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A 2D foam can be characterised by its distribution of bubble areas, and of number of sides.
Both distributions have an average and a width (standard deviation). There are therefore at
least two very different ways to characterise the disorder. The former is a geometrical mea-
surement, while the latter is purely topological. We discuss the common points and differences
between both quantities. We measure them in a foam which is sheared, so that bubbles move
past each other and the foam is “shuffled” (a notion we discuss). Both quantities are strongly
correlated; in this case (only) it thus becomes sufficient to use either one or the other to char-
acterize the foam disorder. We suggest applications to the analysis of other systems, including
biological tissues.
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1. Introduction

Two-dimensional cellular patterns fill the plane without gaps or overlaps. Even if
we consider here only the class of patterns where most cells meet in threes, they
are ubiquitous in nature: from 2D foams to biological tissues, including geology,
hydrodynamics, ecology, geography; as well as 2D cuts of 3D cellular patterns
in metallurgy, astronomy, 3D foams and biological organisms [1, 2]. Each cell is
characterised by its area A, which is an intrinsic property determined by the amount
of matter it encloses, and its number of neighbours n, which can vary according to
the mutual arrangement of cells within the pattern.

There are at least two quantities which characterise the disorder of a pattern: the
distribution of A and the distribution of n [1, 2, 3]. In the present paper, we study
whether it is possible to simplify the description of disorder to only two numbers,
namely the width of each distributions, called, respectively, the geometrical and
topological disorders. Both measures of disorder are independent [4, 5]. However,
statistically, a cell’s value of n tends to increase with its size (perimeter or area):
small cells tend to have fewer neighbours, and larger cells have more neighbours
(see [1, 2, 6, 7, 8, 9, 10, 11, 12] and references therein). We can thus expect that,
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(a) (b)

Figure 1. Experimental set-up. (a) Side view: bubbles are sandwiched between the surface of water and
a horizontal glass plate. (b) Top view: a computer controlled motor moves one rigid boundary, while the

other one is fixed; the lateral boundaries are passive.

except when the initial conditions due to preparation are important, there is a cor-
relation between these two measures of disorder. We investigate here, on different
examples but focusing on a 2D foam, whether this intuition is correct and under
which conditions the disorder of a pattern can statistically be described by a single

number.
We first describe experiments on a sheared monolayer of bubbles (§2), and com-

pare the results (§3) with simulations of similar systems and with data from evolv-
ing biological tissues (§4).

2. Materials and methods

2.1. Foam preparation

The set-up is similar to that of Kader and Earnshaw [13]. It uses a bubble mono-
layer (quasi-2D foam) confined at the air-water interface (Fig. 1a), as introduced by
Smith [7] and adapted by Vaz & Fortes [14]. It provides all the properties that we
require (unlike both other main types of quasi-2D foams, namely between two par-
allel glass plates, or at the surface of water exposed to air [15]): the water provides
easy access to the foam and enables us to prepare precisely the chosen distribution
of bubble areas. It also facilitates the manipulation of the boundaries, in particular
that of the rubber bands (see below). The glass plate facilitates observation and
prevents bubbles from breaking: the foam lifetime is limited only by coarsening,
which takes several hours and does not affect the results presented below.

The trough is a rectangle 44 cm long and 20 cm wide. The foam is enclosed in a
smaller square of size 18 × 18 = 324 cm2, with four independent boundaries (Fig.
1b). A rigid rod (fixed boundary) is attached to the trough itself. Another rigid
rod (moving boundary) is attached to the glass lid, which slides laterally under teh
control of a motor. The rectangle is closed on each side by a rubber band (passive
boundaries): it thus deforms into a parallelogram at constant area (Fig. 2).

The trough is filled with a solution of 10% commercial dishwashing liquid in
water. A pump blows air into a tube placed below the surface of water, which is
moved back and forth to produce an homogeneous foam. At low flow rate, the
solution surface tension and the tube diameter together fix the bubble volumes
[16]. The histogram of bubble volumes has thus a single peak. Its width increases
with the flow rate, from “narrow monomodal” (Figs. 3a) to “polydisperse” (Figs.
3b). Using two tubes simultaneously yields a histogram of bubble volumes with two
peaks. The distance between peaks can be chosen smaller than their width (“with
shoulder”, Fig. 3c), or larger (“bimodal”, Figs. 3d).

