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Wavelets, Ridgelets and Curvelets for Poisson

Noise Removal

Bo Zhang∗, Jalal M. Fadili and Jean-Luc Starck

Abstract

In order to denoise Poisson count data, we introduce a variance stabilizing transform (VST) applied

on a filtered discrete Poisson process, yielding a near Gaussian process with asymptotic constant variance.

This new transform, which can be deemed as an extension of the Anscombe transform to filtered data,

is simple, fast and efficient in (very) low-count situations. We combine this VST with the filter banks of

wavelets, ridgelets and curvelets, leading to multiscale VSTs (MS-VSTs) and nonlinear decomposition

schemes. By doing so, the noise-contaminated coefficients of these MS-VST-modified transforms are

asymptotically normally distributed with known variances. A classical hypothesis-testing framework is

adopted to detect the significant coefficients, and a sparsity-driven iterative scheme reconstructs properly

the final estimate. A range of examples show the power of this MS-VST approach for recovering important

structures of various morphologies in (very) low-count images. These results also demonstrate that the

MS-VST approach is competitive relative to many existing denoising methods.

Index Terms

Poisson intensity estimation, filtered Poisson process, multiscale variance stabilizing transform, wavelets,

ridgelets, curvelets.
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I. INTRODUCTION

Denoising images of Poisson counts arise from a variety of applications including astronomy and

astrophysics [1], biomedical imaging [2], etc. Typically we observe a discrete dataset of counts X =

(Xi)i∈Zq where Xi is a Poisson random variable of intensity λi, i.e., Xi ∼ P(λi). Here we suppose

that Xi’s are mutually independent. The denoising aims at estimating the underlying intensity profile

Λ = (λi)i∈Zq from X.

Literature overview

A host of estimation methods have been proposed in the literature. Major contributions consist of: 1) vari-

ance stabilization: A classical solution is to preprocess the data by applying a variance stabilizing

transform (VST) such as the Anscombe transform [3][4]. It can be shown that the transformed data are

approximately homoscedastic and Gaussian. Once we are brought to the Gaussian denoising problem,

standard approaches such as wavelet thresholding [5][6] are used before the VST is inverted to get

the final estimate. Haar-Fisz transform is another widely used VST [7][8], which combines the Fisz

transform [9] within the Haar transform. Jansen [10] introduced a conditional variance stabilization (CVS)

approach which can be applied in any wavelet domain resulting in stabilized coefficients. 2) wavelet

wiener filtering: Nowak and Baraniuk [11], and Antoniadis and Sapatinas [12] proposed a wavelet

domain filter, which can be interpreted as a data-adaptive wiener filter in a wavelet basis; 3) hypothesis

testing: Kolaczyk first introduced a Haar domain threshold [13], which implements a hypothesis testing

procedure controlling a user-specified false positive rate (FPR). The hypothesis tests have been extended

to the biorthogonal Haar domain [14], leading to more regular reconstructions for smooth intensities. [15]

derived the probability density function (pdf ) of any wavelet coefficient, which allows hypothesis tests in

an arbitrary wavelet basis. However, as the pdf has no closed forms, [15] is more computationally complex

than Haar-based methods. [16] proposed “corrected” versions of the usual Gaussian-based thresholds for

Poisson data. However, the asymptotic approximation adopted by [16] may not allow reasonable solutions

in low-count situations. 4) empirical Bayesian and penalized ML estimations: empirical Bayesian

estimators are studied in [17][18][19][10]. The low-intensity case apart, Bayesian approaches generally

outperform the direct wavelet filtering [11][12] (see also [20] for a comparative review). Poisson denoising

has also been formulated as a penalized maximum likelihood (ML) estimation problem [21][22][23][24]

within wavelet, wedgelet and platelet dictionaries. Wedgelet (platelet-) based methods are more efficient

than wavelet-based estimators in denoising piecewise constant (smooth) images with smooth contours. To
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the best of our knowledge, no Poisson denoising method has been proposed for the ridgelet and curvelet

transforms.

This paper

In this paper, we propose a VST to stabilize the variance of a filtered discrete Poisson process, yielding

a near Gaussian process. This new transform, which can be deemed as an extension of the Anscombe

transform to filtered data, is simple, fast and efficient in (very) low-count situations. The rationale behind

the benefits of stabilizing a filtered version of the original process is as follows. It is well known that the

performance of the Anscombe VST deteriorates as the intensity becomes low [1] (typically for λ < 10),

i.e., as the SNR decreases. Hence, one can alleviate this limitation and enhance the performance of the

VST if the SNR is increased before stabilization. This can be achieved by pre-filtering the original process

provided that the filter acts as an “averaging” kernel, or a low-pass filter. A detailed asymptotic analysis

will support these claims.

By recognizing that a large family of multiscale transforms are computed from filtering equations

(e.g. wavelets), the proposed VST can be seamlessly combined with their filter banks, leading to multiscale

VSTs (MS-VSTs). Toward the goal of Poisson denoising, we are allowed to choose or design the most

adaptive transform for the sources to be restored based on their morphology. Indeed, owing to recent

advances in modern computational harmonic analysis, different multiscale transforms were shown to be

very effective in sparsely representing different kinds of information. For example, to represent regular

structures with point singularities, a qualified candidate is the wavelet transform [25][1]. The ridgelet

transform [26] is very effective in representing global lines in an image. The curvelet system [27][28] is

highly suitable for representing smooth (C2) images away from C2 contours. These transforms are also

computationally attractive particularly in large-scale applications. We will show that our VST can be

easily coupled with these different multiscale geometrical decompositions, yielding normally distributed

coefficients with known variances. A classical hypothesis testing framework is then adopted to detect the

significant coefficients, and a sparsity-driven iterative scheme is proposed to reconstruct the final estimate.

We show that the MS-VST approach provides a very effective denoiser capable of recovering important

structures of various (isotropic, line-like and curvilinear) shapes in (very) low-count images.

The paper is organized as follows. In Section II, a detailed analysis is provided to characterize the VST.

Section III outlines the general denoising setting for using MS-VST with wavelets. Then, Section III-B

and III-C show how the VST can be combined with the isotropic undecimated wavelet transform (IUWT)

and the standard separable undecimated wavelet transform (UWT), respectively. Denoising by MS-VST
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combined with ridgelets and curvelets are respectively presented in Section IV and V. Section VI provides

a discussion on the numerical results obtained, followed by a brief conclusion and the perspectives of

our work. Mathematical proofs are deferred to the appendix.

II. VST OF A FILTERED POISSON PROCESS

Given a Poisson process X := (Xi)i where Xi’s are independent and Xi ∼ P(λi), Yj :=
∑

i h[i]Xj−i

is the filtered process obtained by convolving X with a discrete filter h. We will use Y to denote any one

of the Yj’s. Let us define τk :=
∑

i(h[i])
k for k = 1, 2, · · · . In addition, we adopt a local homogeneity

assumption that λj−i = λ for all i within the support of h.

A. VST-heuristics

It can be seen that the variance of Y (Var [Y ]) is proportional to the intensity λ. To stabilize Var [Y ],

we seek a transformation Z := T (Y ) such that Var [Z] is (asymptotically) constant, say 1, irrespective

of the value of λ.

Heuristically, the Taylor expansion gives us T (Y ) ≈ T (µY )+T ′(µY )(Y −µY ), where µY := E [Y ] =

λτ1. We then have Var [Z] ≈ T ′(µY )2 ·Var [Y ] = T ′(µY )2 ·λτ2. Hence, by setting Var [Z] = 1, we obtain

a differential equation T ′(µY ) = µY
−1/2

√
τ1/τ2, of which the solution is given by T (Y ) = 2

√
τ1/τ2

√
Y .

This implies that the square-root transform could serve as a VST. It is possible to use higher order Taylor

expansions to find VST of different forms, but solving the associated differential equations is found

difficult since they are highly non-linear.

