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Abstract 

The gas-phase reactions between Ni+(2D5/2) and aminoacetonitrile, a molecule of pre-

biological interest as possible precursor of glycine, have been investigated by means of mass 

spectrometry techniques. The MIKE spectrum reveals that the adduct ions [NC-CH2-NH2, 

Ni+] spontaneously decompose by loosing HCN, H2, and H2CNH, the loss of hydrogen 

cyanide being clearly dominant. The structures and bonding characteristics of the 

aminoacetonitrile-Ni+ complexes as well as the different stationary points of the 

corresponding potential energy surface (PES) have been theoretically studied by DFT 

calculations carried out at B3LYP/6-311G(d,p) level. A cyclic intermediate, in which Ni+ is 

bisligated to the cyano and the amino group, plays an important role in the unimolecular 

reactivity of these ions, because it is the precursor for the observed losses of HCN and 

H2CNH. In all mechanisms associated with the loss of H2, the metal acts as hydrogen carrier 

favoring the formation of the H2 molecule. The estimated bond dissociation energy of 
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aminoacetonitrile-Ni+ complexes (291 kJ/mol) is larger than those measured for other 

nitrogen bases such as pyridine or pyrimidine and only slightly smaller than that of adenine.   

 

 

 

Introduction: 

 The reactions between transition metal cations and organic or inorganic molecules have 

attracted a great deal of attention in the last two decades, because these processes are involved in 

a significant number of relevant processes in chemistry and biochemistry 1-4. Transition metals 

are generally present in the biological media as solvated ions or complexed by different kinds of 

peptides and proteins. They can also interact with other biomolecules such as nucleic acids 

including different effects that can vary from the stabilization of the helix to transcription 

failures.5-11 Metal cations may play also an important role in astrochemistry. In this case the 

interactions may take place strictly in the gas-phase or in the surface of dust particles or 

meteorites, but normally involve small molecules. Among them, aminoacetonitrile presents a 

particular interest as a precursor of glycine in astrochemical media. As a matter of fact glycine 

may be formed in meteorites12 through the interaction of ammonia , formaldehyde and hydrogen 

cyanide that produce aminoacetonitrile, which is then finally hydrolyzed to yield glycine. This 

process can be, however, perturbed by the interaction with metal cations, such as Ni+, which as 

shown in the present study destroy aminoacetonitrile by the loss of HCN. Also, some 

photochemical studies suggest that glycine can be formed in ices in the interstellar medium or 

cometary bodies13-16, as well. The spectroscopic characterization of this compound by means of 

infrared spectroscopy in Ar matrices was carried out recently.17 Several theoretical studies at 

different levels of accuracy on aminoacetonitrile, 17-19 have been also reported in the literature. 

However, very little is known about the intrinsic reactivity of this compound  and only very 

recently its gas-phase basicity has been measured by means of ion cyclotron resonance (ICR) 

techniques.20 We aim here at characterizing the reactivity of this interesting species with respect 
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to Ni+, a prototype of open-shell transition metal cation with a 3d9 (2D5/2) electronic ground state. 

The interplay between mass spectrometry techniques and density functional theory (DFT) 

calculations would allow to gain some understanding on the behavior and bonding of 

aminoacetonitrile-Ni+ that, in principle, may be useful to rationalize the behavior of more 

complicated systems which present similar basic sites.   

 

Experimental  

Synthesis Aminoacetonitrile has been prepared as recently reported.20  

Mass spectrometry: 

All experiments were carried out using a VG Analytical ZAB-HSQ hybrid mass 

spectrometer of BEqQ geometry which has been described in detail previously.21 Complexes 

were generated by the CI-FAB method.22-27 The CI-FAB source was constructed from VG 

Analytical EI/CI and FAB ion source parts with the same modifications described by Freas et 

al.22 The conventional FAB probe tip has been replaced by a nickel foil of high purity. 

