Wavelets Ridgelets and curvelets for poisson noise removal - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Image Processing Année : 2008

Wavelets Ridgelets and curvelets for poisson noise removal

Résumé

In order to denoise Poisson count data, we introduce a variance stabilizing transform (VST) applied on a filtered discrete Poisson process, yielding a near Gaussian process with asymptotic constant variance. This new transform, which can be deemed as an extension of the Anscombe transform to filtered data, is simple, fast, and efficient in (very) low-count situations. We combine this VST with the filter banks of wavelets, ridgelets and curvelets, leading to multiscale VSTs (MS-VSTs) and nonlinear decomposition schemes. By doing so, the noise-contaminated coefficients of these MS-VST-modified transforms are asymptotically normally distributed with known variances. A classical hypothesis-testing framework is adopted to detect the significant coefficients, and a sparsity-driven iterative scheme reconstructs properly the final estimate. A range of examples show the power of this MS-VST approach for recovering important structures of various morphologies in (very) low-count images. These results also demonstrate that the MS-VST approach is competitive relative to many existing denoising methods.
Fichier principal
Vignette du fichier
ITIP08.pdf (1.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00259509 , version 1 (06-03-2015)

Licence

Identifiants

Citer

Bo Zhang, Jalal M. Fadili, Jean-Luc Starck. Wavelets Ridgelets and curvelets for poisson noise removal. IEEE Transactions on Image Processing, 2008, 17 (7), pp.1093 - 1108. ⟨10.1109/TIP.2008.924386⟩. ⟨hal-00259509⟩
837 Consultations
893 Téléchargements

Altmetric

Partager

More