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Numerical Simulation of the Unsteady Cavitation Behavior
of an Inducer Blade Cascade

Olivier Coutier-Delgosha,∗ Yannick Courtot,† Florence Joussellin,‡ and Jean-Luc Reboud§

Institut National Polytechnique de Grenoble, 38041 Grenoble Cedex 9, France

One source of unsteadiness in turbopump inducers consists in a rotating cavitation behavior, characterized

by different cavity shapes on the different blades, which leads to super- or subsynchronous disturbances. This

phenomenon is simulated for the case of a simple two-dimensional blade cascade corresponding to a typical four-

blade inducer. A numerical model of unsteady cavitating flows was adapted to take into account nonmatching

connections and periodicity conditions. Single-channel and four-channel computations were performed, and in the

latter case, nonsymetrical unstable flow patterns were obtained. Limits of stability according to the mass flow rate

and the cavitation number are presented. Qualitative comparisons with experiments, instability criterion, and the

mechanisms of instabilities are also investigated.

Nomenclature

Amin = minimum speed of sound in the two-phase
mixture, m/s

C(Cm, Cu) = velocity vector in fixed frame, m/s
C p = dimensionless static pressure,

(p − pref)/(
1

2
ρU 2)

P = total pressure, P +
1

2
ρC2, Pa

P1, P2 = total pressure at inlet and outlet, Pa
p = local static pressure, Pa
pref, pvap = reference pressure (inlet pressure),

vapor pressure, Pa
p1, p2 = static pressure at inlet and outlet, Pa
r, Rc, R = inducer radius, radius corresponding

to the blade cascade, tip radius, m
S = nondimensional surface of a grid cell
Sflow = cross section of the blade-to-blade channel, m2

Tref = time corresponding to the passage of one blade
in the fixed frame, s

U = training velocity at inducer radius Rc, Rc�, m/s
W(Wm, Wu) = relative velocity vector, m/s
α = flow incidence at the blade leading edge, rad
αv = local void fraction
ρl , ρv, ρ = nondimensional density of the liquid,

of the vapor, of the mixture
ρref = reference density ρl

σ = cavitation number, (p1 − pvap)/(
1

2
ρU 2)

�, �ref = flow coefficient, Cm/(U ), and reference
flow coefficient
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�, �ref = head coefficient (P2 − P1)/(ρlU
2),

head coefficient at cavitation inception
� = inducer angular velocity, rad/s

I. Introduction

T O achieve operating at high rotational speed and low inlet pres-
sure, rocket engine turbopumps are generally equipped with an

axial inducer stage working in cavitating conditions (Fig. 1). Cavita-
tion develops on suction side of the blades and at inducer periphery
near the tip. Peripheral cavitation concerns all cavitating structures
that appear near the shroud casing at the inducer inlet, as back-
flow of the pump1 and cavitating tip vortices.2 The presence of va-
por induces disturbances that can result in substantial performance
losses. Moreover, when inlet pressure is decreased from cavitation
inception to breakdown of the pump, unsteady phenomena may
appear, associated with different blade cavitation patterns. Experi-
mental results point out two main types of cavitation instabilities:
a self-oscillation behavior of cavitation sheets, whose mechanism
was studied in cavitation tunnels and analyzed in detail by many
authors,3−5 and a rotating cavitation behavior, mainly observed in
inducers, which shows different sizes of cavitation structures in
the different blade-to-blade passages of the machine and leading to
super- or subsynchronous perturbations.

This last phenomenon strongly depends on the cavitation devel-
opment in the machine. A typical example is given in Fig. 2: At cav-
itation inception, only a steady and balanced flow pattern with one
short attached cavity on each blade is observed from flow visualiza-
tions. When the cavitation parameter is slightly decreased, a steady
and alternate cavitating configuration appears (only on four blade in-
ducers) with alternatively one short and one long cavity. For a lower
cavitation parameter,6 just above breakdown, an unsteady flow pat-
tern called rotating cavitation can be identified: Unbalanced attached
cavities are observed in the different channels, their distribution ro-
tating faster than the inducer,7,8 which leads to large radial loads on
the shaft.9 Finally, near the breakdown of the inducer, a steady and
balanced flow pattern with fully developed cavitation is observed.