“Naked” metal ions were generated by bombardment with fast xenon atoms (Xe gas 7-8 keV 

kinetic energy, 1-2 mA of emission current in the FAB gun). The organic samples were 

introduced via a probe in a non-heated source. We can assume that due to the relatively high 

pressure in that source (102-103 Pa), efficient collisional cooling of the generated ions takes 

place. Therefore we will consider that excited states of the Ni+ ions which could be formed in 

these experimental conditions are not likely to participate in the observed reactivity as already 

postulated by Hornung et al.26 The ion beam of the Ni+ adduct complexes formed with 

aminoacetonitrile were mass-selected (using an acceleration voltage of 8 kV) with the 

magnetic analyser B. The ionic products of unimolecular fragmentations, occurring in the 

second field-free (2nd FFR) region following the magnet, were analyzed by means of Mass-

analyzed Ion Kinetic Energy MIKE28,29 by scanning the electric sector E.  
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The CAD (Collision Activated Dissociation) experiments were carried out in the same fashion 

but introducing Argon in the cell as the collision gas. The pressure of argon in the collision 

cell was adjusted so that the main beam signal was reduced by approximately 30%. The 

spectra were recorded at a resolving power (R) of ~1000  

Computational details: 

All quantum chemistry calculations presented in this paper have been carried out with 

the B3LYP hybrid DFT method30,31 as implemented in the Gaussian03 series of programs.32 

The geometries of the different species under consideration were optimized using the all-

electron basis (14s9p5d/9s5p3d) of Wachters33 and Hay34 augmented by a set of f functions 

for Ni and the 6-311G** basis set for remaining atoms of the system. The same basis set 

expansion and method were used to calculate the harmonic vibrational frequencies, in order to 

classify the stationary points of the potential energy surface (PES) as local minima or 

transition states, and to evaluate the corresponding zero-point energies (ZPE), which were 

scaled by the empirical factor 0.9806.35 In all the cases, the <S2> expectation value showed 

that the spin contamination of the unrestricted wave function was always very small.   

The bonding characteristics, as well as the electron density redistributions triggered by 

Ni+ association were analyzed by means of the atoms in molecules (AIM) theory.36 For this 

purpose we have located the relevant bond critical points and evaluated the charge density at 

each of them. To perform the AIM analysis we have used the AIMPAC series of programs.37 

Also a second order perturbation method in the framework of the natural bond orbital (NBO) 

approach38 was used to evaluate the interactions between orbitals of the base and orbitals of 

the metal, involved in the dative bonds from the former to the latter and possible back 

donations from the latter to the former. Since all complexes are open-shell systems, the NBO 

analysis has to be carried out for both the α- and β-sets of MOs. However, for the sake of 

simplicity, hereafter we will provide only the information corresponding to orbital 
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interactions within the β-subset, because this is the subset that contains the 3d as well as the 

4s unoccupied orbitals. The α natural orbital set exhibits a similar behavior although in this 

case only the empty 4s orbital is within the subset.  

 

Results and discussion: 

Mass spectra 

The 58Ni+ ions react with neutral aminoacetonitrile to produce [58Ni-NCCH2NH2]+ 

adduct ions at m/z 114. The unimolecular decomposition of the [58Ni-NCCH2NH2]+ complex 

have been investigated by means of MIKE analysis to obtain information related to the 

structure and reactivity of this complex. The MIKE spectrum is shown in Figure1. The [Ni-

NCCH2NH2]+ ion undergoes fragmentation according to several disscociation pathways. The 

main fragmentation corresponds to loss of [H,C,N] to produce [Ni-C,H3,N]+ ion at m/z 87, the 

base peak of MIKE spectrum. This reactivity differs from that observed with alkanenitriles, 

for which loss of 27 daltons is not observed. As a matter of fact, previous studies have 

demonstrated that the unimolecular reactivity of Ni+/alkanenitrile complexes is characterized 

by loss of the intact ligand, and beginning with n-propyl cyanide, losses of H2 and alkenes. 39-