The foam thickness h is the distance between water and glass in the absence
of bubbles (Fig. 1a). At small h the foam is wet, with round bubbles. At large h
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a) b) c)

d) e) f)

Figure 2. The foam is initially prepared within a square of 18 cm side (a,b,c), which can be deformed
into a parallogram of the same area, here at an angle of 30◦ (d,e). The images show samples with the

smallest (a,d) and largest (b,e) width ∆A/〈A〉 of the bubble area distribution. (f) Same bimodal foam as
in (c), after 44 cycles of shear.

bubbles begin to pile on top of each other making a 3 dimensional foam [17]. In
between (3 < h < 6, 8 mm), the bubble monolayer is moderately wet; bubbles can
deform and thus store elastic energy. The foam has a finite shear modulus and thus
behaves as a 2D elastic solid until it yields and bubbles rearrange.

2.2. Measurements

A circular fluorescent tube (diameter 48 cm) is placed just above the trough. A
video camera records a 33 cm wide, 25 cm high field of view. Images are anal-
ysed using ImageJ [18] and skeletonised: white bubbles are surrounded by black
boundaries one pixel thick. Each bubble’s number n of sides (i.e. of neighbours)
is measured without ambiguity. At a given h, each bubble’s volume determines its
projected area seen from the top [19]. Hereafter, we call “bubble area” the area A
of each skeletonized bubble (this corresponds, in the original image, to the area of
the gas and almost all the liquid).

For each foam, we plot the histogram of A and n; Fig. 3 shows different examples.
We check that both averages, 〈A〉 and 〈n〉, have the expected values. Here the total
number N of bubbles is typically 570 to 1800 (with a maximum of 2719); 〈A〉 is
close to the total area of the foam divided by N (that is, the inverse of the bubble
density), typically 18 to 65 mm2; 〈n〉 is always equal to 6, minus a small correction
of order 1/N [1, 20].

We then measure the standard deviations ∆A =
(

〈

A2
〉

− 〈A〉2
)1/2

and ∆n =
(

〈

n2
〉

− 〈n〉2
)1/2

. To enable comparisons, in what follows we only consider the

dimensionless standard deviations ∆A/ 〈A〉 and ∆n/ 〈n〉 as measurements of the
geometrical and topological disorder:

∆A

〈A〉
=

√

〈A2〉

〈A〉2
− 1 ;

∆n

〈n〉
=

√

〈n2〉

〈n〉2
− 1. (1)

In principle it is possible to define n unambiguously even for bubbles at the bound-



February 28, 2008 8:15 Philosophical Magazine quilliet˙disorder.hyper28031

4 Quilliet et al.: disorders in foams

(a) (b) (c) (d)

Figure 3. Four examples of histograms of bubble area A (top) and number n of sides (bottom) in
freshly prepared foams: (a) narrow monomodal, (b) polydisperse, (c) with shoulder, (d) bimodal.

aries [5]. While useful in simulations, in experiments the image analysis and skele-
tonization cause some systematic bias in the area measurement at the boundaries.
We thus choose to remove these bubbles when evaluating both measures of disor-
der, which are very sensitive to artefacts, or to errors due to even a small number
of bubbles [2].

2.3. Shear cycles

A shear cycle consists in shearing the foam by displacing the movable boundary a
distance 10.4 cm and back, and then to −10.4 cm, and back again. This corresponds
to an angle of +30◦ to −30◦ and a strain amplitude of +10.4/18 = +0.58 to −0.58.
For dry foams, to be well above the yield strain requires a larger amplitude [21];
we obtain it by preparing the foam when the moveable rod is at the position −4.1
cm (at the left limit of the camera field of view): the cycle is then at positive strain
from 0 to (10.4 + 4.1)/18 = 0.8, then down to −(10.4 − 4.1)/18 = −0.35. For the
driest foam, we also reduce the size of the trough by reducing the distace between
the fixed and moveable rods to 10.5 cm; N is then smaller (413 vs. 879 bubbles),
and a cycle consists of positive strains in the range from 0 to (10.4+4.1)/10.5 = 1.4,
then down to −(10.4 − 4.1)/10.5 = −0.6.