These instabilities induce some strong radial forces that may per-
turb the rotor balance and important pressure fluctuations in the
lines. They must be quantified and controlled to avoid any major
effect on the global pump behavior.

Over the past few years, numerical models have been developed
to predict the cavitation instabilities in inducers. They are based on
stability analyses and linear approach and take into account the total
flow rate variations through a cavitating blade-to-blade channel,10,11

or calculate the flow around attached cavities.12,13 To improve the
understanding and the prediction capability of cavitation insta-
bilities, numerical and experimental analyses are carried out in
France through collaborations between the Laboratoire des Ecoule-
ments Géophysiques et Industriels, the Rocket Engine Division of
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a) Side view of the geometry b) Front view in cavitating conditions

Fig. 1 Rocket engine four-blade turbopump inducer.

Fig. 2 Cavitation patterns and performance evolution as the cavitation number decreases in four-blade inducer.7

SNECMA Moteurs and the French space agency Centre National
d’Etudes Spatiales. A two-dimensional model was developed14−16

to simulate unsteady cavitation phenomena in inducers, such as pul-
sating cavities or vapor cloud shedding. The liquid/vapor mixture is
considered in this model as a single fluid whose density varies from
the liquid density to the vapor density, with respect to the local static
pressure. The model has been validated on numerous cases, such as
venturi-type sections or hydrofoils in cavitation tunnels, and the
results demonstrated a good agreement with experiments. Its speci-
ficity is a reliable simulation of the cyclic behavior of self-oscillating
cavities.16,17

In the present paper, the numerical model is applied to the sim-
ulation of the other instability observed in inducers, namely, the
nonsymmetrical cavitation pattern. This first attempt is performed
in a two-dimensional blade cascade corresponding to a four-blade
inducer. The main objective was to take into account the interaction
phenomena between the different blade-to-blade passages and to
evaluate their effect on the unsteady behavior of the cavitation sheets
on each blade. We focus in the present study on the ability of the
numerical model to distinguish stable configurations from unstable
ones, with a special attention paid to the mechanisms of instabilities.

The computational domain is the blade-to-blade geometry, that
is, a (m, rθ) representation, where m is the meridian coordinate, r
the radius (here constant), and θ the revolution angle. The two-
dimensional blade-to-blade channels were drawn by cutting the
three-dimensional inducer geometry at constant radius Rc equal
to 80% of the tip radius R (Fig. 3). The computational grids of

the four channels must be identical to ensure a precise detection of
unstable cavitating behaviors. Indeed, different grids would induce
spurious numerical errors that could be held responsible for the ap-
pearance of instability in the flowfield. Unfortunately, this condition
cannot be imposed with a single mesh applied to the whole geom-
etry because of the orthogonality of the cells that is required by
the numerical model in the computational domain. Therefore, four
identical separate grids are used for the four channels with three
connections and one periodicity condition. It can be seen in Fig. 4
that it is quite impossible to obtain matching cells at these bound-
aries because of their curvature due to the high inclination of the
blades in the (m, rθ) representation. Therefore, a new method to
treat nonmatching boundaries is presented in this paper. It is based
on an interpolation technique that guarantees, through its integration
inside the algorithm, both mass and momentum conservation.

Computations were performed with different values of the cavita-
tion number σ , to point out stable or unstable cavitating flows. Our
present objective is to demonstrate the capability of the numerical
model to simulate the mechanisms of nonsymmetrical flow arrange-
ments. Results of the calculations are also compared to experimen-
tal observations performed previously at the Centre de Recherches
et d’Essais de Machines Hydrauliques de Grenoble (CREMHyG)
laboratory.

II. Physical Model

The cavitation model is based on a single-phase flow approach,
which assumes that only one fluid is considered.18 This fluid is
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Fig. 3 Passage from three-dimensional real geometry to blade cascade.

Fig. 4 Nonmatching cells at the connections.

characterized by a density ρ that varies in the computational do-
main with respect to a state law. When the density in a cell equals
the liquid density ρl , all of this cell is occupied by liquid, and if
it equals the vapor density ρv , the cell is full of vapor. Between
these two extreme values, the cell is occupied by a water/vapor
mixture that we still consider as one single fluid. The void fraction
αv = (ρ − ρl)/(ρv − ρl) can be defined as the local ratio of vapor
contained in this mixture. If the cell is full of vapor, then αv = 1.
However, if a cell is totally occupied by liquid, αv = 0.