B. VST-rigor

We define the square-root transform T as follows:

T (Y ) := b · sgn(Y + c)|Y + c|1/2 (1)

where b is a normalizing factor. Lemma 1 confirms our heuristics that T is indeed a VST for a filtered

Poisson process (with a nonzero-mean filter) in that T (Y ) is asymptotically normally distributed with a

stabilized variance as λ becomes large.

Lemma 1 (Square root as VST) If τ1 6= 0, ‖h‖2, ‖h‖3 <∞, then we have:

sgn(Y + c)
√
|Y + c| − sgn(τ1)

√
|τ1|λ D−→

λ→+∞
N
(

0,
τ2

4|τ1|

)
(2)

where sgn(·) is the sign function.
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This result holds true for any c ∈ R, of which the value controls the convergence rate in (2). The next

section provides an analysis of the asymptotic rate and determines the optimal value of c.

C. Optimal parameter of the VST

To simplify the asymptotic analysis, we assume a non-negative filter h and a positive constant c (a

non-positive h with a negative c can also be considered). Thus, our VST is simplified to Z := T (Y ) =

b
√
Y + c. We can now derive the asymptotic expansions of E [Z] and Var [Z] as stated in Proposition 1.

Note that the last point in the proposition results directly from Lemma 1.

Proposition 1 (Optimal parameter of the VST)

(i) Define Z := b
√
Y + c. Then we have:

E [Z] = b
√
λτ1 + b

4cτ1 − τ2

8τ
3/2
1

λ−1/2 +Oλ→+∞(λ−1) (3)

Var [Z] = b2
τ2
4τ1

+ b2
(

7τ2
2

32τ3
1

− 2τ2c+ τ3
8τ2

1

)
λ−1 + b2

(
5τ4 + 16c2τ2 + 16cτ3

64τ3
1

− 17τ2τ3 + 21cτ2
2

32τ4
1

+
75τ3

2

128τ5
1

)
λ−2 +Oλ→+∞(λ−5/2) (4)

(ii) For the VST to be second order accurate and Z to have asymptotic unit variance, b and c must

satisfy:

c =
7τ2
8τ1

− τ3
2τ2

, b = b1 := 2

√
τ1
τ2

(5)

(iii) For b and c as above, Z − b1
√
τ1λ

D−→
λ→+∞

N (0, 1).

Proposition 1 tells us that for the chosen value of c, the first order term in the expansion (4) disappears,

and the variance is almost constant up to a second order residue. Note that if there is no filtering (h = δ),

c given by (5) equals 3/8, i.e., the value of the Anscombe VST.

Now fix c to the value given in (5). Once the asymptotic expectation is normalized to
√
λ, the

coefficient of the higher-order term O(λ−1/2) in (3) is given by (6). Similarly, the asymptotic variance

being normalized to 1, the coefficient of the term O(λ−2) in (4) is shown in (7).

CE =
5τ2

2 − 4τ1τ3
16τ2

1 τ2
(6)

CVar =
5τ2

1 τ2τ4 + 13τ4
2 − 4τ2

1 τ
2
3 − 13τ1τ

2
2 τ3

16τ4
1 τ

2
2

(7)

These higher-order coefficients (6) and (7) can be used to evaluate the stabilization efficiency for a given

filter. The ideal filters will be those minimizing (6) and (7). Tab. I shows the values of CE and CVar for
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TABLE I

CE AND CVar OF DIFFERENT FILTERS

Filter1 h CE CVar

δ (Anscombe) 6.25 × 10−2 6.25 × 10−2

2D Average = hA ⊗ hA 6.94 × 10−3 7.72 × 10−4

2D B3-Spline = hB3
⊗ hB3

−4.94 × 10−4 −3.45 × 10−4

1 hA = [1 1 1]/3; hB3
= [1 4 6 4 1]/16; ⊗ denotes the tensor

product.

different filters, where h = δ corresponds to the Anscombe VST (no filtering). Note that the values for

the Anscombe VST are 10 or even 100 times larger than for the other cases, indicating the benefits of

filtering prior to the stabilization. This is also confirmed by the simulations depicted in Fig. 1, where

the estimates of E [Z] (resp. Var [Z]) obtained from 2 · 105 replications are plotted as a function of

the intensity λ for Anscombe [3] (dash-dotted), Haar-Fisz [7] (dashed), our VST (solid) and CVS [10]

(dotted). The asymptotic bounds, i.e.,
√
λ for the expectation and 1 for the variance, are also shown. It

can be seen that for increasing intensity, E[Z] and Var [Z] stick to the theoretical bounds at different rates

depending on the VST used. Quantitatively, Poisson variables transformed using the Anscombe VST can

be reasonably considered to be unbiased and stabilized for λ ' 10, using Haar-Fisz for λ ' 1, and using

CVS and our VST (both after low-pass filtering with the chosen h) for λ ' 0.1.
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Fig. 1. Behavior of (a) E [Z] and (b) Var [Z] as a function of the underlying intensity, for the Anscombe VST, 2D Haar-Fisz

VST, the proposed VST with a low-pass filter h = 2D B3-Spline filter and the CVS transform with the same filter h.
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III. DENOISING BY MS-VST+WAVELETS

A. General setting

In this section, the proposed VST will be incorporated within the multiscale framework offered by the

(non-necessarily separable) UWT [25][29][30], giving rise to the MS-VST. The undecimated transform

is used since it provides translation-invariant denoising. Below, we first discuss the one-dimensional (1D)

denoising case, and the multidimensional extension will be straightforward (Section III-B2 and III-C2).

The UWT uses an analysis filter bank (h, g) to decompose a signal a0 into a coefficient set W =

{d1, . . . , dJ , aJ}, where dj is the wavelet (detail) coefficients at scale j and aJ is the approximation

coefficients at the coarsest resolution J . The passage from one resolution to the next one is obtained

using the “à trous” algorithm [31][32]:

aj+1[l] = (h̄↑j ⋆ aj)[l] =
∑

k

h[k]aj[l + 2jk], dj+1[l] = (ḡ↑j ⋆ aj)[l] =
∑

k

g[k]aj[l + 2jk] (8)

where h↑j[l] = h[l] if l/2j ∈ Z and 0 otherwise, h̄[n] = h[−n], and “⋆” denotes convolution. The

reconstruction is given by: aj [l] = 1
2

[
(h̃↑j ⋆ aj+1)[l] + (g̃↑j ⋆ dj+1)[l]

]
. The filter bank (h, g, h̃, g̃) needs

to satisfy the exact reconstruction condition.

Now the VST can be combined with the UWT in the following way: since (h̄↑j)j are low-pass filters

(so have nonzero means), we can first stabilize the approximation coefficients (aj)j using the VST, and

then compute in the standard way the detail coefficients from the stabilized aj’s. Note that the VST is

now scale-dependent (hence MS-VST). By doing so, the asymptotic stabilized Gaussianity of the aj’s

will be transferred to the dj’s, as will be shown later. Thus, the distribution of the dj’s being known

(Gaussian), we can detect the significant coefficients by classical hypothesis tests. With the knowledge

of the detected coefficients, the final estimate can be reconstructed. In summary, UWT denoising with

the MS-VST involves the following three main steps:

1) Transformation (Sections III-B and III-C): Compute the UWT in conjunction with the MS-VST;

2) Detection (Section III-D): Detect significant detail coefficients by hypothesis tests;

3) Estimation (Section III-E): Reconstruct the final estimate iteratively using the knowledge of the

detected coefficients.