A cycle lasts T = 275 seconds and the maximum velocity is 37.9◦/min, slow
enough that the results presented here do not depend on the velocity. The bubble
deformation and the velocity gradient enforced by the lateral boundaries are uni-
form (up to non-affine displacements due to local disorder). During shear, each cell
area is conserved, so that ∆A/ 〈A〉 keeps its initial value. We measure ∆n/ 〈n〉 at
each period.

3. Results

Figure 2 shows foam samples with the smallest (Fig. 2a,d) and largest (Fig. 2b,e)
width ∆A/〈A〉 of the bubble area distribution. We make the different kinds of
distribution overlap, i.e. the width of some polydisperse foams are larger than
some bimodal foams.

In principle, it would be possible to prepare foams with a slightly larger width
of the area distribution by including a few very large bubbles. However, this would
make the distribution spatially heterogeneous. At the other extreme, a foam with
a smaller width of the area distribution would be possible with other experimental
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(a) (b) (c)

Figure 4. Size-topology correlation for foam experiments after several shear cycles: (a) narrow
monomodal, (b) polydisperse, (c) bimodal. Closed squares, left scale: average size < A(n) > (in pixels) of

the population of bubbles with n sides; bar: the standard deviation calculated on each population.
Dashed line, right scale: number N(n) of bubbles in this population.

(a) (b)

Figure 5. (a) Evolution of topological disorder under shear for given bubble area distribution: ∆n/〈n〉
(normalised by its asymptotic value to facilitate comparisons) versus number of shear cycles. Data
correspond to Fig. 4: diamonds: narrow monomodal; triangles: polydisperse; squares: bimodal. (b)

Evolution of the fraction of contacts between unlike (small−large) bubbles during shear for a bimodal
foam.

set-ups, but with only a small number of non-hexagonal bubbles, the distribution
of the number of sides would again become spatially heterogeneous (see caption of
Fig. 6).

Fig. 4 indicates a clear correlation between bubble size and number of sides for
sheared foams (unsheared foams are similar, data not shown). There is still debate
(for reviews see [1, 2, 6, 7, 8, 9, 10, 11, 12]) concerning (i) systems for which
this relation is or is not linear; (ii) whether it is related to entropy maximisation,
energy minimisation, or both (free energy minimisation); (iii) what is the value and
significance of the linear intercept; (iv) whether n correlates better with bubble
perimeter or area (or volume, in 3D); (v) and especially up to what precision
the relation can significantly be considered as linear for practical or theoretical
applications. Here, in a narrow monomodal foam there are too few points to reach
a conclusion; in polydisperse and bimodal foams the relation is certainly not linear.

While the foam is sheared, the bubbles rearrange and the distribution of the num-
ber of sides changes while the area distribution remains fixed. In all experiments,
∆n/〈n〉 reaches a constant value after a few shear cycles (Fig. 5a). Under shearing,
weakly disordered foams become more ordered: ∆n/〈n〉 decreases; bimodal foams
(Fig. 2c,f) become increasingly mixed (Fig. 5b), so that ∆n/〈n〉 increases. This is
important, and not trivial [4].

Any given pattern can be represented by a point in the plane (∆A/〈A〉,∆n/〈n〉).
During a single shear experiment, this point moves up or down. After many cycles,
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Figure 6. Correlation between measures of disorder in sheared foams. Each point is the asymptotic
value of ∆n/〈n〉 and ∆A/〈A〉, from Fig. (5a). Solid line: power law ∆n/〈n〉 = 0.27 (∆A/〈A〉)0.8. Dashed
lines: lower bound for topological disorder, for the extreme values of N in these experiments (413 and
2719). When enclosing a honeycomb in a square box, boundary conditions impose at least two grain

boundaries with length of order N1/2 between perpendicular lattices. Topological considerations [22]
imply a minimal number of paired five- and seven-sided bubbles per unit line of grain boundaries. We

then estimate the topological disorder to be at least 1/[3 × 121/8 × N1/4].