Through this simple model, linking the void ratio αv to the state
law, we implicitly treat the fluxes between the phases, without the
supplementary assumptions required in the case of a two-phase
model.

With regard to the momentum fluxes, our model assumes that lo-
cally (in each cell) velocities are the same for liquid and for vapor:
In the mixture regions, gas structures are supposed to be perfectly
carried along by the main flow. (The friction forces are high, com-
pared to the buoyancy forces.) That hypothesis is often assessed for
this problem of sheet–cavity flows, in which the interface is con-
sidered to be in dynamic equilibrium.19,20 The momentum transfers
between the phases are, thus, directly linked to the mass transfers.

Vaporization and condensation processes are managed by a pos-
tulated barotropic state law that links the density to the local static
pressure. The fluid is supposed to be purely liquid or purely vapor
when the pressure is higher or lower than the vapor pressure, re-
spectively. The two cases are joined smoothly in the vapor-pressure
neighborhood. It results in the state law presented in Fig. 5, whose

Fig. 5 Barotropic state law ρ(P).

only parameter is the maximum slope 1/A2
min, where A2

min = ∂p/∂ρ.
Amin can, thus, be interpreted as the minimum speed of sound in the
mixture. Its calibration was performed in previous studies15,16 in the
case of unsteady self-oscillation behavior of sheet cavitation. The
optimal value was found to be independent of the hydrodynamic
conditions and is about 2 m/s for cold water, with pvap = 0.023 bar,
and corresponds to 	pvap ≈ 0.06 bar (Fig. 5). The use of this state
law implies that no delay to vaporization or condensation can be
considered: Density directly depends on the pressure. Nevertheless,
other models including this physical feature20 have been also imple-
mented and tested. If the vaporization/condensation terms are cor-
rectly tuned, that is, the delay parameters are optimized, then very
similar results are obtained. In the present case, we try to simulate

3



large-scale fluctuations of the whole cavitation sheets attached to the
blades. To obtain numerically smooth cavities, we use a nondimen-
sional ratio Amin/(Rc�) of 0.1. Rotation speed corresponding to a
celerity of sound of 2 m/s is then lower than the experimental value.

The main numerical problem of our single-fluid approach re-
sults from the difficulty to manage different flow behaviors:
incompressible flow in the areas containing pure liquid or pure vapor
and a highly compressible flow in the areas of transition between
liquid and vapor.

III. Numerical Model

To solve the time-dependant Reynolds-averaged Navier–Stokes
equations associated with the barotropic state law presented ear-
lier, the numerical code applies the SIMPLE algorithm on two-
dimensional structured curvilinear–orthogonal meshes, with modi-
fications to take into account the cavitation process. The details of
the numerical resolution were presented by Coutier-Delgosha et al.16

It is based on an implicit method for the time discretization, and the
HLPA nonoscillatory, second-order convection scheme proposed by
Zhu.21 A complete validation of the method was performed, and the
influence of the numerical parameters was widely investigated. The
results are reported in Ref. 16.

A standard k–epsilon RNG model of turbulence is used. This
model does not allow any simulation of the self-oscillation behavior
of sheet cavitation, as reported by Coutier-Delgosha et al.22 The
effects of the two-phase mixture compressibility on the turbulence
structure must be taken into account to simulate this phenomenon
correctly. A modification of the standard model was proposed in
Refs. 15 and 16 to solve this problem efficiently. In the present
study, only the rotating cavitation pattern is investigated. This is a
first attempt to predict numerically the cavitating coupling between
the channels, and so the interaction of its mechanisms with the
self-oscillation of each cavity is not suitable. Thus, the standard
turbulence model is applied.

a)

b)

Fig. 6 Information transfer between segments 1 and 2 in case of

a) matching and b) nonmatching boundaries.

IV. Connection of Nonmatching Boundaries

The boundary condition setting is based on two rows of dummy
cells generated around the computational domain. Connections or
periodicity conditions between two frontiers are obtained by trans-
ferring variables from inner cells to dummy cells. In matching
boundary cases (identical grids on the two sides of the frontier,
Fig. 6a), no interpolation is necessary, and the procedure involves
no supplementary numerical error. In nonmatching boundary cases
(Fig. 6b), special care must be paid to constrict the errors introduced
by the interpolations and to respect the conservative character of the
resolution. Indeed, the spurious generation of mass or momentum
inside the domain, through connections or periodicities, would be
very prejudicial to the rate of convergence.