The last step needs some explanation. The signal reconstruction requires inverting the MS-VST-combined

UWT after the detection step. However, the nonlinearity of the MS-VST makes a direct inversion

impossible in the general case. Even for the IUWT, which uses special filter banks yielding an invertible

MS-VST, the direct inverse will be seen to be suboptimal. Hence, we propose to reformulate the
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a0 T0

h̄ T1

h̄
↑1

d1

d2

+ �� + ��
T2

a0+ ��
h̄
↑j Tj+1

d3

dj+1

Tj+1(aj+1)

T
−1

0

(a)

a0 T0

d1

d2

h̄
↑1 T2

ḡ

ḡ
↑1

h̄ T1

ḡ
↑2

Tj+1h̄
↑j

Tj+1(aj+1)

d3

(b)

Fig. 2. Diagrams of the MS-VST+Wavelets in 1D. (a) MS-VST combined with the IUWT. The left dashed frame shows

the decomposition part and the right one illustrates the direct inversion; (b) MS-VST combined with the standard UWT. The

decomposition part is shown and no direct inversion exists.

reconstruction as a convex sparsity-promoting optimization problem and solve it by an iterative steepest

descent algorithm (Section III-E).

B. MS-VST+IUWT

The IUWT [33] uses the filter bank (h, g = δ − h, h̃ = δ, g̃ = δ) where h is typically a symmetric

low-pass filter such as the B3-Spline filter. The particular structure of the analysis filters (h, g) leads

to the iterative decomposition scheme shown in the left part of (9). The reconstruction is trivial, i.e.,

a0 = aJ +
∑J

j=1 dj . This algorithm is widely used in astronomical applications [1] and biomedical

imaging [34] to detect isotropic objects.

As stated in Section III-A, we apply the VST on the aj’s resulting in the stabilization procedure shown

in the right part of (9):

IUWT




aj = h̄↑j−1 ⋆ aj−1

dj = aj−1 − aj

=⇒
MS-VST

+

IUWT




aj = h̄↑j−1 ⋆ aj−1

dj = Tj−1(aj−1) − Tj(aj)
(9)

Note that the filtering step on aj−1 can be rewritten as a filtering on a0 := X, i.e., aj = h(j) ⋆ a0, where

h(j) = h̄↑j−1 ⋆ · · · ⋆ h̄↑1 ⋆ h̄ for j ≥ 1 and h(0) = δ. Tj is the VST operator at scale j (see Lemma 1):

Tj(aj) = b(j)sgn(aj + c(j))
√
|aj + c(j)| (10)

Let us define τ
(j)
k :=

∑
i

(
h(j)[i]

)k
. Then according to (5), the constant c(j) associated to h(j) should be

set to

c(j) :=
7τ

(j)
2

8τ
(j)
1

− τ
(j)
3

2τ
(j)
2

(11)
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This stabilization procedure is directly invertible as we have:

a0 = T−1
0


TJ(aJ) +

J∑

j=1

dj


 (12)

The decomposition scheme and the inversion of MSVST+IUWT are also illustrated in Fig. 2(a).

1) Asymptotic distribution of the detail coefficients:

Theorem 1 (Asymptotic distribution of dj) Setting b(j) := sgn(τ
(j)
1 )/

√
|τ (j)

1 |, if λ is constant within

the support of the filter h(j)[k − ·], then we have:

dj [k]
D−→

λ→+∞
N

0,

τ
(j−1)
2

4τ
(j−1)
1

2 +
τ

(j)
2

4τ
(j)
1

2 − 〈h(j−1), h(j)〉
2τ

(j−1)
1 τ

(j)
1


 (13)

Here 〈., .〉 represents the scalar product. This is a very useful result showing that the detail coefficients

issued from locally homogeneous parts of the signal (null hypothesis H0, see Section III-D) follow

asymptotically a centered normal distribution with an intensity-independent variance. The variance only

depends on the filter h and the current scale. Hence, the stabilized variance (and also the constants b(j),

c(j), τ
(j)
k ) can all be pre-computed for any given h.

2) Extension to the multi-dimensional case: The filter bank in qD (q > 1) becomes (hqD, gqD =

δ − hqD, h̃qD = δ, g̃qD = δ) where hqD = ⊗q
i=1h. Note that gqD is in general nonseparable. The MS-

VST decomposition scheme remains the same as (9), and the asymptotic result above holds true. The

complexity for pre-computing b(j), c(j), τ
(j)
k and the stabilized variance in (13) remains the same as in

the 1D case.

C. MS-VST+standard UWT

In this section, we show how the MS-VST can be used to stabilize the wavelet coefficients of a

standard separable UWT. In the same vein as (9), we apply the VST on the approximation coefficients

(aj)j , leading to the following scheme (see also the block-diagram of Fig. 2(b)):

UWT




aj = h̄↑j−1 ⋆ aj−1

dj = ḡ↑j−1 ⋆ aj−1

=⇒
MS-VST

+

UWT




aj = h̄↑j−1 ⋆ aj−1

dj = ḡ↑j−1 ⋆ Tj−1(aj−1)
(14)

where Tj(aj) = b(j)sgn(aj + c(j))
√
|aj + c(j)|, and c(j) is defined as in (11).
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1) Asymptotic distribution of the detail coefficients:

Theorem 2 (Asymptotic distribution of dj) Setting b(j) := 2
√
|τ (j)

1 |/τ (j)
2 , if λ is constant within the

support of the filter (ḡ↑j−1 ⋆ h(j−1))[k − ·], then dj[k]
D−→

λ→+∞
N (0, σ2

j ), where

σ2
j =

1

τ
(j−1)
2

∑

m,n

ḡ↑j−1[m]ḡ↑j−1[n]
∑

k

h(j−1)[k]h(j−1)[k +m− n] (15)

Parallel to Theorem 1, Theorem 2 shows the asymptotic normality of the wavelet detail coefficients

obtained from locally homogeneous parts of the signal (null hypothesis H0, see Section III-D). Here, the

values of b(j), c(j), τ
(j)
k and σj can all be pre-computed once the wavelet has been chosen.

2) Extension to the multi-dimensional case: The scheme (14) can be extended straightforwardly to

higher dimensional cases, and the asymptotic result above holds true. For example, in the 2D case, the

UWT is given by the left part of (16) and the version combined with the MS-VST is given on the right:

UWT





aj = h̄↑j−1h̄↑j−1 ⋆ aj−1

d1
j = ḡ↑j−1h̄↑j−1 ⋆ aj−1

d2
j = h̄↑j−1ḡ↑j−1 ⋆ aj−1

d3
j = ḡ↑j−1ḡ↑j−1 ⋆ aj−1

=⇒
MS-VST

+

UWT





aj = h̄↑j−1h̄↑j−1 ⋆ aj−1

d1
j = ḡ↑j−1h̄↑j−1 ⋆ Tj−1(aj−1)

d2
j = h̄↑j−1ḡ↑j−1 ⋆ Tj−1(aj−1)

d3
j = ḡ↑j−1ḡ↑j−1 ⋆ Tj−1(aj−1)

(16)

where hg ⋆ a is the convolution of a by the separable filter hg, i.e., convolution first along the rows by

h and then along the columns by g. The complexity of pre-computing the constants b(j), c(j), τ
(j)
k and

σj remains the same as in the 1D case.

D. Detection by wavelet-domain hypothesis testing

Our wavelet-domain detection is formulated by hypothesis tests [35], i.e., H0 : dj [k] = 0 vs. H1 :

dj [k] 6= 0. A coefficient is considered insignificant if the null hypothesis H0 is true, while it is significant

if the alternative H1 is met. Note that wavelet coefficients computed from locally homogeneous parts of

the signal are insignificant. Indeed, if there were no noise, these coefficients obtained by applying the

classical UWT scheme would be zero-valued, since any wavelet has a zero mean. Thanks to Theorems

1 and 2, the distribution of dj[k] under the null hypothesis H0 is now known (Gaussian).

