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ABSTRACT. This paper presents a probabilistic representation for 3D objects, and details the
mechanism of inferring the pose of real-world objects from vision. Our object model has the
form of a hierarchy of increasingly expressive 3D features, and represents 3D relations between
these probabilistically. Features at the bottom of the hierarchy are bound to local perceptions.
While we currently only use visual features, our method can in principle incorporate features
from diverse modalities within a coherent framework. Model instances are detected using a
Nonparametric Belief Propagation algorithm which propagates evidence through the hierarchy
to infer globally consistent poses for every feature of the model. We present an importance-
sampling mechanism for belief updates that is critical for efficient and precise propagation. We
finally present a series of pose estimation experiments on real objects, along with quantitative
performance evaluation.

RÉSUMÉ. Ce texte présente une représentation probabiliste pour objets 3D, et détaille le méca-
nisme d’inférence de pose d’objets réels à partir d’observations visuelles. Notre modèle d’objet
se présente comme une hiérarchie de caractéristiques 3D de plus en plus expressives, et repré-
sente de manière probabiliste les relations 3D entre ces dernières. Les caractéristiques au ni-
veau inférieur de la hiérarchie sont associées à des perceptions locales. Nous limitions l’usage
actuel aux caractéristiques visuelles ; cependant, le principe de notre méthode permet intrin-
sèquement d’incorporer des caractéristiques de diverses modalités au sein d’une même repré-
sentation. Les instances d’un modèle sont détectées à l’aide d’un algorithme de propagation
de croyances non-paramétrique, qui propage l’information observée au travers de la hiérarchie
pour inférer une pose globalement cohérente pour chaque caractéristique du modèle. Nous pré-
sentons un mécanisme de mise à jour de croyance par échantillonage par importance ; nous

1re soumission à International Cognitive Vision Workshop (ICVW) 2008, le 10/02/2008



2 1re soumission à International Cognitive Vision Workshop (ICVW) 2008

présentons également une série d’expérience d’estimation de pose d’objets réels, ainsi qu’une
évaluation quantitative des performances atteintes.

KEYWORDS: Computer vision, 3D object representation, pose estimation, Nonparametric Belief
Propagation.

MOTS-CLÉS : Vision par ordinateur, représentation d’objets 3D, estimation de pose, Nonparame-
tric Belief Propagation.
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1. Introduction

Representations of objects as configurations of parts have many potential advan-

tages. Part-based representations are more robust to occlusions and viewpoint changes

than global representations, and spatial configurations increase their expressiveness.

Moreover, they not only allow bottom-up inference of object parameters based on

features detected in images, but also top-down inference of image-space appearance

based on object parameters.

The advantages of visual part-based representations naturally extend to multi-

sensory cases. For example, haptic and proprioceptive information won’t relate to

an object as a whole. Instead, they typically emerge from specific grasps, on spe-

cific parts of the object. Part-based representation offer a neat way to locally encode

cross-modal descriptions that emphasise the relations bewteen the different types of

percepts.

We are currently developing a framework for object representation that combines

local appearance and 3D spatial relationships, along with mechanisms for unsuper-

vised learning and probabilistic inference of the model.

Our model has the form of a hierarchy. Features at the bottom of the hierarchy are

bound to local visual perceptions. Pairs of correlated features are iteratively grouped

into higher-level meta-features that encode probabilistic relative spatial relationships

between their children.

To detect instances of a model in a cluttered scene, evidence is propagated through-

out the hierarchy by probabilistic inference mechanisms, leading to one or more con-

sistent scene interpretations.

In previous work (Detry et al., 2007), we presented a learning method that con-

structs a hierarchy from a set of object observations. We also gave an overview of an

inference process that followed a straightforward Nonparametric Belief Propagation

scheme (Sudderth et al., 2003) and allowed pose recovery of artificial objects. In this

paper, we present in greater detail a significantly improved version of this inference

process, along with practical considerations. We added an importance-sampling (IS)

message product suggested in a similar form by Ihler et al. (Ihler et al., 2003), and

extended it to two-level IS sampling of implicit message products which is readily

applicable to pose estimation on real-world objects.

