituted for xk in
(22) are presented on Figure 2: the sequence of parameter
estimates does not converge, the state fluctuates and is
clearly not driven to zero.

7.3 Some consistency results

The difficulties encountered in Sections 7.1.1, 7.1.2 and
7.2 are general in regulation-type problems: in order to
satisfy the control objective, the input should asymptot-
ically vanish, which does not bring enough excitation for
guaranteeing the consistent estimation of the model pa-
rameters. The control objective is thus in conflict with
parameter estimation, and perturbations must be intro-
duced. It is then of importance to know the minimal
amount of perturbations required to ensure consistency
of the estimator on which the control is based. Some re-
sults are presented below for the case of linear regression.

7.3.1 LS estimation

Consider a linear regression model with observations
yk = r⊤k θ̄ + εk, and denote by Fk the σ-algebra gen-
erated by the errors ε1, . . . , εk. They are supposed
to form a martingale difference sequence (εk is Fk−1

measurable and IE{εk|Fk−1} = 0) and to be such
that supk IE{ε2

k|Fk−1} < ∞ (with i.i.d. errors with
zero mean and finite variance as a special case). Let

MN =
∑N

k=1 rkr
⊤
k , then M−1

N → 0 for N → ∞ is

• sufficient for θ̂
N

LS
a.s.→ θ̄ when the regressors rk are

non-random constants, see [97], [98];
• necessary and sufficient if, moreover, the errors are εk

i.i.d.,

• but M−1
N

a.s.→ 0 is not sufficient for θ̂
N

LS
a.s.→ θ̄ if rk is

Fk−1 measurable (see the first example of Section 7.1).

In the latter situation, a sufficient condition for

θ̂
N

LS
a.s.→ θ̄ when N → ∞ is that λmin(MN )

a.s.→ ∞ and

[log λmax(MN )]1+δ = o[λmin(MN )] a.s. for some δ > 0,
see [99]. In some sense, this is the best possible condi-
tion: it is only marginally violated in the first example
of Section 7.1, where [log λmax(MN)]/λmin(MN ) tends
a.s. to a random constant. Note that this condition is
much weaker than the persistence of excitation which
requires that MN grows at the same speed as N .

7.3.2 Bayesian imbedding

An even weaker condition is obtained for Bayesian esti-
mation. Let π be a prior probability measure for θ and
denote by P the probability measure induced by the er-
rors εk, k = 1, . . . ,∞. Denote F ′

k the σ-algebra gener-
ated by the observations y1, . . . , yk and suppose that rk

is F ′
k−1-measurable. Suppose that the parameters are

estimated by the posterior mean θ̂
N

B = IE{θ|F ′
N} and

denote by CN = Var(θ|F ′
N ) the posterior covariance

matrix. Then, from martingale theory, θ̂
N

B and CN both
converge (π × P )-a.s. when N → ∞, see [174], and all
what is required for the (π × P )-a.s. consistency of the
estimator is CN → 0 (π × P )-a.s. Now, for a linear re-
gression model with i.i.d. normal errors εk and a normal
prior for θ, Bayesian estimation coincides with LS esti-
mation (when the prior for θ is suitably chosen), CN is
proportional to M−1

N and therefore, M−1
N → 0 (π × P )-

a.s. is sufficient for θ̂
N

LS = θ̂
N

B → θ̄ (π × P )-a.s. The re-
quired condition is thus as weak as when the regressors
rk are non-random constants! Note, however, that the
convergence is almost sure with respect to θ̄ having the
prior π; that is, singular values of θ̄ may exist for which
consistency does not hold 16 .

This very powerful technique which analyses the prop-
erties of LS estimation via a Bayesian approach is called
Bayesian imbedding, see [174], [93]. Although in its orig-
inal formulation it requires the measurement errors to
be normal, the normality assumption is relaxed in [68]
to the condition that the density ϕ of the errors is log-
concave (d2 log ϕ(t)/dt2 < 0) and strictly positive with
respect to the Lebesgue measure µ, the prior measure
π being absolutely continuous with respect to µ. More
generally, the consistency of Bayesian estimators can
be checked through the behavior of posterior covariance
matrices, see [69]. Bayesian imbedding allows for easier
proofs of consistency of the estimator, and permits to
relax the conditions on the perturbations required to ob-
tain consistency. This is illustrated below by revisiting
the examples of Sections 7.1.1 and 7.1.2.