Hypothesis tests can be carried out individually in a coefficient-by-coefficient manner. First, the user

pre-specifies a FPR in the wavelet domain, say α. Then the p-value of each coefficient p := 2[1−Φ(|d|/σ)]

is calculated under H0. Here Φ(x) is the standard normal cumulative distribution function, and σ is the

asymptotic standard deviation of d after being stabilized by the MS-VST. Finally, all the coefficients with

p > α will be considered to be insignificant.
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If we desire a control over global statistical error rates, multiple hypothesis tests should be used. For

example, the Bonferroni over-conservative correction controls the probability of erroneously rejecting

even one of the true null hypothesis, i.e., the Family-Wise Error Rate (FWER). Alternatively, one can

carry out the Benjamini and Hochberg procedure [36] to control the False Discovery Rate (FDR), i.e.,

the average fraction of false detections over the total number of detections. The control of FDR has the

following advantages over that of FWER: 1) it usually has a greater detection power; 2) it can easily

handle correlated data [37]. The latter point allows the FDR control in non-orthogonal wavelet domains.

Minimaxity of FDR has also been studied in various settings (see [38][39] for details).

E. Iterative reconstruction

Following the detection step, we have to invert the MS-VST scheme to reconstruct the estimate. For

the standard UWT case, direct reconstruction procedure is unavailable since the convolution (by ḡ↑j−1)

operator and the nonlinear VST operator Tj−1 do not commute in (14). For the IUWT case, the estimate

can be reconstructed by (12). However, this direct MS-VST inversion followed by a positivity projection1

could entail a loss of important structures in the estimate (see results in Section III-F). Here, we propose to

reformulate the reconstruction as a convex optimization problem described below, and solve it iteratively.

This procedure will be shown to better preserve the significant structures in the data than the direct

inverse. In the following, we will concentrate on the 1D case for clarity.

We suppose that the underlying intensity function Λ is sparsely represented in the wavelet domain.

We define the multiresolution support [40] M, which is determined by the set of detected significant

coefficients at each scale j and location k, i.e.,

M := {(j, k) | if dj[k] is significant (i.e. dj [k] ∈ H1)} (17)

The estimation is then formulated as a constrained sparsity-promoting minimization problem in terms of

the wavelet coefficients d. A component of d can be indexed by the usual scale-location index (j, k)

(i.e. dj [k]). The indices can also be renumbered so that d is mapped to a vector in R
L. In this case, a

component of d is indexed in a 1D way, i.e., d[i]. Hereafter, both notations will be used. Our optimization

problem is given by

min
d∈C

J(d), J(d) := ‖d‖1

where C := S1 ∩ S2, S1 := {d|dj[k] = (WX)j[k], (j, k) ∈ M}, S2 := {d|Rd ≥ 0}
(18)

1Positivity projection because Poisson intensity is always nonnegative.
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where W represents the wavelet transform operator, and R its (weak-generalized) left inverse (synthesis

operator). Recall that X is the observed count data vector. Clearly, we seek the sparsest solution by

minimizing the ℓ1-objective [41][42] within the feasible set C := S1 ∩ S2. The set S1 requires that the

significant elements of d preserve those of the data X; the set S2 ensures a positive intensity estimate.

(18) is a convex optimization problem which can be cast as a Linear Program (LP) and solved using

interior-point methods. However, the computational complexity of the LP solver increases dramatically

with the size of the problem. Classical projected (sub-)gradient method is also difficult to apply here since

the projector on the feasible set is unknown. Below we propose an alternative based on the hybrid steepest

descent (HSD) [43]. The HSD approach allows minimizing convex functionals over the intersection of

fixed point sets of nonexpansive mappings. It is much faster than LP, and in our problem, the nonexpansive

mappings do have closed forms.

Theorem 3 Let d ∈ R
L. Define the following regularized optimization problem (ǫ ≥ 0):

min
d∈CB

Jǫ(d), Jǫ(d) :=
∑L

i=1

√
d[i]2 + ǫ

where CB := S1 ∩ S2 ∩ S3, S3 := {d| ‖d‖2 ≤ B,B ≥ ‖WX‖1}
(19)

Define the HSD iteration scheme [43] (k ≥ 0):

d
(k+1)
ǫ := TCB

d
(k)
ǫ − βk+1∇Jǫ

(
TCB

d
(k)
ǫ

)
(20)

where ∇Jǫ is the gradient of Jǫ, and TCB
:= PS3

◦ PS1
◦QS2

,

PS3
d :=

d

‖d‖2
·min(‖d‖2, B); (PS1

d)j [k] :=





(WX)j[k] (j, k) in M

dj [k] otherwise

; QS2
d := WP+Rd (21)

where P+ represents the projection onto the nonnegative orthant, and PS1
and PS3

are the projectors

onto their respective constraint sets. The step sequence satisfies:

lim
k→∞

βk = 0,
∑

k≥1

βk = +∞ and
∑

k≥1

|βk − βk+1| < +∞ (22)

Suppose that in (ii)-(v) below W represents a tight frame decomposition and R its pseudo-inverse

operator. Then we have:

(i) The solution set of (18) is the same as that of (19) with ǫ = 0;

(ii) TCB
is nonexpansive, and its fix point set is Fix(TCB

) = CB 6= ∅;

(iii) ∀ǫ > 0, with any d
(0)
ǫ ∈ R

N , d
(k)
ǫ −→

k→+∞
d
∗
ǫ , where d

∗
ǫ is the unique solution to (19);

(iv) As ǫ→ 0+, the sequence (d∗
ǫ )ǫ>0 is bounded. Therefore, it has at least one limit point;

(v) As ǫ→ 0+, every limit point of the sequence (d∗
ǫ )ǫ>0 is a solution to (18).
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Theorem 3 implies that in practice instead of directly solving (18), one can solve its smoothed version

(19) by applying (20) with a small ǫ. In real problems, TCB
may be simplified to TCB

= TC := PS1
◦QS2

,

since the exact value of B is not important and can be considered to be sufficiently large so that the

constraint S3 is always satisfied. We also point out that although Theorem 3 assumes a tight frame

decomposition and pseudo-inverse reconstruction, in our experiments, we observed that the iterations

(20) applied equally to general frame decompositions and inverses, and performed very well even with

ǫ = 0 (see results in Section III-F). For ǫ = 0, (20) rewrites:

d
(k+1) := TCd

(k) − βk+1∇J
(
TCd

(k)
)

(23)

where ∇J(d)[i] = sgn(d[i]) is the limiting gradient2 of Jǫ as ǫ → 0+. (23) is implemented in practice

as a soft thresholding with a threshold βk+1 (noted as STβk+1
). Now the MS-VST denoising using the

IUWT and the standard UWT is presented in Algorithm 1 and 2 respectively. In Algorithm 1, step 1

Algorithm 1 MS-VST + IUWT

Require: a0 := X; a low-pass filter h,

Detection

1: for j = 1 to J do

2: Compute aj and dj using (9).

3: Test dj assuming the normal statistics (Theorem 1), get the estimate d̂j , and update M.

4: end for

Estimation

5: Estimate E [T0(a0)] by: T̂0a0 =
∑J

j=1 d̂j + TJ(aJ)

6: Estimate E [a0] by: â0 = Var [T0(a0)] + T̂0a0
2 − c(0)

7: Initialize d
(0) = WP+â0

8: for k = 1 to Nmax do

9: d̃ := PS1
◦QS2

d
(k−1)

10: d̂ := d
(k) := STβk

[d̃].
11: end for

12: Get the estimate Λ̂ = P+Rd̂.

– 6 obtain a first estimate of Λ by directly inverting MS-VST+IUWT after zeroing the insignificant

wavelet coefficients. The direct inverse serves as the initialization of the iterations. In step 6, the term

Var [T0(a0)] corrects the bias due to squaring an estimate. Indeed, if Z =
√
a0 + c(0), then λ = E [a0] =

E
[
Z2
]− c(0) = Var [Z]+E [Z]2 − c(0). We can also see that every iteration of (23) involves a projection

2Clearly, ∇J(d) is also an element of the sub-gradient of J which is given by ∂J(d)[i] = sgn(d[i]) if d[i] 6= 0 and

∂J(d)[i] ∈ [−1, 1] otherwise.
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Algorithm 2 MS-VST + Standard UWT

Require: a0 := X; a wavelet filter bank (h, g, h̃, g̃),
Detection

1: for j = 1 to J do

2: Compute aj and dj using (14).

