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Abstract
On surface treatment lines, the products are transferred in successive tanks by a
hoist. Moreover, each processing time is nested between a minimal and a maximal
duration. This constraint is called the processing window constraint. An interesting
problem is to find the hoist moves which maximise productivity. This paper deals
with the production of identical parts in a balanced three-tank line. We prove that for
zero-width or unbounded processing windows, production cycles of one or two parts
are optimal.

1. Introduction

In surface treatment lines, products are immersed in several tanks. These tanks contain
chemical baths like acids which affect the electrical or mechanical properties of  the products.
These kind of lines are used, for instance, for galvanoplasty or circuit board assembly. The
products are mounted on carriers and transported from a tank to another one by a hoist. The time a
part can stay in a tank is upper an lower bounded. The lower bound indicates the minimum time
for a correct treatment. The upper limit is justified by the chemical properties of the baths. For
instance, a product should not remain too long in an acid bath or you should not put too much
precious metal on the products in order to minimise the costs.

A classical objective is to find the cyclic hoist moves which yield the maximum throughput.
This problem is usually called Cyclic Hoist Scheduling Problem (CHSP). We shall restrict the
problem to the production of identical parts. Lei and Wang [5] showed that the CHSP is NP-
complete. Different methods were proposed to solve this problem: Constraint Logic
Programming [2], Genetic Algorithm [6] or Branch and Bound Algorithm [8].

The problem with unbounded processing time windows (infinite upper bound) is usually called
the robotic cell scheduling problem. It was introduced by Sethi et al. [9]. The zero-width time
window problem (equal upper and lower bounds) with two and three machines was studied by
Agnetis [1]. A survey on those problems was proposed by Crama et al. [4].

2. Problem description and notations

Figure 1 shows a surface treatment line with one hoist and m treatment tanks. The carriers are
moved from a bath to another one by a hoist which travels along a rail. Tank 0 (the loading tank)
and tank m+1 (the unloading tank) have infinite capacity whereas the other tanks of the line can
only contain one carrier at a time.



The line represents a flow-shop with the hoist as the material handling device. All products are
identical. A carrier  is picked up at tank 0 and transferred in succession to tank 1, tank 2 etc. until it
finally reaches the output station, tank m+1. The time the products remain in the baths is either
fixed (zero-width processing windows) or lower bounded (infinite processing window). These
hypotheses are close to industrial cases since for acids or precious metals the margin is almost zero
and for rinsing tanks the products must stay a minimum time but can remain in the tank until the
hoist is available.

Figure1. A surface treatment line

The minimum processing time for a part in tank i is noted pi. The effective time can be more if
the time window is unbounded. We shall consider balanced line i.e. all minimum processing times
are equal (pi=p). The travel time of the hoist between two consecutive tanks is δ. The travel times
are additive. Hence, the hoist takes |i-j|δ time units to travel from tank i to tank j.

The hoist moves are described in terms of activities. Activity Ai consists of the following
moves: the hoist picks up a carrier from tank i, then travels to tank i+1 and loads the carrier onto
tank i+1. The loading and unloading times can be neglected compared to the travel time.

We consider cyclic moves of the hoist and define the k-cycles. During the execution of a k-
cycle exactly k carriers are treated and the state of the line is restored. Therefore all the activities
Ai occur exactly k times.

The state of a system may be represented by a m-vector which i-th component is 0 if the tank i
is empty and 1 otherwise. Define the state graphs Gm whose nodes are the states of the system and
whose arcs represent the activities of the hoist to go from a state to another one [Figure 2].

Figure 2. State graph for a three-tanks line, G3

Figure 3 describes the line-graph of the state graph of a 3-tank line. We can build the line-
graph LGm of Gm as follows:  the nodes of LGm are the arcs of Gm; (a,a’) is an arc of LGm if and
only if there exists a node v in Gm which is the head of a and the tail of a’.