We present here the general features of the process indicated in
Fig. 6b. It consists in transferring the information from rows A1
and A2 to rows B1 and B2 and from rows A′1 and A′2 to rows B′1
and B′2.

A. Geometry of Dummy Cells

In the case of connections or periodicity conditions, the shape
of the dummy cells is of first importance because their width, their
length, and their curvature strongly affect the computation. Any
geometrical difference between the dummy cells and the inner cor-
responding ones would enhance the numerical errors by creating
some spurious mass and momentum flow rates. Therefore, these
cells must be as similar as possible to the cells of the original cor-
responding row.

Fig. 7 Density transfer.

a)

b)

Fig. 8 Transfer of the velocity component v: a) updated velocities v in

the dummy cells and b) alternate conservation of mass and momentum.
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B. Interpolations of Variables

All variables are transported from the computational domain to
the dummy cells, that is, from A rows to B rows, through inter-
polations. The kind of interpolation depends on the transmitted
variable. The transfer aims to ensure the conservation of both mass
and momentum. In other words, the mass quantity passing through
one of the two frontiers must be as close as possible to the mass
quantity passing through the second one. The same conditions are
required for the momentum fluxes.

1) The velocity component u (tangential to the frontier) and the
pressure P are linearly interpolated.

2) The density ρ is transmitted so that the quantity of mass ρS
in each cell of the final row equals the sum of quantities ρi Si in the
cells or part of cells of the original row (Fig. 7).

Fig. 9 Boundary conditions for a single-channel computation.

a) General view b) Details around blade

leading edge

Fig. 10 Mesh of a single channel.

Fig. 11 Predicted cavitating flow in inducer blade-to-blade channel (σ = 0.1, nominal flow rate).

3) The transmission of the velocity component v (normal to the
frontier) is a little more complex because it must satisfy the conser-
vation of both mass and momentum. Because staggered grids are
used, v is not located at the center of the cells, but on their northern
and southern frontiers. As can be seen in Fig. 8a, v is transmitted
from lines 3′, 4′ to lines 1′, 2′ and from lines 1, 2, 3 to lines 4, 5, 6.
Note that v is calculated only on one of the two frontiers, here on line
1, and the result is transmitted to the other one, line 4. The procedure
guarantees the equality of fluxes on these two lines, without altering
the convergence rate. Unfortunately, mass and momentum conser-
vations cannot be both obtained with only one variable v. To solve
this problem, we took advantage of the specificity of the pressure
correction algorithm, which is based on two separated resolutions
of momentum and continuity equations.

C. Integration in the Algorithm

The velocities must be transmitted each time they are modified
inside the computational domain, that is, two times per iteration:
after the resolution of the momentum equations (step 1) and after
the velocity correction involved in the pressure–correction method
(step 2).

We considered that the first step was based on equilibrium be-
tween the momentum fluxes and the pressure gradients. Thus, the
equality of the momentum fluxes on the connected frontiers must be
verified during this step, and a B transfer (Fig. 8b) is performed just
before. However, the second step is based on equilibrium between
mass fluxes. These have to be equal on the two frontiers during this
step, and an A transfer is performed immediately before.

V. Application to a Two-Dimensional Blade Cascade

The numerical model presented was applied to the calculation
of the cavitating behavior of a four-blade cascade representing a
complete rocket engine turbopump inducer. The objective was the
simulation of the four sheets of cavitation attached to the blades and
their unsteady coupled behavior.

A. Single Channel Computation

First only one blade-to-blade channel was considered. The uni-
form flow velocity imposed at the mesh inlet is deduced from the
flow rate, and a periodicity condition is applied between the two
sides of the channel (Fig. 9), according to the procedure presented
in the preceding section. A uniform static pressure is imposed at
the domain outlet, far enough from the trailing edge to avoid any
influence of the boundary condition on the pressure field around the
blade. Possible effects of the lines upstream and downstream from
the inducer on its cavitating behavior are not taken into account in
this approach.