3: Test dj assuming the normal statistics (Theorem 2) and update M.

4: end for

Estimation

5: Initialize d
(0)
j [k] = (WX)j[k], if (j, k) ∈ M; 0 otherwise.

6: for k = 1 to Nmax do

7: d̃ := PS1
◦QS2

d
(k−1)

8: d̂ := d
(k) := STβk

[d̃].
9: end for

10: Get the estimate Λ̂ = P+Rd̂.

onto S1 that restores all the significant coefficients. This actually results in a better preservation of the

important structures in the data than the direct inverse (see also the results in Section III-F).

In Algorithm 2 the initialization is provided by the detected significant wavelet coefficients (step 5).

For both algorithms, Nmax is the maximum number of iterations. A possible choice of the step sequence

(βk)k is a linearly decreasing one: βk = Nmax−k
Nmax−1 , k = 1, 2, · · · , Nmax. It can be noted that for (βk)k

chosen as above, the conditions in (22) are all satisfied as Nmax → ∞. The computational cost of

the whole denoising is dominated by the iterative estimation step. This step involves an analysis and a

synthesis at each iteration and thus has a complexity of O(2NmaxV ), where V = O(N logN) is the

complexity of UWT and N is the number of data samples.

F. Applications

1) Simulated biological image restoration: We have simulated an image containing disk-like isotropic

sources on a constant background (see Fig. 3(a)) where the pixel size is 100nm × 100nm. From the

leftmost column to the rightmost one, source radii increase from 50nm to 350nm. This image has been

convolved with a Gaussian function with a standard deviation of 103nm which approximates a confocal

microscope PSF [44]. The source amplitudes range from 0.08 to 4.99, and the background level is 0.03.

This spot grid can be deemed as a model for cellular vesicles of different sizes and intensities. A realization

of the photon-count image is shown in Fig. 3(b). We present the restoration results given by Anscombe

[4] (Fig. 3(c)), Haar-Fisz [7] (Fig. 3(d)), CVS [10] (Fig. 3(e)), Haar hypothesis tests [13] (Fig. 3(f)),

platelet estimation [45][23][24] (Fig. 3(g)), and the MS-VST denoiser using iterative (Fig. 3(h)) and direct
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(Fig. 3(i)) reconstructions. IUWT has been used to produce the results in Fig. 3(c)(d)(e)(h)(i); standard

Haar UWT is used in Fig. 3(f); cycle spinning with a total of 25 shifts is employed in Fig. 3(d)(g) to

attenuate the block artifacts. The controlled FPR in all the wavelet-based methods is set to 5 × 10−3;

for the platelet approach, the trade-off factor between the likelihood and the penalization γ is set to 1/3

(see [24]).

As revealed by Fig. 3, all the estimators perform comparatively well at high intensity levels (right

part of the images). For low-intensity sources, Haar-Fisz, CVS, Platelets and the MS-VST are the most

sensitive approaches. We can see that the IUWT-based methods preserve better the isotropic source shapes

than the other methods. Some residual noise can be seen in the estimate of CVS.

We also quantify the performances in terms of the normalized mean integrated square error (NMISE)

per bin from the denoised signals. The NMISE is defined as: NMISE := E[(
∑N

i=1(λ̂i − λi)
2/λi)/N ],

where (λ̂i)i is the intensity estimate. Note that the denominator λi plays the role of variance stabilization

in the error measure. In our experiments, NMISEs are evaluated based on 5 replications. The MS-VST

denoiser provides the second lowest error, which is slightly larger than that of the platelet estimate. The

platelet estimator offers an efficient piecewise linear approximation to the image. However, on the isolated

smooth spots, it tends to alter the isotropic shapes and produces some artifacts. The regularity in the result

could be improved by averaging a larger number of cyclic shifts, but leading to a very time-consuming

procedure (a computation-time benchmark is shown for a real example in Section V-C2).

Finally, we can also observe that the iterative reconstruction Fig. 3(i) improves restoration of low-flux

sources (see the upper part of the image) compared to the direct inverse Fig. 3(j). This phenomenon is

clearly expected.

2) Astronomical image restoration: Fig. 4 compares the restoration methods on a galaxy image. The

FDR control is employed in Anscombe, Haar-Fisz, CVS, Haar hypothesis tests, and the MS-VST methods.

Among all the results, Haar-Fisz, CVS, Platelets and the MS-VST estimates detect more faint sources.

It is found that Haar-Fisz, Haar hypothesis tests, Platelets and the MS-VST with iterative construction

generate comparable low NMISE values, among which the iterative MS-VST leads to the smallest one.

IV. DENOISING BY MS-VST+RIDGELETS

A. The ridgelet transform

The ridgelet transform [26] has been shown to be very effective for representing global lines in an

image. Ridgelet analysis may be constructed as a wavelet analysis in the Radon domain. Recall that the

2D Radon transform of an object f is the collection of line integrals indexed by (θ, t) ∈ [0, 2π) × R
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Fig. 3. Denoising an image of simulated spots of different radii (image size: 256 × 256). (a) simulated sources (amplitudes

∈ [0.08, 4.99]; background = 0.03); (b) observed counts; (c) Anscombe-denoised image (IUWT, J = 5, FPR = 5 × 10−3,

NMISE = 2.34); (d) Haar-Fisz-denoised image (IUWT, J = 5, FPR = 5 × 10−3, 25 cyclic shifts (5 for each of the axes),

NMISE = 0.33); (e) CVS-denoised image (IUWT, J = 5, FPR = 5 × 10−3, NMISE = 0.81); (f) image denoised by Haar

hypothesis tests (Haar UWT, J = 5, FPR = 5 × 10−3, NMISE = 0.10); (g) platelet-denoised image (γ = 1/3, 25 random

cyclic shifts, NMISE = 0.059); (h) MS-VST-denoised image (IUWT, J = 5, FPR = 5 × 10−3, Nmax = 20 iterations, NMISE

= 0.069); (i) MS-VST-denoised image (IUWT, J = 5, FPR = 5 × 10−3, direct inverse, NMISE = 0.073).
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Fig. 4. Denoising a galaxy image (image size: 256 × 256). (a) galaxy image (intensity ∈ [0, 5]); (b) observed counts; (c)

Anscombe-denoised image (IUWT, B3-spline filter bank, J = 5, FDR = 0.1, NMISE = 0.15); (d) Haar-Fisz-denoised image

(IUWT, B3-spline filter bank, J = 5, FDR = 0.1, 25 cyclic shifts (5 for each of the axes), NMISE = 0.04); (e) CVS-denoised

image (IUWT, B3-spline filter bank, J = 5, FDR = 0.1, NMISE = 0.074); (f) denoised image by Haar hypothesis tests (Haar

UWT, J = 5, FDR = 0.1, NMISE = 0.036); (g) Platelet-denoised image (γ = 1/3, 25 random cyclic shifts, NMISE = 0.038)

(h) MS-VST-denoised image (IUWT, B3-spline filter bank, J = 5, FDR = 0.1, Nmax = 20 iterations, NMISE = 0.035); (i)

MS-VST-denoised image (IUWT, B3-spline filter bank, J = 5, FDR = 0.1, direct inverse, NMISE = 0.051).
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given by

Rf(θ, t) =

∫

R2

f(x1, x2)δ(x1 cos θ + x2 sin θ − t) dx1dx2 (24)

where δ is the Dirac distribution. Then the ridgelet transform is precisely the application of a 1D wavelet

transform to the slices of the Radon transform where the angular variable θ is constant and t is varying.

For each scale s > 0, position t ∈ R and angle θ ∈ [0, 2π), the 2D ridgelet function ψs,t,θ is defined

from a 1D wavelet function ψ as:

ψs,t,θ(x1, x2) = s−1/2 · ψ((x1 cos θ + x2 sin θ − t)/s) (25)

A ridgelet is constant along the lines x1 cos θ + x2 sin θ = const. Transverse to a ridge is a wavelet.