42 A dramatic increase of the two latter processes with the chain length has been noted. On the 

other hand, elimination of hydrogen cyanide has been reported for α- and β- unsaturated 

alkenenitriles.43 A second peak associated with loss of H2 is observed at m/z 112. Such a 

dehydrogenation process has been already observed for both alkanenitriles 39-41 and primary 

amines. 44-46 but its intensity is presently rather weak compared to what has been reported for 

primary amines. Another significant difference between the unimolecular reactivity of 

Ni+/aminoacetonitrile and Ni+/amine systems is the absence of elimination of nickel hydride 

NiH in the former case. To complete this survey, another two small peaks are also observed at 

m/z 113 and m/z 85. They correspond to the elimination of H. and [C,H3,N], respectively. 
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Ions at m/z 85 have been already observed in significant intensity on metastable spectra 

Ni+/alkenenitriles adducts 43, or more recently on the CID spectrum of electrospray-generated 

[Ni(NC-CH2-N3), -N2]+ complexes.47 Finally, it is worth noting that bare Ni+ cation is not 

observed under metastable conditions while it is the predominant process for short-length 

alkylnitriles. 41 

Under CAD conditions one can note in the resulting CAD spectrum displayed in Figure 

2, that the intensity of the peak corresponding to the loss of [H,C,N] increases showing that 

this decomposing channel is favored when energy is provided. Formation of m/z 85 and 87 

ions could correspond to elimination of methanimine and hydrogen cyanide, respectively. 

Since the ability of transition metal ions to be dicoordinated is well known, the competitive 

losses of neutral HCN and CH2NH might be probably arise from Ni+-bound heterodimers 

such as [HCN-Ni+-NH=CH2], which may undergo competitive dissociations leading to the 

two fragment ions at m/z 85 and m/z 87. 

We can also observe in this spectrum the presence of two minor ions at m/z 58 and 60. 

The first one corresponds to bare 58Ni+ generated by the elimination of the intact ligand. But, 

this process occurs at a very minor extent compared to monofunctional molecules such as 

nitriles and primary amines. The second one might be H2Ni+. However, formation of this 

particular ion has never been observed in previous studies, neither with amines nor with 

nitriles. This ion at m/z 60 could also correspond, at least to some extent, to 60Ni+. As a matter 

of fact, the observation of dehydrogenation in the metastable spectrum of the [58Ni-

NCCH2NH2]+ complex strongly suggests that the 58Ni-complex generated in the FAB source 

may interfere with the corresponding dehydrogenation product of the 60Ni complex, namely 

[60Ni-NCCH2NH2, -H2]+ , which in turn could give rise to bare 60Ni+ ion. Additional 

experiments such as MIKE and CAD spectrum of both m/z 112 and [60Ni-NCCH2NH2]+ 
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complex (m/z 116) could have raised the uncertainty about the structure of the m/z 60 ion, but 

could not be performed because of failure of our FAB instrument. However, complementary 

electrospray experiments performed by Dr. D. Schröder confirmed that NiH2
+ species is 

indeed generated. These spectra were recorded using a VG BIO-Q tandem QHQ mass 

spectrometer (Q stands for quadrupole and H for hexapole), which has been described 

elsewhere.48 1 mg of NiI2 was dissolved in 1 ml distilled water, then 50 µl of a 5% solution of 

freshly made H2NCH2CN in distilled water was added and the solution was measured, thus 

allowing ions of the type (H2NCH2CN)NiI+ to be generated. By adopting harsh ionization 

conditions, in-source loss of atomic iodine is observed, thereby allowing reduction of Ni(II) to 

Ni(I)49 and formation of [Ni-NCCH2NH2]+ complex. MS/MS spectra of this ion with either 

argon or xenon as collision gas exhibit a m/z 60 at elevated collision energy, undoubtedly 

attributed to NiH2
+, as hydrogen loss(es) is not observed with the QHQ intrument. Note that in 

sector experiments, hydrogen losses are often much preferred in detection.50 Finally, one may 

assume that Ni+-bound heterodimer such as [H2-Ni+-NH=CH-CN] could also be the 

precursor of both m/z 112 and m/z 60 ions.  

