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Abstract

On surface treatment lines, the products are tearesf in successive tanks by a
hoist. Moreover, each processing time is nestedid®t a minimal and a maximal
duration. This constraint is called the processimgdow constraint. An interesting

problem is to find the hoist moves which maximigeductivity. This paper deals

with the production of identical parts in a balashtieree-tank line. We prove that for
zero-width or unbounded processing windows, prdadaatycles of one or two parts

are optimal.

1. Introduction

In surface treatment lines, products are immersedsdveral tanks. These tanks contain
chemical baths like acids which affect the eleatrior mechanical properties of the products.
These kind of lines are used, for instance, fovaabplasty or circuit board assembly. The
products are mounted on carriers and transported & tank to another one by a hoist. The time a
part can stay in a tank is upper an lower boundéé. lower bound indicates the minimum time
for a correct treatment. The upper limit is justifiby the chemical properties of the baths. For
instance, a product should not remain too longnraeid bath or you should not put too much
precious metal on the products in order to mininifeecosts.

A classical objective is to find the cyclic hoisbwes which yield the maximum throughput.
This problem is usually called Cyclic Hoist SchedglProblem (CHSP). We shall restrict the
problem to the production of identical parts. Ledawang [5] showed that the CHSP is NP-
complete. Different methods were proposed to sothés problem: Constraint Logic
Programming [2], Genetic Algorithm [6] or BranchdaBound Algorithm [8].

The problem with unbounded processing time windfafinite upper bound) is usually called
the robotic cell scheduling problem. It was introdd by Sethiet al. [9]. The zero-width time
window problem (equal upper and lower bounds) witlo and three machines was studied by
Agnetis [1]. A survey on those problems was propdsgeCrameet al. [4].

2. Problem description and notations

Figure 1 shows a surface treatment line with onstlamdm treatment tanks. The carriers are
moved from a bath to another one by a hoist whiabets along a rail. Tan@ (the loading tank)
and tankm+1 (the unloading tank) have infinite capacity wherélae other tanks of the line can
only contain one carrier at a time.



The line represents a flow-shop with the hoisthasrhaterial handling device. All products are
identical. A carrier is picked up at tank 0 arehsferred in succession to tank 1, tank 2 etcl wnti
finally reaches the output station, tamk 1. The time the products remain in the baths isegith
fixed (zero-width processing windows) or lower bded (infinite processing window). These
hypotheses are close to industrial cases sincacfds or precious metals the margin is almost zero
and for rinsing tanks the products must stay a mim time but can remain in the tank until the
hoist is available.
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(loading tank) (unloading tank)

Figurel. A surface treatment line

The minimum processing time for a part in tan& notedp;. The effective time can be more if
the time window is unbounded. We shall consideamed lind.e. all minimum processing times
are equalgi=p). The travel time of the hoist between two consigeuanks isd. The travel times
are additive. Hence, the hoist talfieg d time units to travel from tankto tankj.

The hoist moves are described in terms of actwitigctivity Ai consists of the following
moves: the hoist picks up a carrier from tanthen travels to tank+1 and loads the carrier onto
tanki+1. The loading and unloading times can be neglexteapared to the travel time.

We consider cyclic moves of the hoist and definekdtycles. During the execution ofla
cycle exactlyk carriers are treated and the state of the linessored. Therefore all the activities
Ai occur exactlk times.

The state of a system may be representedriyvactor whichi-th component is 0 if the tarik
is empty and 1 otherwise. Define the state gr&iisvhose nodes are the states of the system and
whose arcs represent the activities of the hoigotfrom a state to another one [Figure 2].

Figure 2. State graph for a three-tanks liG3

Figure 3 describes the line-graph of the statelgmapa 3-tank line. We can build the line-
graphLGm of Gm as follows: the nodes &fGm are the arcs dbm; (a,&) is an arc oLGm if and
only if there exists a nodein Gm which is the head af and the tail of'.

Define E3, the set of nodes composing the cy@6,A1,A2,A3) (the grey nodes on Figure 3).
Brauner and Finke. [3] proved the following progerfor any instance, let| be the smallest
value such that there exists an optifreycle C,. ThenC, crosses at most once a given nodEf



3. Thethreetank case

In this section, we present an exhaustive studthefthree-tank balanced hoist scheduling
problem with identical products. We consider unkaeoh or zero-width processing windows on
the tanks. For this problem we obtain the followregult.

Theorem. For the identical part balanced three-tank haikeduling problem with unbounded
or zero-width processing windows, the 1- and 2-ey@re dominant.

This theorem means that, in order to find the ogtiproductioncycle in a three-tank line it is
sufficient to consider only production cycles okoand two parts. An extension of this theorem to
unbalanced lines can be found in [1] for the pat{€0,0) and in [4] for the patterm fo,).
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Figure 3. Line-Graph LG3 of G3

The optimal cycles are presented in Table 1. Thenmas indicate the links betwegnand d.
For instance in the first column one ha& [0,d. Each row represents a pattern of processing
windows on the tanks. For instance, a patter®,0), indicates that the time a part can remain on
the first tank is fixed (and equal f§) and that the processing times on tanks 2 anck 3nathe
interval[p,+ o .
Table 1. Optimal cycles

p| [0,9[ [0,29] [20,49[ [40,69[ [60,89[ >80
0,0,0 0,2,1,3,2,30,1
0, 0,0 0,231 0,213,2,03,1
0,1,2,3,
0,0, 0,1,32
0,,0 0,321
0, o, 0,1,32 0,213
00, 00, 0 0,231
®, 0, ® |0.3,1,2 0,2132,031
00, 00, 00 ‘ 0,1,3,20r0,2,3,1

For each pattern of processing windows, we provptinality using the line graphG3
presented in Figure 3, or using the symmetry ofigpas. In order to explain how it works, we give
a proof for two cases with<44.

For the case, 0, 0), in any admissible cycle, activig2 immediately followsAl and A3
immediately followsA2. Indeed, the hoist does not have enough time tmtter activities
betweenAl and A2 and betweenA2 and A3. Once removed the unfeasible arcs from the
line graphLG3, only remain the arcs between the node&0fThen the unique feasible cycle is
the 1-cycle A0,A1,A2,A3).



For the case«, 0, »), the constraints on the processing time in taik@ies that all feasible
cycles contain the sequendc®l(A2). Therefore the arcs that start from a nddemust go to a
nodeA2. Once removed all forbidden arcs and isolated sodiee obtains the graph of Figure 4.

Figure4. Line graphLG3 for p<4dand for the patterreq, 0, «)

Obviously, anyk-cycle containk activitiesAl. Hence ank-cycles withk > 2 crosses at least
twice the nodé\1 which is inE; Therefore the property given in section 2 indisdteat, either the
cycle (A0,A1,A2,A3) or the cycle A0,A3,A1,A2) is optimal.

Forp > 8dthe proof is straightforward. The cyclaQiA3,A2,Al) is feasible for any pattern of
processing windows. Cran® al. [4] showed that this cycle leads to a lower boufiden it
dominates all the other cycles.

For some cases, the line graph we obtain is moneplex. Then we have to calculate and
compare more precisely the throughput of the féasigcles to prove that the 1- or the 2-cycles
are dominant. The complete proof can be foundjin [7

4. Concluding remarksand per spectives

In this paper, we studied a three-tank surfacetrireat line with one hoist as the material
handling system. We proved that, for a balanced Viith zero-width or unbounded processing
windows, the production cycles of one and two partsoptimal. The next step will be to extend
such results to larger lines 3) or to unbalanced three-tank lines.
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