Thus, the basic strategy for calculating the continuous ridgelet transform is first to compute the Radon

transform Rf(t, θ) and second, to apply a 1D wavelet transform to the slices Rf(·, θ). Different digital

ridgelet transforms can be derived depending on the choice of both the Radon algorithm and the wavelet

decomposition [46]. For example, the Slant Stack Radon (SSR) transform [47][48] is a good candidate,

which has the advantage of being geometrically accurate, and is used in our experiments. The inverse

SSR has however the drawback to be iterative. If computation time is an issue, the recto-polar Radon

transform is a good alternative. More details on the implementation of these Radon transforms can be

found in [28][47][48][46].

B. MS-VST with ridgelets

As a Radon coefficient is obtained from an integration of the pixel values along a line, the noise in

the Radon domain follows also a Poisson distribution. Thus, we can apply the 1D MS-VST wavelet

detection described in Section III to the slices of the Radon transform. Let M := {(θ, j, k)} denote

the ridgelet multi-resolution support, where (θ, j, k) indicates that the stabilized ridgelet coefficient at

projection angle θ, scale j and location k is significant. M being available, we can formulate a constrained

ℓ1-minimization problem in exactly the same way as in the wavelet case (Section III-E), which is then

solved by HSD iterations. Hence, the Ridgelet Poisson denoising algorithm consists of the following

three steps:

Algorithm 3 MS-VST + Ridgelets

1: Apply the Radon transform.

2: For each Radon slice, apply the 1D MS-VST+UWT detection and update M.

3: Apply the HSD iterations to the ridgelet coefficients before getting the final estimate.
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C. Results

We have simulated an image with smooth ridges shown in Fig. 5(a). The peak intensities of the

vertical ridges vary progressively from 0.1 to 0.5; the inclined ridge has a maximum intensity of 0.3; the

background level is 0.05. A Poisson-count image is shown in Fig. 5(b). The biorthogonal 7/9 filter bank

[25] is used in the Anscombe (Fig. 5(c)), Haar-Fisz (Fig. 5(d)), CVS (Fig. 5(e)), and MS-VST+UWT

(Fig. 5(g)) approaches. The denoised image using Haar hypothesis tests is presented by Fig. 5(f). The

estimates by Platelets and by MS-VST+Ridgelets are shown in Fig. 5(h) and Fig. 5(i), respectively. Due

to the very low-count setting, the Anscombe estimate is highly biased. Among all the wavelet-based

methods, MS-VST+UWT leads to the smallest error, but is outperformed by the Platelet and the MS-

VST-based ridgelet estimates. The two latter methods result in the lowest NMISE values among all the

competitors. Clearly, this is because wavelets are less adapted to line-like sources. It can also be seen

that the shape of the ridges is better preserved by the ridgelet-based estimate.

V. DENOISING BY MS-VST+CURVELETS

A. The first generation curvelet transform

The ridgelet transform is efficient for finding only the lines of the size of the image. To detect line

segments, a partitioning need to be introduced. The image is first decomposed into smoothly overlapping

blocks of side-length B pixels, and the ridgelet transform is applied independently on each block. This

is called the local ridgelet transform. The curvelet transform [49][50] opens the possibility to analyze an

image with different block sizes, but with a single transform. The idea is to first decompose the image

into a set of wavelet bands using the IUWT, and to analyze each band with a local ridgelet transform.

The block size is changed at every other scale. The coarsest resolution of the image (aJ ) is not processed.

This transform has been shown to provide optimal approximation rate for piecewise C2 images away

from C2 contours, and is very effective in detecting anisotropic structures of different lengths. More

details can be found in [49][28].

B. MS-VST with curvelets

As the first step of the algorithm is an IUWT, we can stabilize each resolution level in the same

way as described in Section III-B. We then apply the local ridgelet transform on each stabilized wavelet

band. Significant Gaussianized curvelet coefficients will be detected by hypothesis tests from which

the curvelet multiresolution support M is derived. Finally, the same to the wavelet and ridgelet case,
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Fig. 5. Poisson denoising of smooth ridges (image size: 256× 256). (a) intensity image (the peak intensities of the 9 vertical

ridges vary progressively from 0.1 to 0.5; the inclined ridge has a maximum intensity of 0.3; background = 0.05); (b) Poisson

noisy image; (c) Anscombe-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 10−7, NMISE = 0.83); (d) Haar-Fisz-denoised

image (UWT, 7/9 filter bank, J = 4, FDR = 10−7, 25 cyclic shifts (5 for each of the axes), NMISE = 0.035); (e) CVS-denoised

image (UWT, 7/9 filter bank, J = 4, FDR = 10−7, NMISE = 0.034); (f) image denoised by Haar+FDR (J = 4, FDR = 10−7,

NMISE = 0.044); (g) image denoised by MS-VST+UWT (7/9 filter bank, J = 4, FDR = 10−7, Nmax = 10 iterations, NMISE

= 0.023); (h) Platelet-denoised image (γ = 1/3, 25 random cyclic shifts, NMISE = 0.017); (i) MS-VST+Ridgelets (J = 4,

FDR = 10−7, Nmax = 10 iterations, NMISE = 0.017).
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we solve a constrained ℓ1-minimization problem on the curvelet coefficients by HSD iterations before

reconstructing the estimate. We now present a sketch of the Poisson curvelet denoising algorithm:

Algorithm 4 MS-VST + Curvelets

1: Apply the MS-VST+IUWT with J scales to get the stabilized wavelet subbands (dj)j .

2: set B1 = Bmin

3: for j = 1 to J do

4: Partition the subband dj with blocks of side-length Bj and apply the digital ridgelet transform to

each block to obtain the stabilized curvelet coefficients.

5: Test the stabilized curvelet coefficients to obtain M.

6: if j modulo 2 = 1 then

7: Bj+1 = 2Bj

8: else

9: Bj+1 = Bj

10: end if

11: end for

12: Apply the HSD iterations to the curvelet coefficients before getting the final estimate.

It is not as straightforward as with the wavelet and ridgelet transforms to derive the asymptotic noise

variance in the stabilized curvelet domain. In our experiments, we derived them using simulated data

with Poisson noise only. After having checked that the standard deviation in the curvelet bands becomes

stabilized as the intensity level λ increases (which means that the stabilization is working properly), we

stored this standard deviation σj1,j2,l for each wavelet scale j1, each ridgelet scale j2, and each direction

angle l. Then, once the stabilized curvelet transform is applied to our data, these values of (σj1,j2,l)j1,j2,l

serve in the hypothesis testing framework described in Section III-D to test the significance of each

stabilized curvelet coefficient at each scale (j1, j2) and direction angle l.