16 In the first example of Section 7.1 rk is not F ′

k−1-
measurable since uk is not obtained from previous observa-
tions. Modify the control into un+1 = α1 +(α2/n)

∑n

i=1 ui +

(c/n)
∑n

i=1 yi, which is F ′

n-measurable. Then, θ̂
N

LS is not

consistent when θ̄ takes the particular value θ̄1 = −α1/c,
θ̄2 = (1 − α2)/c, so that the control coincides with previous
one, un+1 = (1/n)

∑n

i=1 ui + (c/n)
∑n

i=1 εi.
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Consider again the self-tuning regulator of Section 7.1.1.
When LS estimation is used with forced certainty equiv-
alence control, it is required to perturb the system to
obtain a globally convergent input. It can be shown [94]
that the control objective Rn grows at least as log n, and
randomly perturbed input sequences achieving this per-
formance are proposed in [101]. Using Bayesian imbed-
ding, global convergence can be obtained without the
introduction of perturbations, see [93].

For the self-tuning optimizer of Section 7.1.2, Åström
and Wittenmark [2] have suggested a control of the

type uk+1 = argmaxu f(u, θ̂
k
) + αk d(u, ξk)/k, where

d(u, ξ) = r⊤(u)M−1(ξ)r(u) is the function (17) used
in D-optimal design, ξk is the empirical measure of
the inputs u1, . . . ,uk and (αk) is a sequence of pos-
itive scalars. Note that d(u, ξk)/k = r⊤(u)M−1

k r(u)

with Mk =
∑k

i=1 r(ui)r
⊤(ui). This strategy makes

a compromise between optimization (maximization of

f(u, θ̂
k
), for αk small) and estimation (D-optimal de-

sign, for αk large). Using the results of Section 7.3.1,
the following is proved in [135] for LS estimation. When
the errors εk form a martingale difference sequence
with supk IE{ε2

k|Fk−1} < ∞, if (αk/k) log αk is mono-
tonically decreasing and αk/(log k)1+δ monotonically

increases to infinity for some δ > 0, then θ̂
k

LS
a.s.→ θ̄,

(1/k)
∑k

i=1 f(ui, θ̄)
a.s.→ f(u∗, θ̄) = maxu f(u, θ̄) and

ξk
a.s.→ δu∗ (weak convergence of probability measures)

as k → ∞. That is, the LS estimator is strongly consis-
tent, and at the same time the design points uk tend to
concentrate at the optimal location u∗. Using Bayesian
imbedding, the same results are obtained when the con-
ditions above on αk are relaxed to αk → ∞, αk/k → 0,
provided the errors εk are i.i.d. N (0, σ2), see [141].

7.4 Finite horizon: dynamic programming and dual
control

The presentation is for self-tuning optimization, but the
problem is similar for other adaptive control situations.

Suppose one wishes to maximize
∑N

i=1 wif(ui, θ̄) for
some sequence of positive weights wi, with θ̄ unknown
and estimated through observations yi = η(θ̄,ui) + εi.
Let π denote a prior probability measure for θ and de-
fine Uk

1 = (u1, . . . ,uk), Y k
1 = (y1, . . . , yk) for all k. The

problem to be solved can then be written as

max
u1

IE{w1f(u1, θ) + max
u2

IE{w2f(u2, θ) + · · ·
max
uN−1

IE{wN−1f(uN−1, θ)

+ max
uN

IE{wNf(uN , θ)|UN−1
1 , Y N−1

1 }

|UN−2
1 , Y N−2

1 } · · · |u1, y1}} (23)

and thus corresponds to a Stochastic Dynamic Pro-
gramming (SDP) problem. It is, in general, extremely

difficult to solve due to the presence of imbedded maxi-
mizations and expectations. The control uk has a dual
effect (see e.g. [7]): it affects both the value of f(uk, θ)
and the future uncertainty on θ through the posterior
measures π(θ|U i

1, Y
i
1 ), i ≥ k. One of the main obstacles

being the propagation of these measures, classical ap-
proaches are based on their approximation. Consider
stage k, where Uk

1 and Y k
1 are known. Then:

• Forced Certainty Equivalence control (FCE) replaces
π(θ|U i

1, Y
i
1 ) for i ≥ k (a “future posterior” for i > k), by

the delta measure δθ̂k , where θ̂
k

is the current estimated
value of θ (see the examples of Sections 7.1.1 and 7.1.2);
• Open-Loop-Feedback-Optimal control (OLFO) re-
places π(θ|U i

1, Y
i
1 ), i ≥ k, by the current posterior mea-

sure π(θ|Uk
1 , Y k

1 ) (moreover, most often this posterior

is approximated by a normal distribution N (θ̂
k
,Ck)).