A 190 × 30 structured mesh is used (Fig. 10). A special contrac-
tion of the grid is applied in the expected cavitating areas, that is,
around the leading edge in the axial direction and on the suction side
of the blade in the transverse direction. Along the solid boundaries,
the k–ε turbulence model is associated with standard laws of the
wall, and so a grid contraction is applied on both sides of the blade
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to constrict y+ at the first grid point between 35 and 120 for the
Reynolds value used. The study of the influence of the Reynolds
number would need a remeshing near the blades surfaces and was
not performed for that first application.

To characterize the flow around the blade, a slow decrease of the
cavitation number is simulated. First, a stationary step is performed,
which imposes the reference flow rate and an outlet static pressure
high enough to avoid any presence of vapor in all of the compu-
tational domain. During the following time steps, this pressure is
decreased progressively, and vapor appears on the blade suction
side. Large time steps (	t = 0.1Tref) are imposed during that slow
transient, to minimize the time-dependent terms in the equations and
to obtain quasi-steady flowfields. Figure 11 shows the flow charac-
teristics obtained for a cavitation number equal to 0.1. It can be
seen that the shape of the sheet of cavitation is directly governed
by the pressure field. The obstruction generated by the cavity in
the flow also clearly appears on the streamlines representation. This
obstruction increases when the cavitation number is still lowered,
and it finally results in the drop of the blade performance, that is, an
increase of the pressure inlet in the present case.

The entire behavior is recapitulated in Fig. 12, which shows the
evolution of the blade performance as the cavitation number is low-
ered from initial noncavitating conditions down to the final per-
formance drop. It consists successively in a quite stable evolution
(for σ > 0.2), a first pronounced drop at σ = 0.2, and then a sudden
increase of the head (σ = 0.1) just before the final blockage.

Although a large time step was used, the chart strongly fluctuates,
which indicates that the cavitating flow is fundamentally unstable.
Moreover, some numerical instability is observed when reaching the

Fig. 12 Single-channel computation; cavitation characteristic of the

cascade at φ=φref and associated length of the attached cavity (ratio

5:1 between horizontal and vertical scales).

Fig. 13 Evolution of the relative velocity W on blade suction side when cavitation number is decreased.

final head drop: The flow rate is imposed strictly at the inlet and the
cavitation blockage is, thus, especially abrupt. The simulation was
also performed with 	t = 0.025Tref and 	t = 0.4Tref to investigate
the influence of the time step. The more 	t is decreased, the more
the sheet of cavitation fluctuates, but no noticeable difference can be
observed for the mean performance evolution. The influence of the
mesh on this mean performance was also tested23 with a finer grid
composed of 220 × 35 cells, and less than 2% of difference with the
standard grid was obtained in cavitating conditions (σ < 0.4).

The decrease/reincrease of the performance (0.025 < σ < 0.1)

was more closely investigated, to understand the mechanisms of
this surprising behavior. Observation of the velocity fields indicates
that this phenomenon is due the interaction between the attached
sheet cavitation and the boundary layer on the blade: Figure 13
shows the modifications due to cavitation of the relative veloc-
ity W on the suction side of the blade. Velocities are reported
in two sections located at midchord and at the trailing edge, re-
spectively. Because of the blade orientation, the variations of W

are almost consistent with the evolution of the tangential relative
velocity Wu .

The curves corresponding to σ = 0.12 show a diminution of W

inside the boundary layer, and an increase of W outside, compared
with very low cavitating conditions (σ = 0.4). The predominant ef-
fect at this stage is the increase of W in the main part of the section,
which leads to the progressive decrease of the blade performance.
For σ = 0.08, an opposite effect appears at midchord: W is increas-
ing inside the boundary layer, while decreasing outside. Neverthe-
less, this effect is not strong enough to propagate to the trailing edge,
where W is still globally increasing, which explains the important
drop of the performance. For σ = 0.024, it can be observed that the
earlier effect has propagated all along the blade, and it was also
amplified: W has much decreased in the major part of the sections
(leading to a better pressure rise), although it notably increased close
to the blade.

The progressive growth of the sheet of cavitation is responsi-
ble for these variations of W. Figure 14a shows a scheme of this
mechanism in the case of two consecutive blades, instead of the
present periodicity condition. As σ is lowered, the cavity width ex-
pands and the fluid at the blade leading edge is pushed upstream.
This fluid is then moved by a part of the main flow toward the
bottom of the channel and highly accelerated. It induces a jet ef-
fect on the suction side of the adjacent blade, which constricts
the boundary layer closer to the blade. The result is an increase of
the velocity close to the wall and a decrease in the other part of the
section.