C. Applications

1) Natural image restoration: Fig. 6 compares different restoration methods on the Barbara im-

age. The original image is heavily scaled down to simulate a low-intensity setting (Fig. 6(a), inten-

sity ∈ [0.93, 15.73]). The FDR control is employed in Anscombe (Fig. 6(c)), Haar-Fisz(Fig. 6(d)),

CVS(Fig. 6(e)), Haar hypothesis tests (Fig. 6(f)), MS-VST+UWT (Fig. 6(g)), and MS-VST+Curvelet

(Fig. 6(i)). As the image is piecewise regular with smooth contours, platelets and curvelets take their full

power and provide the best results. In terms of NMISE, MS-VST+Curvelet results in the most accurate

estimate. Visually, MS-VST+Curvelet best preserves the fine textures.
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Fig. 6. Poisson denoising of the Barbara image (image size: 256 × 256). (a) intensity image (intensity ∈ [0.93, 15.73]); (b)

Poisson noisy image; (c) Anscombe-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0.1, NMISE = 0.26); (d) Haar-

Fisz-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0.1, 25 cyclic shifts (5 for each of the axes), NMISE = 0.28);

(e) CVS-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0.1, NMISE = 0.28); (f) denoised image by Haar+FDR (Haar

UWT, J = 4, FDR = 0.1, NMISE = 0.29; (g) denoised image by MS-VST+UWT (UWT, 7/9 filter bank, J = 4, Nmax = 5

iterations, FDR = 0.1, NMISE = 0.26); (h) platelet-denoised image (γ = 1/3, 25 random cyclic shifts, NMISE = 0.18); (i)

denoised image by MS-VST+Curvelets (J = 4, Nmax = 5 iterations, FDR = 0.1, NMISE = 0.17).
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2) Biological image restoration: Fig. 7 compares the methods on an image of fluorescent tubulin

filaments stained with Bodipy FL goat anti-mouse IgG3. The same denoising settings are used as for

Fig. 6. MS-VST+UWT outperforms all the wavelet-based methods; among all the compared approaches,

MS-VST+Curvelet leads to the best result both quantitatively and visually. For this example, we also

evaluated the computation time of the tested methods on a 1.1GHz PC, giving: Anscombe (C++ codes,

4 sec), Haar-Fisz (C++ codes, 90 sec), CVS (Matlab codes, 3 sec), Haar hypothesis tests (C++ codes, 8

sec), MS-VST+UWT (C++ codes, 18 sec), Platelets (Matlab MEX codes, 2404 sec), MS-VST+Curvelet

(Matlab codes, 1287 sec). This time benchmark shows that our MS-VST+UWT provides a fast solution

among the wavelet-based estimators; MS-VST+Curvelet is more computationally intensive but is about

twice as fast as platelet denoising in our example.

VI. DISCUSSION AND CONCLUSION

In this paper, we have introduced a novel variance stabilization method and shown that it can be easily

combined with various multiscale transforms such as the undecimated wavelet (isotropic and standard),

the ridgelet and the curvelet transforms. Based on our multiscale stabilization, we were able to propose

a new strategy for removing Poisson noise and our approach enjoys the following advantages:

• It is efficient and sensitive in detecting faint features at a very low-count rate;

• We have the choice to integrate the VST with the multiscale transform we believe to be the most

suitable for restoring a given kind of morphological feature (isotropic, line-like, curvilinear, etc);

• The computation time is similar to that of a Gaussian denoising, which makes our denoising method

capable of processing large data sets.

Comparison to competing methods in the literature show that the MS-VST is very competitive offering

performance as good as state-of-the-art approaches, with low computational burden. This work can be

extended along several lines in the future. First, the curvelet denoising could be improved if the VST

is applied after the Radon transform in the local ridgelet transform step, rather than on the wavelet

coefficients as proposed here. This is however not trivial and requires further investigations. Second, new

multiscale transforms have been recently proposed such as the fast curvelet transform [51] and the wave

atom transform [52], and it would also be very interesting to investigate how our MS-VST could be

linked to them. Finally, here we have considered the denoising with a single multiscale transform only. If

the data contains features with different morphologies, it could be better to introduce several multiscale

3The image is available on the ImageJ website http://rsb.info.nih.gov/ij
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(i)

Fig. 7. Poisson denoising of fluorescent tubulins (image size: 256 × 256). (a) intensity image (intensity ∈ [0.53, 16.93]);

(b) Poisson noisy image; (c) Anscombe-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0.1, NMISE = 0.095); (d)

Haar-Fisz-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0.1, 25 cyclic shifts (5 for each of the axes), NMISE = 0.096);

(e) CVS-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0.1, NMISE = 0.10); (f) denoised image by Haar+FDR (Haar

UWT, J = 4, FDR = 0.1, NMISE = 0.10; (g) denoised image by MS-VST+UWT (UWT, 7/9 filter bank, J = 4, Nmax = 5

iterations, FDR = 0.1, NMISE = 0.090); (h) platelet-denoised image (γ = 1/3, 25 random cyclic shifts, NMISE = 0.079); (i)

denoised image by MS-VST+Curvelets (J = 4, Nmax = 5 iterations, FDR = 0.1, NMISE = 0.078).
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transforms in the denoising algorithm. This could be done in a very similar way as in the Gaussian noise

case [53].
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APPENDIX

A. Proof of Lemma 1

Proof: Suppose a filtered Poisson process Y :=
∑

i h[i]Xi, where Xi ∼ P(λ) and all (Xi)i are

independent. Assuming c ∈ R, τ1 < ∞, τ2 < +∞ and ‖h‖3 < +∞, Lévy’s continuity theorem shows

that
√
τ2λ

(
Y + c

τ2λ
− τ1
τ2

)
D−→

λ→+∞
N (0, 1) (26)

Then, by applying the Delta-method [54] with the function f(x) := sgn(x)
√
|x| and (26), Lemma 1

follows.

B. Proof of Proposition 1

Proof: Expand T (Y ) in the neighborhood of Y = µY , we obtain

T (Y ) = b
√
Y + c = b

√
µY + c+ b

1

2

Y − µY√
µY + c

− b
(Y − µY )2

8(µY + c)3/2
+ · · · +Rs (27)

where the Lagrangian form of the remainder Rs is given by

Rs := b
(−1)s−1(2s− 3)!!

2ss!

(Y − µY )s

(ξ + c)s−1/2
(s > 1) (28)

with ξ strictly between µY and Y . The following lemma gives an asymptotic bound on the expectation

of the remainder Rs.

Lemma 2 Consider Y :=
∑

i h[i]Xi a filtered Poisson process where h is a nonnegative FIR filter with

τ1 > 0. If s > 1 and c > 0, then E [|Rs|] = Oλ→+∞(λ−
s−1

2 ).

Proposition 1 results immediately from Lemma 2. Using (27) and (28), we can derive the Taylor expansion

of E [Z] about λ = +∞ up to order s = 3. Then, (3) follows from Lemma 2. (4) can be proved similarly.

(ii) can be easily verified, and the last statement (iii) follows from Lemma 1.

January 28, 2008 DRAFT



26

It remains to prove Lemma 2. We will make use of the Cramér-Chernoff inequality [55].

Lemma 3 (Cramér-Chernoff) Let (Xi)1≤i≤n be n i.i.d. real random variables. Consider the sum Sn :=
∑n

i=1Xi. Let M(t) := E

[
etX1

]
be the moment generating function (mgf) of X1 and define IX(x) :=

supt∈R(tx− logM(t)) for x ∈ R (IX is thus [0,+∞] valued). Then, we have for all n ≥ 1,

Pr(Sn ≤ nx) ≤ e−nIX(x), x ≤ E [X1]

IX(x) is strictly positive if x 6= E [X1]. It can also be shown that F (t) is concave and is strictly concave

if Xi is not almost surely a constant. Now, we have the following lemma,

Lemma 4 Consider a filtered Poisson process Y :=
∑n

i=1 h[i]Ui where Ui ∼ P(λ) are independent, and

h is a filter of length n with τ1 > 0. Then, for all c∗ ∈ (0, τ1/
√
τ2), there exists β > 0 depending only

on h and c∗ such that,

Pr (Y ≤ λ(τ1 − c∗
√
τ2)) ≤ e−λβ

Proof: Rewrite Y as follows:

Y :=
n∑

i=1

h[i]Ui =
n∑

i=1

h[i]

λ/a∑

j=1

Wi,j =

λ/a∑

j=1

n∑

i=1

h[i]Wi,j =

λ/a∑

j=1

Tj , Tj :=
n∑

i=1

h[i]Wi,j

where ∃ a > 0 such that λ/a ∈ N and Wi,j ∼ P(a) are i.i.d. Poisson variables. It can be noted that (Tj)j

are also i.i.d. variables. We will apply Lemma 3 on Y . First let us calculate IT (x) as follows:

IT (x) := sup
t∈R

(tx− logMT (t)) = sup
t∈R

(
tx−

n∑

i=1

a
(
eh[i]t − 1

))
(29)

where MT is the mgf of T1. We will evaluate IT (x) at x0 := a(τ1 − c∗
√
τ2) > 0. Since T1 is not almost

surely a constant, IT (x0) must be attained at a unique t0. Thus, setting x = x0, we take the derivative

of the sup argument in (29) and set it to zero, resulting in the equation necessarily satisfied by t0:

n∑

i=1

h[i]
(
1 − eh[i]t0

)
= c∗

√
τ2 (30)

IT (x0) is given by:

IT (x0) = aβ, β = t0(τ1 − c∗
√
τ2) −

n∑

i=1

(
eh[i]t0 − 1

)
(31)

Both (30) and (31) show that t0 and β depend only on h and c∗. We have in addition IT (x0) > 0, since

x0 < τ1a. We can now apply Lemma 3, giving:

Pr (Y ≤ x0λ/a) = Pr (Y ≤ λ(τ1 − c∗
√
τ2)) ≤ e−IT (x0)λ/a = e−λβ
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Now we are at the point to prove Lemma 2.