Define E3, the set of nodes composing the cycle (A0,A1,A2,A3) (the grey nodes on Figure 3).
Brauner and Finke. [3] proved the following property: For any instance I, let l be the smallest
value such that there exists an optimal l-cycle Cl. Then Cl crosses at most once a given node of E3.
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3. The three-tank case

In this section, we present an exhaustive study of the three-tank balanced hoist scheduling
problem with identical products. We consider unbounded or zero-width processing windows on
the tanks. For this problem we obtain the following result.

Theorem. For the identical part balanced three-tank hoist scheduling problem with unbounded
or zero-width processing windows, the 1- and 2-cycles are dominant.

This theorem means that, in order to find the optimal production cycle in a three-tank line it is
sufficient to consider only production cycles of one and two parts. An extension of this theorem to
unbalanced lines can be found in [1] for the pattern (0,0,0) and in [4] for the pattern (∞,∞,∞).

Figure 3. Line-Graph LG3 of G3

The optimal cycles are presented in Table 1. The columns indicate the links between p and δ.
For instance in the first column one has p∈  [0,δ[. Each row represents a pattern of processing
windows on the tanks. For instance, a pattern (0,∞,∞) indicates that the time a part can remain on
the first tank is fixed (and equal to p) and that the processing times on tanks 2 and 3 are in the
interval [p,+∞[.

Table 1. Optimal cycles

p [0,δ[ [δ,2δ[ [2δ,4δ[ [4δ,6δ[ [6δ,8δ[ ≥ 8δ
0, 0, 0 0, 2, 1, 3, 2, 3,0, 1

∞, 0, 0 0, 2, 3, 1

0, 0, ∞ 0, 1, 3, 2

0, 2, 1, 3, 2 , 0, 3, 1

0, ∞, 0

0, 1, 2, 3,

0, ∞, ∞ 0, 1, 3, 2

∞, ∞, 0 0, 2, 3, 1

0, 2, 1, 3

∞, 0, ∞ 0, 3, 1, 2 0, 2, 1, 3, 2 , 0, 3, 1

0, 3, 2, 1

∞, ∞, ∞ 0, 1, 3, 2 or 0, 2, 3, 1

For each pattern of processing windows, we proved optimality using the line graph LG3
presented in Figure 3, or using the symmetry of patterns. In order to explain how it works, we give
a proof for two cases with p<4δ.

For the case (∞, 0, 0), in any admissible cycle, activity A2 immediately follows A1 and A3
immediately follows A2. Indeed, the hoist does not have enough time to do other activities
between A1 and A2 and between A2 and A3. Once removed the unfeasible arcs from the
line graph LG3, only remain the arcs between the nodes of E3. Then the unique feasible cycle is
the 1-cycle (A0,A1,A2,A3).
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For the case (∞, 0, ∞), the constraints on the processing time in tank 2 implies that all feasible
cycles contain the sequence (A1,A2). Therefore the arcs that start from a node A1 must go to a
node A2. Once removed all forbidden arcs and isolated nodes, one obtains the graph of Figure 4.

Figure 4. Line graph LG3 for p<4δ and for the pattern (∞, 0, ∞)

Obviously, any k-cycle contains k activities A1. Hence any k-cycles with k ≥ 2 crosses at least
twice the node A1 which is in E3. Therefore the property given in section 2 indicates that, either the
cycle (A0,A1,A2,A3) or the cycle (A0,A3,A1,A2) is optimal.

For p > 8δ the proof is straightforward. The cycle (A0,A3,A2,A1) is feasible for any pattern of
processing windows. Crama et al. [4] showed that this cycle leads to a lower bound. Then it
dominates all the other cycles.

For some cases, the line graph we obtain is more complex. Then we have to calculate and
compare more precisely the throughput of the feasible cycles to prove that the 1- or the 2-cycles
are dominant. The complete proof can be found in [7].

4. Concluding remarks and perspectives

In this paper, we studied a three-tank surface treatment line with one hoist as the material
handling system. We proved that, for a balanced line with zero-width or unbounded processing
windows, the production cycles of one and two parts are optimal. The next step will be to extend
such results to larger lines (m>3) or to unbalanced three-tank lines.
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