When σ still decreases (Fig. 14b), this effect disappears because
of the obstruction generated by the cavity: This explains the final
performance drop.
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B. Four-Blade Cascade Computation: Steady Behavior

Time-accurate computations are performed on the four-blade
mesh composed of four connected earlier grids, that is, 28,000 cells.
The periodicity condition is then applied between the fourth and first
channels, as in the real runner. The time step was chosen to put em-
phasis on the investigation of the low-frequency fluctuations of the
attached cavity, without being perturbed by the local unsteadiness
in each cavitation sheet wake (cloud shedding): therefore, it is fixed
equal to 1% of the blade passage time Tref. Thus, the self-oscillation
behavior of the cavities is not simulated. Successive time-accurate
computations are performed at fixed cavitation number and nominal
flow rate coefficient.

First cases with quite high cavitation number (σ ≈ 0.175) lead
to stable and symmetrical small cavities attached on each blade
(Fig. 15a). The coupling between the four channels does not gener-
ate in that case any supplementary unsteady effect: The four cavities
remain identical, and their shape becomes constant in time after the
initial transient, as in the single-channel computation. This behav-
ior is shown in Fig. 15b, which presents the time evolution of the
cavity in the first channel: It completely stabilizes after the ini-
tial fluctuations. (This transient from t/Tref = 0 to 10 corresponds
to the growing of the attached cavity from the noncavitating ini-
tial condition.) Figure 16 shows only small oscillations in the mass
flow rate through each passage. Therefore, in this configuration the
four-channel coupling has only a very small effect on the cavitation
unsteady behavior.

C. Four-Blade Cascade Computation: Unsteady Behavior

When the cavity length is increased (σ = 0.15), an unsteady con-
figuration spontaneously appears. Figures 17 and 18 show that the

a) Increase for 0.03 < σ < 0.08 b) Final drop for σ < 0.02

Fig. 14 Origin of performance variations.

a) b)

Fig. 15 Multiple channels computations: cavitation behavior at φ=φref and σ ≈ 0.1: a) cavitation pattern at t = 50tref and t = 70tref and b) time

evolution of cavity length in the first channel, with time reported in abscissa, and X position in the tunnel of cavitation graduated in ordinate.

cavities are then different on the successive blades: three large cav-
ities and a little cavity are simulteously obtained. This unbalanced
cavitating structure propagates from blade to blade in time. That
phenomenon takes place spontaneously, only from the very small
perturbations due to numerical errors of truncation.

Figure 19 shows the repartition of the mass flow rate in the cas-
cade. After the initial transient, periodic fluctuations take place with
different phases in the four channels. Their amplitude increases
when the cavitation number is slightly decreased from 0.15 to 0.135.
Visual observation (Fig. 17) and a fast Fourier transform analysis
of cavity length fluctuations signal (Fig. 20) show that in the stator
frame the phenomenon is about 50% faster than the inducer rotation
speed. As observed in the experiments, this value slightly decreases
with cavitation parameter. However, the numerical frequencies of
that supersynchronous phenomenon remain about 25% larger than
experimental values, as already observed in analytical models by
Tsujimoto et al.10 and Joussellin and de Bernardi.11

For a lower cavitation parameter (σ = 0.08), a stable configura-
tion appears (Fig. 21), with alternate long and short cavities on the
blades and different flow rates in the successive channels. Such a
configuration is observed experimentally but at a cavitation number
higher than the supersynchronous range (Fig. 2).

Figure 22 shows the cavitating performance computed by aver-
aging the head coefficient obtained with the four-channel simula-
tions at fixed cavitation number and nominal flow rate coefficient
(points △). In the whole range of nonsymmetrical sheets of cavi-
tation, the head coefficient is larger than the one obtained from the
single-channel computation: the hollow in the chart is considerably
reduced. This means that these special patterns of the flowfield (ro-
tating supersynchronous cavitation and alternate cavitation) result
in a diminution of the averaged losses in the blade cascade.