The FCE and OLFO control strategies can be con-
sidered as passive since they ignore the influence of
uk+1,uk+2 . . . on the future posteriors π(θ|U i

1, Y
i
1 ), see,

e.g., [179]. On the other hand, they yield a drastic sim-
plification of the problem, since the approximation of
π(θ|U i

1, Y
i
1 ) for i > k does not depend on the future

observations yk+1, yk+2 . . . This, and the fact that few
active alternatives exist, explains their frequent usage.

The active-control strategy suggested in [178] is based on
a linearization around a nominal trajectory û(i) and ex-
tended Kalman filtering. It does not seem to have been
much employed, probably due to its rather high com-
plexity. A modification of OLFO control is proposed in
[137]. It takes a very simple form when the model re-
sponse η(θ,u) is linear in θ, that is, η(θ,u) = r⊤(u)θ,
the errors are i.i.d. normal N (0, σ2) and the prior for θ is
also normal. Then, at stage k, the posterior π(θ|U i

1, Y
i
1 )

is the normal N (θ̂
k

B,Ck) for i = k and can be approx-

imated by N (θ̂
k

B,Ci) for i > k, where θ̂
k

B and Ck are
known (computed by classical recursive LS) and Ci fol-
lows a recursion similar to that of recursive LS,

Ci+1 = Ci −
Cir(ui+1)r

⊤(ui+1)Ci

σ2 + r⊤(ui+1)Cir(ui+1)
, i ≥ k .

Note that Ci depends of uk+1,uk+2 . . . ,ui (which makes
the strategy active), but not on yk+1, yk+2 . . . (which
makes it implementable). This method has been suc-
cessfully applied to the adaptive control of model with
a FIR, ARX, or state-space structure, see, e.g., [91],
[92]. It requires, however, that the objective function
f(u, θ) in (23) be non linear in θ to express the depen-
dence in the covariance matrices Ci. Indeed, suppose
that in the self-tuning optimization problem the func-
tion to be maximized is the model response itself, that is,

f(u, θ) = r⊤(u)θ. Then, IE{f(u, θ)|U i
1, Y

i
1 } = r⊤(u)θ̂

i

B

and using the approximation N (θ̂
k

B,Ci) for the future
posteriors π(θ|U i

1, Y
i
1 ), i > k, one gets classical FCE con-
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trol based on the Bayesian estimator θ̂
k

B . On the other
hand, it is possible in that case to take benefit of the
linearity of the function and obtain an approximation of

IE{maxu r⊤(u)θ̂
N−1

B |UN−2
1 , Y N−2

1 } for small σ2, which
can then be back-propagated; see [141] where a control
strategy is given that is within O(σ4) of the optimal (un-
known) strategy u∗

k for the SDP problem (23).

8 Sequential DOE

Consider a nonlinear regression model for which
the optimal design problem consists in minimizing
Ψθ̄(U

N
1 ) = Φ[MF (UN

1 , θ̄)] for some criterion Φ, with
θ̄ unknown. In order to design an experiment adapted
to θ̄, a natural approach consists in working sequen-
tially. In full-sequential design, one support point uk

is introduced after each observation: θ̂
k−1

is esti-
mated from the data (Y k−1

1 , Uk−1
1 ) and next uk min-

imizes Φ[MF ({Uk−1
1 ,uk}, θ̂

k−1
)] (for D-optimal de-

sign, this is equivalent to choosing uk that maximizes
dθ̂k−1(uk, ξk−1) with dθ(u, ξ) the function (17) and ξk−1

the empirical measure for the design points in Uk−1
1 ).

Note that it may be considered as a FCE control strat-
egy, where the input (design point) at step k is based

on the current estimated value θ̂
k−1

. For a finite hori-
zon N (the number of observations), the problem is
similar to that of Section 7.4 (self-tuning optimizer),
with the design objective Φ[MF (UN

1 , θ)] substituted for
∑N

i=1 wif(ui, θ). Although the objective does not take
an additive form, the problem is still of the SDP type,
and active-control strategies can thus be constructed to
approximate the optimal solution. However, they seem
to only provide marginal improvements over traditional
passive strategies like FCE control, see e.g. [51] 17 .