In order to assess the mechanisms behind the aforementioned experimental findings we 

have carried out a detailed study of the [aminoacetonitrile-Ni+] potential energy surface by 

means of DFT calculations. 

 

Coordination of Nickel+ 

The optimized geometries of the different conformers of Ni+-NCCH2NH2 and a 

selection of some structural parameters are shown in Figure 3. Total energies and Ni+ binding 

energies of all the structures (minima, transitions states and fragments) considered in this 

study are summarized in Table S1 of the supporting information. 
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Previous studies about the reactivity of transition-metal ions (and notably Ni+) with 

nitriles have suggested the co-existence of both ''end-on'' and "side-on" coordination 

modes.40,41,51 The first one corresponds to the interaction of the metallic center with the lone 

pair of the nitrogen of the cyano group in a linear M…N≡C arrangement (for monofunctional 

ligands) while the second one involves interaction with the π-system. Accordingly, two 

possible types of coordination have been considered: π-type interactions with the C≡N group 

which yields structures a and d (side-on), and σ-type interactions with the nitrogen lone pair 

of either the cyano or the amino groups, which leads to structures b and c, respectively (end-

on). The most stable conformer has been found to be the complex side-on a, which is 

stabilized through the interaction of the metal cation with the nitrogen lone pair of the amino 

group and also through a π-type interaction with the C≡N group. As a matter of fact, a second 

order NBO analysis shows both interactions to be rather strong, even though the former is 

stronger than the latter. As illustrated in Table 1, for complex a there are two empty sd-type 

hybrid orbitals on the metal which participate in the interaction with aminoacetonitrile. The 

first of these interactions corresponds to a dative bond from one of the C-N π-bonding orbitals 

toward the second empty hybrid of Ni, with a 53 % participation of the 4s orbital. The second 

one is another dative bond from the lone pair of the amine group nitrogen into the first empty 

hybrid on Ni, with a 39% 4s character. Both dative interactions are followed by a 

backdonation from 3d occupied orbitals of Ni towards πCN* antibonding orbital. The charge 

transfer from the πCN bonding and the population of the πCN* antibonding orbital is reflected 

in the lengthening of the bond (by 0.014 Å), as well as in a decrease of the charge density at 

the corresponding bond critical point (see Figure 4). The involvement of the amino lone-pair 

in the interaction with the metal cation results also in a significant lengthening (0.048 Å) of 

the C-NH2 bond and in a concomitant decrease of the charge density at the corresponding 

bond critical point. It is worth noting that, coherently with the NBO picture, the molecular 



 9

graph of complex a shows two bond paths with origin in Ni+, connecting the metal to the 

amino nitrogen and to the CN group, as well as the presence of a ring critical point.  

The second less stable complex b, which lies 18 kJ/mol above the global minimum a, 

corresponds to the end-on interaction of Ni+ with the cyano nitrogen lone pair. The NBO 

analysis shows the existence of a very strong interaction between this lone pair and a sd 

hybrid on Ni with a large s character (77%), followed by a backdonation from an occupied d 

orbital of Ni towards a πCN* antibonding orbital, which results in a slight lengthening of the 

CN bond (see Figure 3). The less stable complex d is that in which Ni+ only interacts with the 

CN group. The difference in energy with the complex a (70 kJ mol-1) gives a qualitative 

estimate of the extra-stabilization provided by the amino group. The NBO analysis indicates 

that both π- and σ-interactions take place (see Table 1) although the former are clearly 

dominant. As in the other complexes a backdonation from occupied 3d orbitals of the metal 

cation into the πCN* antibonding orbital also occurs. These interactions and the subsequent 

polarization of the C-C and the C-NH2 bonds result in a lengthening of both the CN and the 

CC bonds by 0.03 Å and 0.037 Å, respectively and in a shortening of the C-NH2 linkage by 

0.032 Å. The attachment of Ni+ to the amino group leads to structure c which is 33 kJ/mol 

less stable than the global minimum. In this case, only a dative bond from the amino nitrogen 

lone pair toward an empty sd hybrid on Ni, with a 53% of s character is found. As expected 

this involves a lengthening of the C-NH2 bond by 0.048 Å and a concomitant shortening of 

the C-C bond by 0.018 Å. 