The features organized in the hierarchies are not specially restricted to one input

modality. We currently work with visual input only, but our model is intended to unite

different types of perceptual information, e.g. vision plus haptic and proprioceptive

inputs simultaneously. This will produce cross-modal descriptions and cross-modal

behaviors directly applicable to robotic tasks such as grasping and object manipu-

lation, as a grasp strategy may be linked directly to visual features that predict its

applicability.
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We emphasize that we are not developing an object classification framework. Ob-

ject classification is best achieved using discriminative models and presupposes the

presence of one object to be classified. Instead, we intend to develop object-centric
representations that allow detection and localisation of known objects within a highly

cluttered scene. Also, our representations lend themselves to applications other than

mere classification (e.g. manipulation).

2. Hierarchical Model

Our object model consists of a set of generic features organized in a hierarchy.

Features that form the bottom level of the hierarchy, referred to as primitive features,

are bound to visual observations. The rest of the features are meta-features which

embody spatial configurations of more elementary features, either meta or primitive.

Thus, a meta-feature incarnates the relative configuration of two features from a lower

level of the hierarchy.

A feature can intuitively be associated to a “part” of an object, i.e. a generic com-

ponent instantiated once or several times during a “mental reconstruction” of the ob-

ject. At the bottom of the hierarchy, primitive features correspond to local parts that

each may have many instances in the object. Climbing up the hierarchy, meta-features

correspond to increasingly complex parts defined in terms of constellations of lower

parts. Eventually, parts become complex enough to satisfactorily represent the whole

object.

At the bottom of the hierarchy, primitive features are tagged with an appearance

descriptor called a codebook vector. The set of all codebook vectors forms a codebook
that binds the object model to the feature observations, by associating observations to

primitive features.

Formally, the hierarchy is implemented using a Pairwise Markov Random Field.

Feature i is associated to a hidden variable xi, and the structure of the hierarchy is

reflected by the edge pattern between them. Each meta-feature is thus linked to its

two child features. Each primitive feature is also linked to an observed variable yi.

When a model is associated to a particular scene (during construction or instantia-

tion), features are associated to corresponding instances in that scene. The correspon-

dence between a feature i and its instances is represented by the random variable xi

defined over the pose space SE(3) = R
3 × SO(3).

As noted above, a meta-feature encodes the relationship between its two children.

However, the graph records this information in a slightly different but equivalent way:

instead of recording the relationship between the two child features, the graph records

the two relationships between the meta-feature and each of its children. The relation-

ship between a meta-feature i and one of its children j is parametrized by a compatibil-
ity potential function ψij(xi, xj) associated to the edge eij . A compatibility potential

specifies, for any given pair of poses of the features it links, the probability of finding
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that particular configuration for these two features. We only consider rigid-body re-

lationships. Moreover, relationships are relative spatial configurations. Compatibility

potentials can thus be represented by a probability density over the feature–to–feature

transformation space SE(3).

Finally, the statistical dependency between a hidden variable xi and its observed

variable yi is parametrized by an observation potential φi(xi), also referred to as

evidence for xi, which corresponds to the spatial distribution of xi’s observations.

3. Inference

Model instantiation is the process of detecting instances of an object model in a

scene. It provides pose densities for all features of the model, indicating where the

learned object is likely to be present. Instantiating a model in a scene amounts to

inferring posterior marginal densities for all features of the hierarchy.

The first step of inference is to define priors (observation potentials, evidence) for

all features (hidden nodes) of the model. For primitive features, evidence is estimated

from feature observations. Observations are classified according to the primitive fea-

ture codebook; for each primitive feature i, its observation potential φi(xi) is esti-

mated from observations that are (softly) associated to the ith codebook vector. For

meta-features, evidence is uniform.

Once priors have been defined, instantiation can be achieved by any applicable

inference algorithms. We currently use a Belief Propagation algorithm of which we

give a complete, top-down view below.