Although a sequentially designed experiment for the
minimization of Φ[MF (UN

1 , θ)] aims at estimating θ
with maximum possible precision, it is difficult to assess

that θ̂
N a.s.→ θ̄ as N → ∞ (and thus ξN

a.s.→ ξ∗(θ̄), with
ξ∗(θ̄) the optimal design for θ̄) when full-sequential de-
sign is used; see [191] for a simple example (with a posi-
tive answer) for LS estimation. When full-sequential de-
sign is based on Bayesian estimation (posterior mean),
strong consistency can be proved if the optimal design
ξ∗(θ) satisfies an identifiability condition for any θ, see
[70] (this is related to Bayesian imbedding considered in
Section 7.3.2). The asymptotic analysis of multi-stage
sequential design is considered in [28] and the construc-
tion of asymptotically optimal sequential design strate-
gies in [172], where it is shown that using two stages is

17 An active strategy aims at taking into account the influ-
ence of current decisions on the future precision of estimates;
in that sense DOE is naturally active by definition, even if
based on FCE control. Trying to make sequential DOE more
active is thus doomed to small improvements

enough. Practical experience tends to confirm the good
performance of two-stage procedures, see, e.g., [8].

9 Concluding remarks and perspectives in DOE

Correlated errors. Few results exist on DOE in the pres-
ence of correlated observations and one can refer e.g. to
[127], [117], [45] and the monograph [116] for recent de-
velopments. See also Section 3.2.2. The situation is dif-
ferent in the adaptive control community where corre-
lated errors are classical, see Section 7.3.1 (for instance,
the paper [123] gives results on strong laws of large num-
bers for correlated sequences of random variables under
rather common assumptions in signal or control applica-
tions), which calls for appropriate developments in DOE.
Notice that when the correlation of the error process
decays at hyperbolic rate (long-range dependence), the
asymptotic theory of parameter estimation in regression
models (Section 4) must itself be revisited, see, e.g., [73].

Nonlinear models. The presentation in Sections 6 and 7
has concerned models with a linear dynamic (e.g. with a
Box and Jenkins structure), but models that corresponds
to nonlinear differential or recurrence equations raise no
special difficulty for the construction of the Fisher infor-
mation matrix (Section 6), which can always be obtained
through simulations. The main issue concerns linearity
with respect to the model parameters θ. In particular,
few results exist concerning the extension of the results
of Section 7.3 to models with a nonlinear parametriza-
tion (see [95] for LS estimation and [71] for results on
Bayesian imbedding when θ has a discrete prior).

DOE without persistence of excitation. In the context
of self-tuning regulation, we mentioned in Section 7.3.2
that random perturbations may be added to certainty
equivalence control based on LS estimation to guarantee
the strong consistency of parameter estimates and the
asymptotically optimal growth of the control objective,
see [101]. This is an example of a situation where “non-
stationary experiments” could be designed in order to
replace random perturbations by inputs with suitable
spectrum and asymptotically vanishing amplitude. In
the same vein, the modified OLFO control proposed in
[137] and the small-noise approximation of [141] (de-
signed for self-tuning optimization, but extendable to
self-tuning regulation) make a good compromise be-
tween exploration and exploitation when the horizon
is finite (see Section 7.4). An asymptotic analysis for
the horizon tending to infinity could permit to design
simpler non-stationary strategies.

Nonparametric models, active learning and control.
Strategies are called active in opposition to passive ones
that collect data “as they come”. DOE is thus intrin-
sically active, and its use in learning leads to methods
that try to select training samples instead of taking
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them randomly. Although its usefulness is now well per-
ceived in the statistical learning community, it is still at
an early stage of development due to the complexity of
DOE for nonparametric models. More generally, active
strategies are valuable each time actions or decisions
have a dual effect and a compromise should be made
between exploration and exploitation: exploration may
be done at random, but better performance is achieved
when it is carefully planned. For instance, active strate-
gies connected with Markov decision theory could yield
improvements in reinforcement learning, see e.g. the
survey [80].