This effect can be interpreted on the basis of the analysis per-
formed earlier in the case of the single-blade calculation. Indeed,
rotating and alternate cavitation lead to the enlargement of some
of the sheets of cavitation, compared to the stable configuration.
The growth of these cavities pushes the fluid upstream at the lead-
ing edge. This fluid is then accelerated by the incoming flow, which
results in the jet effect observed on the blade suction side in the adja-
cent channel (Sec. V.A). Thus, the flow in this channel is accelerated
in the boundary layer, and decelerated above, which globally boosts
the performance of the cascade. Nonsymmetrical flow patterns can,
thus, be considered as a self-adaptation of the flow to reduce the
losses in the blade-to-blade channels.

On the other hand, the final head drop is reached at higher σ

because of the lack of symmetry: The biggest of the cavities are
larger than the one obtained in the case of a single-grid computation
at the same cavitation number.

D. Comparison with Experiments

Quantitative comparison between the three-dimensional inducer
and the two-dimensional blade cascade is not directly available
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because of three-dimensional effects and the variation of the hub-to-
shroud ratio that is not taken into account. However, computations
were performed at different operating conditions, by the varying of
the cavitation number and the flow coefficient between 0.9�ref and
1.2�ref. The results are compared to experimental data in a qualita-
tive way. The performance charts obtained are given in Fig. 23 with
the limits of all nonsymmetrical flow arrangements, that is, rotating
cavitation and alternate blade cavitation. For each flow rate, these
limits are defined by two extreme values on a σ scale, respectively
σ+ and σ−.

In all cases, the final head drop is predicted by the model at
a too high σ with respect to the experimental value (0.06 in-
stead of 0.02). The cavitation parameter range of rotating cavitation
	σ = (σ+ − σ−) increases when the flow rate coefficient decreases.
That result agrees with experimental observations performed by
Pagnier et al.8 and Yokata et al.1

At reference flow coefficient φref, the experimental range of non-
symmetrical flow configurations is about 	σexp = 0.07 (Fig. 2). Nu-
merical results of 	σ are plotted with respect to the flow rate co-
efficient in Table 1: The comparison shows that the experimental
range corresponds to the numerical result at φ/φref between 1 and
1.05. That result can be explained qualitatively by an important
difference in inlet conditions between experiments and the numeri-
cal prediction: In the experiments, a partial obstruction of the inlet
section due to a backflow area in the vicinity of the casing is ob-
served. This particular flow pattern is shown in Fig. 24 (see Ref. 24),
with Sflow indicating a whole cross section, Sback the size of the
backflow, and Scav the area occupied by cavitation near the shroud.

Table 1 Instability range vs flow coefficient

φ/φref 	σ

0.90 0.16
0.95 0.125
1.0 0.08
1.05 0.065
1.1 0.04
1.2 0

Fig. 16 Mass flow rate repartition in the four channels; σ = 0.175.

Fig. 17 Cavitation behavior at φ=φref and σ = 0.15.

This phenomenon is not taken into account in the present simula-
tions, which modifies the cascade inlet condition: In experiments
at nominal flow rate the obstruction leads to a higher component
Cm of the velocity than in the simulation. For a higher simulated
flow rate, inlet conditions are recovered, and 	σ is consistent with
	σexp.

A comparison between the experimental breakdown chart at
nominal flow rate and the one obtained by the four-channel com-
putation is presented in Fig. 25. Although the present model,
mainly because of the passage from three dimensional to two
dimensional, cannot precisely quantify the location of break-
down and instability, a general correct agreement is obtained with
experiments.

E. Instability Criterion

The evolution of the instability range according to the mass flow
rate was investigated, to improve the understanding of the mecha-
nisms that govern the onset and the conclusion of nonsymmetrical
flow pattern.

Noted in Fig. 23 that the ending of instability occurs just at the
beginning of the final drop of the cascade performance. Indeed,
it has already been said (Sec. V.A) that this drop was due to the
obstruction of the blade-to-blade channels by the sheets of cavita-
tion. Thus, a critical size of the cavities could be directly respon-
sible for the conclusion of the alternate blade cavitation. This as-
sumption is confirmed in Fig. 26a, which presents the same six
head drop charts as functions of the classical parameter σ/2α,
which is usually considered as the key parameter to determine the

Fig. 18 Cavity length evolution on the four blades: amplification of the

unsteady coupling and phase shift (σ = 0.15).
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a) σ = 0.15 b) σ = 0.135

Fig. 19 Flow rate repartition in the four channels; φ=φref.