3.1. Belief Propagation

Belief Propagation (BP) (Pearl, 1988; Yedidia et al., 2002; Jordan et al., 2002) is

based on incremental updates of marginal probability estimates, referred to as beliefs.

The belief at feature i is denoted by

b(xi) ≈ p(xi|y) =

∫
...

∫
p(x1, ..., xN |y) dx1...dxi−1dxi+1...dxN

where y stands for the set of observations. During the execution of the algorithm,

messages are exchanged between neighboring features (hidden nodes). A message

that feature i sends to feature j is denoted by mij(xj), and contains feature i’s be-

lief about the state of feature j. In other words, mij(xj) is a real positive function

proportional to feature i’s belief about the plausibility of finding feature j in pose xj .

Messages are exchanged until all beliefs converge, i.e. until all messages that a node

receives predict a similar state.
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At any time during the execution of the algorithm, the current pose belief (or

marginal probability estimate) for feature i is the normalized product of the local evi-

dence and all incoming messages, as

bi(xi) =
1

Z
φi(xi)

∏
j∈neighbors(i)

mji(xi), [1]

where Z is a normalizing constant. To prepare a message for feature j, feature i starts

by computing a “local pose belief estimate”, as the product of the local evidence and

all incoming messages but the one that comes from j. This product is then multiplied

with the compatibility potential of i and j, and marginalized over xi. The complete

message expression is

mij(xj) =

∫
ψij(xi, xj)φi(xi)

∏
k∈neighbors(i)\j

mki(xi)dxi. [2]

As we see, the computation of a message doesn’t directly involve the complete local

belief [1]. In general, the explicit belief for each node is computed only once, after all

desirable messages have been exchanged.

When BP is finished, collected evidence has been propagated from primitive fea-

tures to the top of the hierarchy, permitting inference of marginal pose densities at

top-level features. Furthermore, regardless of the propagation scheme (message up-

date order), the iterative aspect of the message passing algorithm ensures that global

belief about the object pose – concentrated at the top nodes – has at some point been

propagated back down the hierarchy, reinforcing globally consistent evidence and per-

mitting the inference of occluded features. While there is no theoretical proof of BP

convergence for loopy graphs, empirical success has been demonstrated in many situ-

ations.

3.2. Nonparametric Representation

We opted for a nonparametric approach to probability density representation for

all entities of the model, i.e. random variable and functions of random variables,

including potentials, messages, and evidence. A density is simply represented by a set

of (possibly weighted) particles; the local density of these particles in a given region is

proportional to the actual probabilistic density in that region. The number of particles

supporting a density is fixed, and will be denoted by n. Whenever a density has to

be evaluated, traditional kernel density estimation methods can be used. Compared to

usual parametric approaches that involve a limited number of parametrized kernels, a

nonparametric approach eliminates problems like fitting of mixtures or the choice of a

number of components. Also, no assumption concerning the shape of the density has

to be made.

Figure 1 shows an example of a hierarchy for a traffic sign. Feature 2 is a primitive

feature that corresponds to a local black-white edge segment – the white looks green-

ish on the picture. The blue patch pattern in the φ2(x2) box is the non-parametric
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Figure 1. Example of a hierarchical model of a traffic sign.
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representation for the evidence distribution for feature 2. The blue patch pattern in

the x2 box is the non-parametric representation for the posterior density of x2, i.e. the

poses in which the traffic sign parts “feature 2” are likely to be found. Feature 4 is the

combination of primitive features 1 and 2. The red patch in the x4 box shows its in-

ferred pose in the scene. The ψ4,2(x4, x2) box shows the encoding of the relationship

between features 4 and 2; for a fixed pose for feature 4 (in red), it shows the likely

poses for feature 2 (in blue). The sign itself corresponds to feature 6, denoted by its

random variable x6. It is the composition of two features, one representing the central

“opening bridge” pattern and the corners of the inner triangle (feature 4), the other

representing the central pattern and the outer edges (feature 5).