Linking nonparametric estimation with control forms a
quite challenging area, where the issues raised by the
estimation of the function that defines the dynamics of
the system come in addition to those, more classical, of
adaptive control with parametric models, see, e.g., [134],
[133] for emerging developments.

Algorithms for optimal DOE. The importance of con-
structing criteria for DOE in relation with the intended
objective has been underlined in Section 6.2 where cri-
teria of the minimax type have been introduced from
robust-control considerations. (Minimax-optimal design
is also an efficient method to face the dependence of lo-
cal optimal design in the unknown value of the model
parameters, see Section 5.3.5.) Although the minimax
problem can often be formulated as a convex one, some-
times with a finite number of constraints, the develop-
ment of specific algorithms would be much profitable to
the diffusion of the methodology, in the same way as the
classical design algorithms of Sections 5.2 and 5.3.3 have
contributed to the diffusion of optimal DOE outside the
statistical community where it originated.

Another view on global optimization. Let f(u) be a func-
tion to be maximized with respect to u in some given
set U ; it is not assumed to be concave, nor is the set
U assumed to be convex, so that local maxima may ex-
ist. The function can be evaluated at any given input
ui ∈ U , which gives an “observation” y(ui) = f(ui). In
engineering applications where the evaluation of f cor-
responds to the execution of a large simulation code, ex-
pensive in terms of computing time, it is of paramount
importance to use an optimization method parsimonious
in terms of number of function evaluations. This en-
ters into the framework of computer experiments, where
Kriging is now a rather well-established tool for mod-
elling, see Section 3.1. Using a Bayesian point of view,
the value f(u) after the collection of the data Dk =
{[u1, y(u1)], . . . , [uk, y(uk)]} can be considered as dis-
tributed with the density ϕ(y|Dk,u) of the normal dis-
tribution N (ŷDk

(u), ρ2
Dk

(u)), where ŷD(u) and ρ2
D(u)

are respectively given by (3) and (4). An optimization
algorithm that uses this information should then make
a compromise between exploration (trying to reduce the
MSE ρ2

D(u) by placing observations at values of u where
ρ2
D(u) is large) and exploitation (trying to maximize the

expected response ŷD(u)). A rather intuitive method is
to choose uk+1 that maximizes ŷDk

(u) + αρDk
(u) for

some positive constant α, see [35]. In theory, Stochas-
tic Dynamic Programming could be used to find the op-
timal strategy (or algorithm) to maximize f(u): when
the number N of evaluations is given in advance, the
problem takes the same form as in (23) with wi = 0 for
i = 1, . . . , N − 1. However, in practise this SDP prob-
lem is much too difficult to solve, and approximations
must be used to define suboptimal searching rules. For
instance, one may use a one-step-ahead approach and
choose the input uk+1 that maximizes the expected im-
provement EI(u) =

∫∞

ymax
k

[y − ymax
k ] ϕ(y|Dk,u) dy, with

ymax
k = max{y(u1), . . . , y(uk)}, the maximum value of

f observed so far, see [110], [109], [161]. The function
f is then evaluated at uk+1, the Kriging model is up-
dated (although not necessarily at each iteration), and
similar steps are repeated. Each iteration of the result-
ing algorithm requires one evaluation of f and the solu-
tion of another global optimization problem, for which
any ad-hoc global search algorithm can be used (the op-
timization concerns the function EI, which is easier to
evaluate than f). For instance, it is suggested in [11] to
update a Delaunay triangulation of the set U based on
the vertices ui, i = 1, . . . , k, and to perform the global
search for the maximization of EI(u) by initializing lo-
cal searches at the centers of the Delaunay cells. Note
that the algorithm tends asymptotically to observe ev-
erywhere in U , since the expected improvement EI(u)
is always strictly positive at any value u where no obser-
vation has been taken yet. However, a credible stopping
rule is given by the criterion itself: it is reasonable to stop
when the expected improvement becomes small enough.
One can refer to [161], [79] for detailed implementations,
including problems with constraints also defined by sim-
ulation codes. Derivative information on f can be in-
cluded in the Kriging model, as indicated in Section 3.1,
and thus used by the optimization algorithm, see [102].
It seems that suboptimal searching rules looking further
than one-step-aheadhave never been used, which forms a
rather challenging objective for active control. Also, the
one-step-ahead method above is completely passive with
respect to the estimation of the parameters of the Krig-
ing model, and active strategies (even one-step-ahead)
are still to be designed, see Section 3.2.2. Note finally
that the definition of the expected improvement EI is
not adapted to the presence of errors in the evaluation
of f , so that further developments are required for sit-
uations where one optimizes the observed response of a
real physical process.