 

Reactivity of the [Ni-NCCH2NH2]+ adducts 

As mentioned above, the MIKE and MIKE-CAD spectra of [58Ni-NCCH2NH2]+ shows 

different fragmentation processes, that we may attribute to loss of H2, HCN or CH2NH. The 
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loss of HCN and H2 being the dominant ones, we will concentrate our attention in these two 

processes in particular.  

As we shall discuss shortly, the different mechanisms associated with the two 

dominant unimolecular processes may have its origin not only in the global minimum but also 

in the other less stable aminoacetonitrile-Ni+ complexes. This is consistent with previous 

experimental studies dealing with the reactivity towards nitriles, which suggested that a single 

type of interaction could not account for all the fragmentration processes observed.40,43 

However, as shown in Figure 5 all of them are connected through rather small activation 

barriers, but more importantly, well below the entrance channel. The most stable structure a 

may evolve to complex b by a simple rotation of Ni in the plane molecule, through a barrier 

of 54 kJ/mol.  A rotation of the metal cation out of the plane of the molecule would connect a 

and d. The evolution from a to c, through an energy barrier of 45 kJ/mol, implies an internal 

rotation of the –NH2Ni group.  

HCN-Loss 

The observed loss of HCN dominates both the MIKE and CAD spectra and requires 

unavoidably a hydrogen shift towards the carbon atom of the CN group. This is possible from 

either the global minimum a or from the local minimum b. Both processes correspond to H-

transfer from the methylene group toward the carbon atom of the CN group leading to the 

cyclic minimum 2 (see Figure 6), where nickel is bisligated to the two nitrogen atoms. 

However, the process with origin in the global minimum a should be discarded because it 

involves an activation barrier which is not only above the entrance channel (See Figure 6), but 

also much higher than the barrier associated with the a → b isomerization.  

The most favorable process from the cyclic minimum 2 is an α-C-C bond insertion of 

the metal yielding minimum 3, which may eventually dissociate into HCN + [NiCH=NH2]+ or 

alternatively into [NiNCH]+ + HC-NH2, the former process being much more favorable from 
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the thermodynamic point of view than the latter, which is in agreement with the experimental 

finding that the dominant loss corresponds to HCN and not to [C,H3,N]. One may also 

consider the possibility of inverting the order of the processes, by inserting first the metal into 

the C-C bond and having the hydrogen shift as a second step. The global minimum a is a good 

starting point for such a mechanism due to the bridging position of the metal between the two 

basic sites of the aminoacetonitrile. In fact the insertion leads to the local minimum 1 through 

the transition state TSa_1. It can be noticed that the insertion is accompanied by an internal 

rotation of the C≡N group, because as soon as the CC bond cleaves, the interaction of the 

nitrogen atom of the CN fragment with the metal cation is very strong, reflecting its high 

intrinsic basicity. From minimum 1, two hydrogen shifts can be envisaged. The most 

favorable one, involving the TS1_3 transition state, involves a methylene hydrogen and leads 

also to structure 3, already found in the first mechanism discussed above with origin in the 

cyclic minimum 2.  The second possible hydrogen shift involves a amino hydrogen and leads 

to a very stable local minimum 4, which lies 172 kJ mol-1 below the most stable 

aminoacetonitrile-Ni+ adduct, a. As shown in Figure 6, minimum 4 could also be formed by a 

hydrogen shift from 3. Similarly to minimum 3, structure 4 would eventually dissociate either 

by losing HCN or [C,H3,N]. There is a difference however between both mechanisms as far as 

the loss of HCN is concerned. When dissociation originates in minimum 4, in the 

accompanying ion product, Ni+ is attached to the imino nitrogen of H2C=NH, while when the 

dissociation originates in minimum 3 it is attached to the carbon atom of HC-NH2. In 

summary, the observed loss of HCN can be associated with two different mechanisms with 

origin in adducts a and b, respectively, that lead to the same precursor 3 and which involved 

rather similar activation barriers. The alternative mechanisms for the loss of HCN have as 

precursor structure 4, but the activation barriers to reach this minimum are much higher than 
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those to yield 3, and therefore we may conclude that the majority of the [Ni, H3, C, N]+ 

product ions will be in the form of [NiCH=NH2]+ complexes.  