3.3. Nonparametric Belief Propagation

For inference, we use a variant of BP, Nonparametric Belief Propagation (NBP), an

algorithm for BP message update in the particular case of continuous, non-Gaussian

potentials (Sudderth et al., 2003). The underlying method is an extension of particle

filtering; the representational approach is thus nonparametric and fits our model very

well.

NBP is easier to explain if we decompose the analytical message expression [2]

into two steps:

1) Computation of the local belief estimate

βts(xt) = φt(xt)
∏

i∈N(t)\s

mit(xt), [3]

2) Combination of βts with the compatibility function ψts, and marginalisation

over xt

mts(xs) =

∫
ψts(xt, xs)βts(xt)dxt. [4]

NBP forms a message by first sampling from the product [3] to collect a non-

parametric representation for βts(xt), it then samples from the integral [4] to collect a

non-parametric representation for mts(xs). These two operations are executed alter-

nately: transform local estimate to form a message, merge messages to form a local

estimate, etc...

Sampling from the message product [3] is conceptually straightforward. Using

Gaussian kernel density estimation, each factor (messages and evidence) can be rep-

resented by a weighted sum of n Gaussians. The product of a series of Gaussians is

also a Gaussian, and the parameters (mean, variance, weight) of the product Gaussian

can easily be computed from the parameters of the factor Gaussians. Hence, letting

d = (N(t) − 1) + 1 denote the number of factors in the product [3], βts(xt) can be

expressed as a weighted sum of nd Gaussians (Sudderth et al., 2003). A nonparamet-

ric representation for βts(xt) can thus be constructed by sampling from a mixture of
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nd Gaussians, which amounts to repetitively selecting one Gaussian at random and

taking a random sample from it. The computational cost of this exhaustive approach

is O(nd). Clearly, exhaustive product implementations will suffer from overly long

computation times.

The second phase of the NBP message construction computes an approximation

for the integral [4] by stochastic integration. Stochastic integration takes a series

of samples x̂
(i)
t from βts(xt), and propagates them to feature s by sampling from

ψts(x̂
(i)
t , xs) for each x̂

(i)
t . It would normally also be necessary to take into account

the marginal influence of ψts(xt, xs) on xt. In our case however, potentials only de-

pend on the difference between their arguments; the marginal influence is a constant

and can be ignored.

3.4. Importance Sampling

The computational bottleneck of NBP clearly lies in message products. Ihler et

al. explored multiple improvements over the exhaustive product (Ihler et al., 2003),

one of which is to sample from the product using Importance Sampling (IS). IS is

a technique for sampling from an unknown distribution p(x) by sampling a series

of examples x̂(ℓ) from a known distribution q(x) ideally similar to p. IS accounts

for the difference between the target distribution p and the proposal distribution q by

assigning to each sample a weight defined as

w(ℓ) =
p(x̂(ℓ))

q(x̂(ℓ))
.

To produce a sample of size n, one usually takes rn weighted examples from q, where

r > 1, and eventually resamples them to a size of n. The closer q is to p, the better

{x̂(ℓ)} will approximate p.

Sampling from a message product [4] with IS works by selecting one of the mes-

sages mut(xt) (or the evidence) as proposal distribution, the rest of the factors pro-

viding importance weights:

w(ℓ) =
φt(x̂

(ℓ)
t )

∏
i∈N(t)\smit(x̂

(ℓ)
t )

mut(x̂
(ℓ)
t )

= φt(x̂
(ℓ)
t )

∏
i∈N(t)\{s,u}

mit(x̂
(ℓ)
t ).

IS produces n samples from a product of d factors in O(rdn2) time. From here on,

we will consider that the number of neighbors a node may have is bounded and typi-

cally low, and ignore it in complexity statements. IS thus produces n samples from a

product of d factors in O(rn2) time.
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4. Efficient Importance Sampling of Message Products

The success of NBP inference highly depends on a sufficient density resolution,

i.e. having enough particles to support the different modes of potentials, local esti-

mates, and messages. Moving to more complex applications will generally require

an increase of n, which has a hard impact on computational time and memory needs.