Fig. 20 Spectral analysis of the cavity fluctuations in the static frame.

Fig. 21 Flow rate repartition in the four channels; φ=φref, σ = 0.08.

Fig. 22 Cavitation characteristic of the cascade: comparison between

single-channel and four-channels computations; φ=φref.

length of the cavity in a given configuration. For all of the mass
flow rates, instability vanishes for σ/2α ≈ 0.5/0.6. This value is
fully consistent with the criterion obtained by Tsujimoto et al.25

in the case of experimental results obtained with a three-blade
inducer.

With regard to the onset of instability, this criterion cannot be
applied, as can be seen in Fig. 26a. Indeed, according to the model,
rotating cavitation appears earlier, that is, for a smaller length of

Fig. 23 Effect of the flow rate on the cavitation characteristic and on

the instability range: ——, limit of nonsymmetrical arrangements and

, experimental instability range Φ = Φref.

a) b)

Fig. 24 Inducer inlet backflow24: a) scheme of backflow area upstream

from the blades and b) corresponding axial view of the inducer inlet.

Fig. 25 Comparison between the experimental performance chart and

the result of the four-channel computation at nominal flow coefficient.

cavitation sheets, when the mass flow rate decreases. This effect
could be related to the increase of angle of attack, which enhances
the flow separation at the blade leading edge and, thus, increases
the obstruction generated by cavities, even for very small cavities.
Thus, the inception of rotating cavitation would allow reducing the
losses, as noted in Fig. 22. This additional influence of the flow
incidence at the leading edge is confirmed by the instability map as a
function of σ/α3 (Fig. 26b). An almost constant value of σ/α3 = 350
is obtained, which could be a criterion for instability inception in
blade-to-blade calculations.

9



Fig. 26 Limit of nonsymmetrical flow patterns according to σ/α and σ/α3.

VI. Conclusions

We have presented two-dimensional computations performed on
a four-blade cascade geometry representative of the behavior of
a real three-dimensional inducer. This work implied the develop-
ment of a nonmatching connection treatment, based on an inter-
polation process adapted to the SIMPLE algorithm. Attention was
focused on the study of nonsymmetrical flow patterns that occur in
inducers, that is, rotating supersynchronous cavitation and alternate
cavitation. These two flow configurations were successfully pre-
dicted by the numerical model at several mass flow rate conditions.
Comparisons between single-channel and four-channel computa-
tions revealed that nonsymmetrical flow patterns allow suppressing
the hollow in the blade cascade performance before the final break-
down. The analysis of the velocity field on the blade suction side in
the case of a single-blade computation suggests that this reduction
of the losses could be linked to an important acceleration of the flow
in the channels where the cavity is small. This jet effect modifies the
boundary layer on the blade suction side, which globally leads to a
decrease of the losses for the whole cascade. Instability criteria inde-
pendent from the flow rate were found, for instability inception and
conclusion.

This work is pursued to clarify the effects of rotation speed
and fluid parameters and to assess the prediction capability of
the model. We intend more particularly to take into account
the mentioned three-dimensional effects. Therefore, a full three-
dimensional model is developed to predict cavitating flowfields in
inducers. The final objective is to apply the numerical method pre-
sented in the present paper to three-dimensional computations, to
predict the unsteady effects associated with cavitation in the real
three-dimensional geometry.
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et Modélisation de l’Écoulement Instationnaire en Grilles d’Aubes,” Ph.D.
Dissertation, Institut National Polytechnique de Grenoble, Grenoble, France,
Dec. 2000.

24Joussellin, F., Courtot, Y., Coutier-Delgosha, O., and Reboud, J. L.,
“Cavitating Inducer Instabilities: Experimental Analysis and 2D Numerical
Simulation of Unsteady Flow in Blade Cascade,” Proceedings of the 4th

International Symposium on Cavitation, edited by R. E. A. Arndt, C. E.
Brennen, and S. Ceccio, June 2001.

25Tsujimoto, Y., Watanabe, S., and Horiguchi, H., “Linear Analysis of
Cavitation Instabilities of Hydrofoils and Cascade,” Proceedings of US–

Japan Seminar: Abnormal Flow Phenomena in Turbomachinery, 1998.

10