It is worth noting also that the loss of [C,H3,N] in the form of CH=NH2 is slightly 

endothermic, while the loss of CH2=NH is highly exothermic. Hence, very likely the observed 

[C,H3,N] loss comes mostly from the fragmentation of structure 4. It is also important to 

emphasize that according to our theoretical survey the [H,C,N,Ni]+ cation has always a 

HCNNi+ connectivity. Actually an ion with an H-Ni-CN structure lies much higher in energy.  

Some other mechanisms with origin in the local minimum 2 lead also to the loss of 

HCN (or the loss of H2), but they involve larger activation barriers than those discussed above 

(see Figure 1S of the supporting information).  

Some mechanisms leading to the loss of HNC instead of HCN have also been 

investigated. However, all hydrogen transfers either from the amino group or from the CH2 

toward the cyano group, involved activation barriers that were well above the entrance 

channel (51 and 101 kJ mol-1, respectively). Since these mechanisms are not likely to take 

place they have not been included in Figure 6. 

 

H2-Loss 

Many possibilities may be considered for the loss of H2.  In our survey we have 

analyzed a large number of processes, but for the sake of conciseness we are going to 

summarize the most favorable ones. As we shall show along this section, starting from 

complexes c or a, the exit channels are much lower in energy than the one mentioned above 

(see Figure 7). All these mechanisms have in common that the nickel atom acts as hydrogen 

carrier favoring the formation of the H2 molecule. In fact, starting from c, two pathways are 

opened, a hydrogen transfer from the amino group to nickel (through TSc_10) followed by a 

second H-transfer from the methylene group (through TS10-12), or a process where these two 
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steps are inverted, i.e., the first step is a H-transfer from the methylene group (through TSc_8) 

toward Ni, and the second one a H-transfer form the amino group (TS8_12). In both cases the 

same local minimum 12 is reached. As illustrated in Figure 7, the last possibility is clearly 

more favorable. Even though TS8_12 is slightly above the entrance channel by 26 kJ mol-1, 

this process can be observed because under the experimental conditions the local minima may 

have enough internal energy to overpass barriers slightly higher than the entrance channel. On 

the other hand, since the process corresponds to a H-transfer the existence of tunneling effects 

should not be discarded. Both situations would be consistent with the fact that the H2 loss is 

observed in much less proportion than the loss of HCN. Finally, note that we also considered 

a multi-center transition state (MCTS) for the 9 → 13 interconversion, since MCTS usually 

provide rather low-lying pathways. 52,53 However, it turned out that optimization of such a 

MCTS failed, because one of the hydrogen atom moves during the optimization process and 

the initial structure finally collapses back to the intermediate 9.  

The most stable adduct a may be also a precursor for the loss of H2, but as shown in 

Figure 7, the mechanism through the intermediates 9, 11 to reach 13, involves a quite high 

activation barrier associated with the 9 → 11 isomerization, and therefore should not compete 

with the mechanism with origin in adduct c and preliminary a → c interconversion.  

As a final remark, it is also worth noting that the estimated bond dissociation energy of  

aminoacetonitrile-Ni+ complexes (291 kJ/mol) is larger than those measured for other 

nitrogen bases such as pyridine (256 ± 15)9 or pyrimidine (244 ± 9)54 and only slightly 

smaller than that of adenine (297 ± 10)55, in which the metal ion also forms a chelate structure  

bridging between the N7 position of the imidazolic ring and the amino group.  