This section presents a variant of the IS-based NBP algorithm that yields a significant

improvement of the inference power without any memory impact. Its computational

behavior is close to original IS-based NBP, with some interesting benefits.

4.1. Representational Constraints

As explained above, A message that feature i sends to feature j – denoted by

mij(xj) – contains feature i’s belief about the state of feature j. Feature i will often

possess a rather inaccurate local estimate, e.g. at the beginning of propagation when

each bottom feature receives observations from the whole scene surrounding an ob-

ject of interest. Additionally, even if a local estimate was exact, transforming it with

ψij will generate a large number of possible states for feature j, only a fraction of

which will eventually become confirmed by other messages incoming to j – the job of

message products precisely is to extract sections that overlap between incoming mes-

sages. Generating a message from local estimates can be pictured as an exploration

process, while merging messages together would be a confirmation/concentration pro-

cess. From these observations, it intuitively follows that one may achieve better per-

formance by increasing the resolution of messages only, leaving potentials and local

estimates at their initial resolution.

4.2. Implicit Messages

Let us now turn to the propagation equation [2], which we analytically decom-

posed into a multiplication [3] and an integration [4]. We explained that NBP imple-

ments BP by physically performing the same decomposition, i.e. computing explicit

nonparametric representations for messages and local estimates alternately. In this

section, we propose a somewhat different implementation, in which explicit represen-

tations are only computed for local estimates.

Let us assume we are in the process of constructing a nonparametric representation

for βts(xt), i.e. the local estimate of feature t that includes all incoming information

but that from s. In typical IS-based NBP, we first choose one incoming message

mut(xt) at random (u 6= s) as IS proposal density; then, we repetitively take a sample

x̂
(ℓ)
t from mut(xt) and compute its importance weight

w(ℓ) = φt(x̂
(ℓ)
t )

∏
i∈N(t)\{s,u}

mit(x̂
(ℓ)
t ). [5]
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One can notice though that neither of these two operations do actually need an explicit

expression for incoming messages. Producing x̂
(ℓ)
t from βut(xt) and ψut(xu, xt) is

straightforward. In turn, Expression [5] can be rewritten

w(ℓ) = φt(x̂
(ℓ)
t )

∏
i∈N(t)\{s,u}

∫
ψts(xi, x̂

(ℓ)
t )βit(xi)dxi. [6]

Evaluating each integral is achieved by sampling p times an example x̂
(k)
i from ei-

ther ψts(xi, x̂
(ℓ)
t ) or βit(xi), evaluating βit(x̂

(k)
i ) or ψts(x̂

(k)
i , x̂

(ℓ)
t ) respectively, and

taking the average over k.

The computational complexity of importance weight computation with explicit

messages [5] is O(n), because of linear iteration through all messages and evidence

which are of size n. The computational complexity with implicit messages [6] is

O(pn), because of p linear iterations through potentials or the local estimates. How-

ever, implicit messages effectively achieve the same resolution as explicit messages

would if these explicit messages were supported by pn particles, while keeping mem-
ory needs at O(n). Importance weight computation with implicit or explicit messages

are thus expected to display processing times of the same order, while the implicit

method will categorically require less memory.

4.3. Practical considerations

Ihler et al. draw a lot of attention towards kd-trees (Ihler et al., 2003), which pro-

vide logarithmic access to elements enclosed in a given region of R
k. We are less

enthusiastic about them, for several reasons.

1) They are expensive to build.

2) The population size s for which kd-trees become faster than linear search grows

as k grows. For k = 3, s is at least of the order of 1000. Moreover, our particle space

is SE(3), which includes the non-Euclidean subspace SO(3), making for even more

difficult search.

3) Computational details need to be kept in mind, too. For instance, n elements

may very well fit in processor cache, but pn may continuously trigger cache misses.