(a) (b)

Figure 7. Correlation in disorder for other patterns. Solid line: eq. (2), same as in Fig. 6. (a) Foam
simulations: downward-pointing triangles, Surface Evolver [23] simulations [21] shuffled by cycles of

shear, with four boundaries as in the present experiments; upward-pointing triangles, same, but with
periodic boundary conditions (no boundaries) [21]; closed diamonds, Surface Evolver simulations shuffled
by cycles of uniaxial elongation [24]; open squares, simulations using the Potts model at constant tension,
with periodic boundary conditions, shuffled by increasing the fluctuations [25, 26]. (b) Biological tissues:

closed triangles, cells rearranging during the formation of a fruit fly (Drosophila) embryo thorax
epithelium; open triangles, same for mud mutant tissue [27]; closed square, facets (ommatidia) in a fruit

fly (Drosophila) retina are arranged in an ordered honeycomb; open square, same for the rough eye
mutant retina. [28]; grey diamonds, simulations using the Potts model of cells with adhesion and cortical

tension, with periodic boundary conditions, shuffled by increasing the fluctuations [25, 26].

points tend to cluster on a single curve (Fig. 6), namely the power law:

∆n

〈n〉
= 0.27

(

∆A

〈A〉

)0.8

. (2)

This is the main result of this paper.

4. Discussion

In our foams, the width of the area distribution varies from 0.1 to 1, and that of
the topology distribution from 0.03 to 0.3. In this limited range, eq. (2) means that
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∆n/〈n〉 is close to 0.3 ∆A/〈A〉. Distributions with the same width but different
higher-order moments behave similarly.

This range covers a large variety of foams already studied in the literature. Larger
∆n/〈n〉, up to 0.5 or 0.6, would instead correspond to simulated irregular-shaped
structures generated by fragmentation (fractal topological gas [29]). Lower ∆n/〈n〉,
down to zero, can be obtained only in highly controlled structures, with periodic
boundary conditions (as in simulations) or with boundaries far away from the
analysed image [30]. For instance the fruit fly retina (Fig 7b) is part of a large
honeycomb lattice of 800 facets [31].

According to de Almeida and coworkers [32, 33, 34], “shuffling” a foam involves
enough topological changes (including “T1” neighbour swappings [1]) that it loses
any memory of its initial condition. The present results make this definition precise:
a foam is shuffled after enough rearrangements [21] that the topological disorder
becomes more dependent on the geometrical disorder than on the initial conditions.
Since the present work is descriptive, it is difficult to determine the physical origin
of this statistical (rather than exact) correlation, which is not trivial [30]. It does
not seem related to the minimisation of any energy, and could apply to patterns
other than foams.

Examples from foam simulations as well as biological tissues are plotted on Fig.
7. The collected data all fall in the same region of the (geometrical disorder, topo-
logical disorder) plane. Most of them have ∆n/〈n〉 larger (up to 1.5 or 2 times)
than eq. (2).

The curve of Fig. 6 (eq. 2) appears, again statistically (rather than exactly [30]),
as a lower bound for the topological disorder, at given area disorder. It can be
used in practice as a benchmark to test how shuffled a pattern is. If a pattern has
∆n/〈n〉 very different from 0.3∆A/〈A〉, it probably means that it is far from being
shuffled. There is no reciprocity: a non-shuffled pattern can be close to eq. (2).
The curve of Fig. 6 seems to be stable under shuffling: it is reached asymptotically,
when starting from different initial conditions (Fig. 5).

5. Conclusion

To summarize, all the patterns that we examine are in the same region of the
plane (geometrical disorder, topological disorder). For a given width of the area
distribution (and independently of its higher moments), the “shuffled foam” is well
defined and realized. It reaches a lower bound (eq. 2) for the topological disorder,
which is robust and directly dependent on the geometrical disorder. Theoretical
work could try to explain eq. (2) and its stability, for instance by understanding
the respective roles of disorder and surface minimisation [32, 33, 34].

These results could be used to characterize patterns and determine causal re-
lations between both disorders, including in biological mutants. They could also
be used to study how the foam’s disorder (now quantified by a single number)
affects its mechanical properties [24], and to improve the characterisation of coars-
ening [3, 34]. Perspectives include generalisation to other discrete systems, such as
granular matter and colloids [35, 36] and to 3D systems [34].

Acknowledgements

Manuel Fortes’ passionate approach to foam physics has been a source of inspiration
for several of us. We thank J. Legoupil for his participation in the simulations, K.
Brakke for developing and maintaining the Surface Evolver code, A.F.M. Marée



February 28, 2008 8:15 Philosophical Magazine quilliet˙disorder.hyper28031

8 REFERENCES

for developing the Potts model code used here, M.F. Vaz for providing references,
I. Cantat for critical reading of the manuscript, Y. Belläiche, R. Carthew and T.
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