 

Conclusions  
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The MIKE spectra of [NC-CH2-NH2, Ni+] ions show that they spontaneously 

decompose by loosing HCN, H2, and [H3,C,N], the loss of hydrogen cyanide being clearly 

dominant. A survey of the corresponding potential energy surface, shows that the direct 

insertion of the metal cation into the C-C bond of the most stable adduct or the insertion 

through the cyclic intermediate 1, in which Ni+ is bisligated to the cyano and the amino group 

are the most favourable mechanisms leading to the observed losses of HCN and [H3,C,N]. 

The loss of CH=NH2 is predicted to be endothermic, while the loss of CH2=NH is clearly 

exothermic, so that we can safely conclude that the observed loss of [H3,C,N] corresponds 

mostly to CH2=NH. Our theoretical calculations also indicate that in the [H,C,N,Ni]+ 

accompanying ion, the metal is attached to the N atom of the HCN molecule.  In all the 

mechanisms associated with the loss of H2, the metal acts as hydrogen carrier favoring the 

formation of the H2 molecule. The topology of the PES also shows that the m/z 87 peak 

observed in both the MIKE and the CAD spectra corresponds exclusively to the loss of HCN, 

because the mechanisms associated with the loss of HNC involve activation barriers much 

higher in energy than the entrance channel.  
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Supporting information Total, zero-point energies (ZPE) and relative energies of the various 

structures considered are provided as supporting information, together with potential energy 

surfaces associated with alternate mechanisms leading to the ions observed experimentally. 
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Table 1. NBO analysis of aminoacetonitrile-Ni+ adducts showing the energiesa (kJ mol-1) 

associated with dative bonds from πCN bonding orbitals of the cyano group and from the 

nitrogen atoms lone pairs toward the empty orbitals of the metal. The last two rows report the 

percentage of the s and d character of the Ni+ empty hybrid orbital. This analysis corresponds 

to π spin-orbitals. 

Complex a b c d 

πC≡N   → LP* (1) (Ni) - - - 54.1 

πC≡N   → LP* (2) (Ni) 61.9 - - 18.1 

nN(≡C)  → LP* (1) (Ni) - 125.4 - 23.8 

nN(≡C)  → LP* (2) (Ni) - - - - 

nN      → LP*  (1) (Ni) 87.5 - 97.0 - 

nN      → LP*  (2) (Ni) - - - - 

ndNi   → π∗C≡N 69.0 23.0 - 62.2 

LP* (1) Ni 39% s, 61% d 77% s, 23% d 53% s, 47% d 93% s, 7% d 

LP* (2) Ni 53 % s, 47% 
d 97% s, 3% d 42 % s, 58 % 

d 1% s, 99% d 
 

a Only interaction energies larger than 8 kJ mol-1 are included  
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Figure Captions 

 

1. MIKE spectrum of  [58Ni-NCCH2NH2]+ ions. Mass to charge ratios of the fragment ions are 

deduced from the ratio of their kinetic energy to that of the precursor ion (m/z 114). 

2. CAD spectrum of [58Ni-NCCH2NH2]+ ions. Mass to charge ratios of the fragment ions are 

deduced from the ratio of their kinetic energy to that of the precursor ion (m/z 114). 

3. Optimized geometries of the aminoacetonitrile-Ni+ adducts. Bond lengths are in Å and 

bond angles in degrees. 

4. Molecular graphs of the aminoacetonitrile-Ni+ adducts. Red dots represent bond critical 

points and yellow dots ring critical points. Electron densities are in a.u. 

5. Isomerization barriers between the most stable aminoacetonitrile-Ni+ adduct a and the other 

aminoacetonitrile-Ni+ adducts. Relative energies are in kJ mol-1. 

6. Energy profile associated with the different mechanisms that lead to HCN and H2CNH 

losses in aminoacetonitrile-Ni+ gas-phase reactions. Energies relative to the most stable 

aminoacetonitrile-Ni+ adduct a are in kJ mol-1. 

7. Energy profile associated with the loss of H2 in aminoacetonitrile-Ni+ gas-phase reactions. 

Energies relative to the most stable aminoacetonitrile-Ni+ adduct a are in kJ mol-1. 
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