This of course is very dependant on the hardware, but it may motivate an implicit-

message implementation, instead of explicit messages [5] of size pn organized in a

kd-Tree.

4) Finally, kd-trees , and in particular the dual trees (Ihler et al., 2003), represent

a considerable implementation effort.

We intend to further investigate kd-trees in the near future, and expand the previous

points with experimental benchmarks.
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4.4. Two-Level Importance Sampling

One known weakness of IS-based NBP is that it cannot intrinsically concentrate its

attention on the modes of a product, which is an issue since individual messages often

present many irrelevant modes (Ihler et al., 2003). We overcome this problem with

a two-level IS: we first compute an intermediate representation for the product with

the procedure explained above, we then use this very representation as the proposal

distribution for a second IS that will be geared towards relevant modes. The inter-

mediate representation is obtained with sparse implicit messages (p ≪ n) but many

importance samples (r ≫ 1), while the second IS uses rich implicit messages (p ≈ n)

but a low value for r. Denoting by β∗
ts(xt) the intermediate product representation,

importance weights for the second IS are computed as

w(ℓ) =
φt(x̂

(ℓ)
t )

∏
i∈N(t)\smit(x̂

(ℓ)
t )

β∗
ts(x̂

(ℓ)
t )

.

In the equation above, messages are implicit.

The two-level IS described above and the high-resolution messages have been cru-

cial elements of the successful application to real-world object presented at Section

6.

5. Pose Estimation

Features at the top of an object model represent the whole object, and they will

present relatively concentrated densities that are unimodal if exactly one instance of

this object is present in the scene. These densities can be used to estimate the object

pose. Let us consider a model for a given object, and a pair of scenes where the object

appears. In the first scene, the object is in a reference pose. In the second scene, the

pose of the object is unknown. The application of our method to estimate the pose of

the object in the second scene goes as follows:

1) Instantiate the object model in the reference scene. For every top-level feature

i of the instantiated graph, compute a reference aggregate feature pose πi
1 from its

unimodal density.

This step is necessary because even though the top-level features all represent the

whole object, they come from different unsupervised recursive combinations of fea-

tures of various poses (Detry et al., 2007). Even though the object is in a reference

pose, top feature poses {πi
1} are not expected to be located at (0, 0, 0) or aligned with

(x,y, z), and are not expected to be equal.

2) Instantiate the object model in the unknown scene. For every top feature of that

graph, compute an aggregate feature pose πi
2.

3) For all top level features i, the transformations from πi
1 to πi

2 should be very

similar; let us denote the mean transformation by t. This transformation corresponds
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(a) Learning (b) Evaluation

Figure 2. Input imagery (only the left image in each stereo pair is presented). Effective
resolution is 1280 × 960 pixels.

to the rigid body motion between the pose of the object in the first scene and its pose

in the second scene. Since the first scene is a reference pose, t is the pose of the object

in the second scene.

A prominent aspect of this procedure is its ability to recover an object pose without ex-

plicit point-to-point correspondences. The estimated pose emerges from a negotiation

involving all available data.

To compute the pose of an object that appears once in a cluttered scene, Step

2 of the above procedure mentions calculating an aggregate pose for the “unimodal”

density of each top-level feature. While this unimodal hypothesis makes sense for very

simple cases, it may very well be incorrect in more complex situations. For example,

if an object very similar to the one we are searching for also appears in the scene, the

top densities should present a second, weaker mode. A second mode could also appear

when an object has some kind of symmetry, like the triangular traffic sign of Figure 2

that has similar appearances when rotated by 120˚ around its normal. Consequently,

instead of simple aggregation at top level features, we cluster each density to extract

its prominent mode.

6. Experiments

In this section, we demonstrate the applicability of our model with a series of pose

estimation experiments in various cluttered scenes. We chose to learn models for the

three objects presented at Figure 2(a). We then tried to estimate their poses in the

scenes of Figure 2(b).
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Figure 3. Examples of ECV representations, extracted from scenes of Figure 2.