Proof: It can be seen from (28) that Rs satisfies:

|Rs| ≤ Bs :=
|b|
2s

|Y − µY |s
|ξ + c|s− 1

2

(32)

Denote µY := λτ1 and σY :=
√
λτ2. We have,

E [Bs] =

∫
1

(
y ≥ µY − c∗λ

1

2σY

)
Bs dPY +

∫
1

(
0 ≤ y < µY − c∗λ

1

2σY

)
Bs dPY

≤ |b|
2s

E [|Y − µY |s]
(µY − c∗λ

1

2σY + c)s− 1

2

+
|b|
2s

µs
Y

cs−
1

2

Pr (0 ≤ Y < λ(τ1 − c∗
√
τ2))

≤ |b|
2s

E [|Y − µY |s]
(λ(τ1 − c∗

√
τ2) + c)s− 1

2

+
|b|
2s

λsτ s
1

cs−
1

2

· e−λβ (33)

where there exists c∗ ∈ (0, τ1/
√
τ2) and the second term in (33) results from Lemma 4. Then,

(33) = E [|Y − µY |s] ·Oλ→+∞(λ−s+ 1

2 )

We will conclude by showing that M̃s := E [|Y − µY |s] = Oλ→+∞(λs/2). The moment Mn and the

cumulant κn of the centered random variable (Y − µY ) are related by:

Mn = κn +
n−2∑

p=2

Cp
n−1Mpκn−p (n ≥ 2) (34)

It can be shown by induction that Mn is a polynomial of κ2, · · · , κn, which has a minimal order 1

and a maximal order ⌊n/2⌋. The p-th cumulant of (Y − µY ) is κp = λτp for p ≥ 2. Therefore Mn =

Oλ→+∞(λ⌊n/2⌋). Consequently, M̃k satisfies:

M̃2k := E

[
|Y − µY |2k

]
= M2k = Oλ→+∞(λk)

M̃2k+1 := E

[
|Y − µY |2k+1

]
= E

[
|Y − µY |k|X − µY |k+1

]
≤M

1/2
2k M

1/2
2k+2 = Oλ→+∞(λ

2k+1

2 )

This shows that M̃s = Oλ→+∞(λs/2).

C. Proofs of Theorem 1 and 2

We will prove Theorem 1 below, and Theorem 2 can be proved in the same way.

Proof: Let Fj := [aj−1 + c(j−1), aj + c(j)]T and µj := [τ
(j−1)
1 , τ

(j)
1 ]T . Suppose τ

(j−1)
1 , τ

(j)
1 < ∞,

0 < τ
(j−1)
2 , τ

(j)
2 < +∞, and ‖h(j−1)‖3, ‖h(j)‖3 < +∞. Then Lévy’s continuity theorem results in

√
λ

(
Fj

λ
− µj

)
D−→

λ→+∞
N (0,Σj), Σj =




τ
(j−1)
2 〈h(j−1), h(j)〉

〈h(j−1), h(j)〉 τ
(j)
2


 (35)

Define g(x1, x2) := b(j−1)sgn(x1)
√
|x1| − b(j)sgn(x2)

√
|x2|. We obtain the desired result by applying

the multivariate Delta-method with the function g and (35).
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D. proof of Theorem 3

We will first need to prove Lemma 5. Given a Hibert space H with inner product 〈·, ·〉H and induced

norm ‖ · ‖H, we call a mapping V : H → H nonexpansive if for all x, y ∈ H, ‖V x − V y‖H ≤
‖x− y‖H. Suppose that a mapping V : H → H is nonexpansive and Fix(V ) 6= ∅. Then V is attracting

(w.r.t. Fix(V )) if for every x /∈ Fix(V ), y ∈ Fix(V ), we have ‖V x− y‖H < ‖x− y‖H. Properties of

nonexpansive and attracting mappings can be found in [56]. For a given set S ⊂ H, a mapping V : H → H
is η-strongly monotone over S if there exists η > 0 such that 〈V x− V y, x− y〉H ≥ η‖x− y‖2

H for all

x, y ∈ S. Let us point out that in our case, H is R
L.

Lemma 5 With the same notations as in Theorem 3, we have:

(a) S1, S2, S3 and CB are all closed convex nonempty sets;

(b) PS1
and PS3

are attracting, and Fix(PS1
) = S1 and Fix(PS3

) = S3;

(c) Fix(QS2
) = S2, and if W represents a tight frame and R is the pseudo-inverse operator, then QS2

is nonexpansive;

(d) If V1 is attracting, V2 is nonexpansive, and Fix(V1)∩Fix(V2) 6= ∅, then V := V1◦V2 is nonexpansive

with Fix(V ) = Fix(V1) ∩ Fix(V2).

Proof: (a) and (b) can be easily verified. (c) results from the fact that ‖W‖‖R‖ = 1 ([25]) and that

P+ is a projector (so nonexpansive). To prove (d), V can be easily verified to be nonexpansive. It is

obvious that Fix(V1) ∩ Fix(V2) ⊆ Fix(V1 ◦ V2). To prove the other inclusion, pick x ∈ Fix(V1 ◦ V2).

It is sufficient to show that x ∈ Fix(V2). Suppose that x /∈ Fix(V2), then necessarily V2x /∈ Fix(V1).

Now pick any y ∈ Fix(V1) ∩ Fix(V2). Since V1 is attracting, we have:

‖x− y‖H = ‖V1 ◦ V2x− y‖H < ‖V2x− y‖H = ‖V2x− V2y‖H ≤ ‖x− y‖H

which is absurd. Thus Fix(V1) ∩ Fix(V2) = Fix(V1 ◦ V2) = Fix(V ).

Let us now prove Theorem 3.

Proof: (i) can be easily verified. (ii) is a direct result of Lemma 5(d). To prove (iii), we note that

Jǫ is convex and ∇Jǫ(d)[i] = d[i](d[i]2 + ǫ)−1/2. It can be verified that ∇Jǫ(d) is ǫ−1/2-Lipschitzian

and ǫ(B2 + ǫ)−3/2-strongly monotone over TCB
(RN ). Then (iii) results from the convergence theorem of

HSD [43]. (iv) is obvious. To prove (v), we have for any convergent subsequence of d
∗
ǫ , say d

∗
ǫj

−→
ǫ→0+

d
∗
0,

that

∀d ∈ CB, J(d∗
ǫj

) =
N∑

i=1

|d∗ǫj
[i]| ≤

N∑

i=1

√
d∗ǫj

[i]2 + ǫj ≤
N∑

i=1

√
d[i]2 + ǫj (36)
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Then by taking the limit ǫ → 0+ on both sides of (36), we have ‖d∗
0‖1 ≤ ‖d‖1. d

∗
0 ∈ CB since CB is

closed. d
∗
0 is thus a solution to (19) with ǫ = 0, and hence also a solution to (18) by (i).
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