NFC, FCE, estimating functions and DOE. Consider
again the example of NFC in Section 7.2, in the case
where the state xk is observed though yk = xk + εk

and yk is substituted for xk in (22). As shown in Fig-

ure 2, the NFC estimator θ̂k is then not consistent. On
the other hand, in the same situation more classical es-
timation techniques have satisfactory behaviors (hence,
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in terms of DOE, NFC brings enough information to
estimate the unknown θ̄). Consider for instance the LS
estimator of θ̄ in (11), obtained from y1, . . . , yk. Since
xk is nonlinear in θ, recursive LS cannot be used di-
rectly 18 , but the estimation becomes almost recursive
using a stochastic-Newton algorithm, see, e.g., [188], p.
208. Figure 3 (top) shows that the corresponding esti-

mator θ̂k converges quickly to the true value θ̄ = 1. The
evolution of the estimator (13) obtained from an estimat-
ing function is presented on the same figure (bottom).

Its convergence is slower than that of θ̂k, due in particu-
lar to the presence of the term yk/(kT ) in the numerator
of (13), but its construction is much simpler. An impor-
tant consequence is that the analysis of its asymptotic
behavior in an adaptive-control framework is easier than
for LS estimation: θ̃k is a consistent estimator of θ̄ when
(1/k)

∑k−1
i=1 xi is bounded away from −1 (which is the

case since the control drives this quantity to zero). Sim-
ulations confirm that when applying the FCE controller
uk = −(a+ θ̃k)x̂k(θ̃k)− θ̃k to (11), with x̂k(θ̃k) obtained

by substituting θ̃k for θ̄ in (11), θ̃k converges to θ̄ and the
state xk is correctly driven to zero. Simulations show,
however, that the dynamic of the state is slower than for
NFC; it is thus tempting to combine both strategies. For
instance, one could use FCE control based on θ̃k when
the standard deviation of θ̃k is smaller than some pre-
scribed value, and use NFC otherwise. The simulation
results obtained with such a switching strategy are en-
couraging and indicate that the combination of different
estimation methods may improve the performance of the
controller. At the same time, this raises more issues than
it brings answers. Some are listed below.
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Fig. 3. Top: evolution of the LS estimator θ̂k; bottom: evo-
lution of θ̃k given by (13).

18 The situation would be much easier for the autoregres-
sive model yi+1 = yi + T [ui + θ̄(yi + 1)] + εi+1 where θ
could be estimated by recursive LS. Note that this model
can be considered as resulting from the discretization of
ẏ = u + θ̄(y +1) + SdBt(ω), with Bt(ω) the standard Brow-
nian motion (starting at zero with variance 1), which cor-
responds to the introduction of process noise into (14), and
gives εi+1 = S[B(i+1)T (ω) − BiT (ω)].

Combining NFC, which relies on Lyapunov stability,
with simple predictors, e.g. based on FCE, while preserv-
ing stability, forms an interesting challenge for which re-
sults on input-to-state stabilizing control could be used
(see, e.g., Chapters 5 and 6 of [88] for continuous-time
and [121] for discrete-time control). In classical FCE con-
trol the consistency of the estimator is a major issue.
Using suitable estimating functions could then lead to
fruitful developments, due the flexibility of the method
and the simplicity of the associated estimators. Suitably
designed perturbations could be introduced for helping
the estimation, possibly following developments simi-
lar to those that lead to the active-control strategies
of Sections 7.3.2 and 7.4. At the same time, the per-
turbed control should not endanger the stability of the
system. Designing input sequences (possibly vanishing
with time) that bring maximum information for estima-
tion subject to a stability constraint forms an unusual
and challenging DOE problem. Finally, as a first step
towards the design of robust-and-adaptive controllers
mentioned at the end of Section 6.2, one may replace
a traditional FCE controller by one that gives the best
performance for the worst model in the current uncer-
tainty set (roughly speaking, for the self-tuning prob-
lem considered in Section 7.4 this amounts to replacing
expectations in (23) by minimizations with respect to
θ in the current uncertainty set). The determination of
active-control strategies for such minimax (dynamical
games) problems seems to be a promising direction for
developments in adaptive control.
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