Input 3D features for the bottom levels (primitive feature observations) are pro-

vided by an early-cognitive-vision (ECV) system (Krüger et al., 2005), which extracts

3D primitives from stereo views of a scene. The quality of such ECV representa-

tions varies as a function of local visual signal quality. Figure 3 illustrates the ECV

primitives for certain scenes of Figure 2.

Models for the three objects of Figure 2(a) were learned following the procedure

mentioned above (Detry et al., 2007). These models were learned from a clean view

of each object (the reference scene), for example from the ECV representation in the

first image of Figure 3. Each model has also been instantiated in its reference scene to

compute a reference aggregate feature pose πi
1 for every top feature i.

The three models were all instantiated in the test scenes of Figure 2(b), using

observations like these of Figure 3 as evidence. Evidence was propagated through

the hierarchy, and we eventually got top-feature pose densities. Looking closer at the

instantiation of one model in one scene, there are two cases to consider. First, the

model had no instance in the scene. The top-level densities were relatively uniform,

and the experiment was not needed to go any further. In the second case, an instance

was present. Its was then always verified that each top feature i did present a principal

mode πi
2. We could thus compute the transformations ti between πi

1 and πi
2 for every

top feature i. As noted in Section 5, all ti were very similar; we denote the mean

transformation by t, which corresponds to the estimated rigid body motion between

the pose of the object in the reference scene, and to its pose in the noisy scene.

We can evaluate the success of the experiment by transforming the reference scene

with t, and superimposing it to the test scene; if the experiment is successful, the object

of interest should overlap with its instance. Such evaluations are presented at Figure 4.

All the experiments that we ran ended with successful pose recovery. For traffic signs,

the worst estimate (Figure 4(d)) corresponds to the dead-end signal pose estimation

in the sixth scene of Figure 2(b) (second row, third column). This is however one of

the most difficult scenes: it has a brown background, thus changing the outside color

of ECV primitives on the traffic sign contours. This induces wrong associations of

observations to primitive features, and makes for harder inference. Estimation is still

quite accurate given the difficulty of the scene. Other typical estimates are presented

at Figure 4. In particular, 4(a) shows a good result despite occlusion.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Illustration of the pose estimation accuracy. Each picture shows in green a
scene that contains one object of interest and in red the pose of that object inferred by
our system.

The accuracy of probabilistic pose estimation highly depends on the representation

resolution. When an experiment lacks accuracy, retrying with more particles usually

produces better results. Therefore, a meaningful quantitative evaluation must take

into account the number of particles used. Figure 5 shows pose estimation error as

a function of the number of particles per density. Because of the probabilistic nature

of inference, runs with different software random seeds produces different results.

Therefore, we run each experiment several times and study the mean error, plotted in

red in the figure. The mean error decreases between 0 and 100 particles, and stabilizes

for higher resolutions. We also plotted one standard deviation above the mean error, in

dashed green. The error variance also decreases as the number of particles increases.

7. Conclusion

We presented an object representation framework that encodes probabilistic rela-

tions between 3D features. We discussed an Importance-Sampling–NBP inference

process and outlined practical details. The inference process, together with the learn-

ing scheme of our previous work (Detry et al., 2007), allow us to learn unsupervised

part representations for real objects and instantiate them in cluttered scenes. We are

thus able to achieve pose recovery without prior object models, and without explicit

point correspondences.

Our method can in principle incorporate features from more perceptual modalities

than vision. Our objective is to observe haptic and kinematic features that correlate
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Figure 5. Pose estimation accuracy as a function of the number of particles per den-
sity, for an instantiation of the opening-bridge traffic sign within the first scene of
Figure 2(b). Left and right plots correspond to location and orientation error re-
spectively. The red lines indicate the mean absolute error. The green and blue lines
indicate the variance across runs and across top-level nodes. Location error can be
compared to the traffic sign edge, which is 190mm long. See the text for details.

with successful grasps, and integrate them into the feature hierarchy. Then, given a

visual scene, grasp parameters can be suggested by probabilistic inference within the

feature hierarchy.
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