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Abstract – We propose a method to extend the concept of feedback gain to nonlinear models. The
method is designed to dynamically characterise a feedback mechanism along the system natural
trajectory. The numerical efficiency of the method is proved using the Lorenz (1963) classical
model. Finally, a simple climate model of water vapour feedback shows how nonlinearity impacts
feedback intensity along the seasonal cycle.

Copyright c© EPLA, 2008

Introduction. – Since its introduction by Bode [1],
the concept of feedback gain has proved a very efficient
tool in the engineering fields. Originally elaborated in the
frequency domain for linear systems, it further allowed for
the boom in techniques of optimal control that have indeed
been extended to nonlinear systems in the 60s —robust
filtering, optimal or adaptive control, etc. (e.g. [2], and
the references therein). It also inspired a variety of
research applications for controlling or synchronising
chaotic systems using feedback laws (see [3]).
Our concern here is different: the concept of feedback is

thought as a way to gain insight into the behaviour of a
system. In this vein, feedback is frequently mentioned in
biology, in chemistry, in physics, and in economics (e.g. the
Keynes feedback, in [4]), but usually on a qualitative basis
only: one will essentially speak of positive (destabilising)
or negative (stabilising) effect of a feedback mechanism.
Manabe and Wetherald [5] originated a breakthrough in
climate sciences when they proposed an analysis of the
Earth climate allowing to assess in terms of quantitative
feedback gain the relative importance of various contribut-
ing phenomena. From then on, the study of global warm-
ing, caused by the increasing concentration of greenhouse
gases like CO2, has been systematically analysed in terms
of feedback processes (water vapour, clouds, albedo . . . ),
as in [6–9] among many others. Nevertheless, there is still
ambiguity about a general definition of feedback gain, as
analysed in [10], where four definitions are found.

(a)E-mail: alain@lmd.jussieu.fr

Considering the role of water vapour feedback (WVF)
in global warming, the direct climate response to an
increase in CO2 concentration is an increase in the mean
atmospheric temperature (Tatm), due to a change in
the long-wave radiation budget. Following this direct
effect, the feedback process runs as follows: since climatic
mechanisms maintain relative humidity unchanged, the
atmospheric warming translates into a larger water vapour
content in the atmosphere. Being water vapour a strong
greenhouse gas, the initial Tatm perturbation is amplified.
From the comparison between the equilibrium response
obtained in climate models when including that feedback
and the similar response when artificially suppressing
that feedback, it is commonly said that “WVF increases
by 60 percent the warming due to carbon dioxide
perturbation”.
A major limitation of this approach is that it ignores

the dynamical aspects of Bode’s original concept since
only the difference between two systems at equilibrium
is considered. Indeed, for systems that take very long
to reach a new equilibrium —as the climate system—
the dynamics are of primary importance. In [11], the
authors explained how to retrieve the dynamics of feed-
back for systems between two equilibria. Regarding the
CO2 increase, they showed with an idealised model that
the atmospheric WVF response is negative on the short
term (damping effect), and only becomes positive (ampli-
fying effect) after a build-up period of four to seven years,
where the 60 percent increase is finally reached at the
perturbed equilibrium.
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This equilibrium approach is nevertheless a severe limi-
tation. Indeed, climate is driven by natural forcing (e.g.
solar forcing) and can hardly be considered as in equilib-
rium. The purpose of this article is to extend the feedback
concept to dynamical nonlinear systems.
We shall first introduce a generic method to define a

feedback loop in a state-space model. Then, the system
response to the external perturbation is characterised
by a set of dynamical functions related to the feedback
gain. We observe that when the system simplifies into
autonomous conditions, these functions are the same as
those introduced by Bode. A first application on the
Lorenz (1963) model is carried out to demonstrate the
numerical efficiency of the method on a strongly nonlinear
model. Finally, we come back to the water vapour feedback
and, using a very simple nonlinear model, we compare the
equilibrium response with more realistic trajectories.

Formal background. Consider a state-space model
driven by some external forcing h(t):

∂tη(t) = g(η(t),h(t)), η(t= 0) = η0, (1)

where η is the state vector. Once a reference trajectory
(T ref) is followed, perturbations to system (1) are solutions
of the so-called tangent linear system (TLS):

∂tδη(t) =A(t)δη(t)+B(t)δh(t), t∈ [0, T ]. (2)

In this equation, δη is the deviation of the perturbed
system from the reference trajectory, caused by a pertur-
bation δh(t) of the reference forcing function, and A(t) =
∂ηg(t) and B(t) = ∂hg(t) are the Jacobian matrices. We
call circulating tangent linear system (CTLS) the non-
autonomous TLS (2), meaning that it is defined along
T ref . The classical solution of (2) reads
{

δη(t) =Φ(t, 0)δη(0)+
∫ t

0
Φ(t, τ)B(τ)δh(τ)dτ,

∂tΦ(t, τ) =A(t)Φ(t, τ), Φ(τ, τ) = I,
(3)

where Φ(t, 0) is the state transition matrix of the
perturbed system and δη(0) a perturbation of the
initial conditions [12]. Such a system does not exhibit
any explicit structure in which a feedback loop can be
specified. We now introduce a way to provide a state
model with a feedback structure.

Feedback concepts. –

Feedback loop. A feedback loop is a circular structure
that links some chosen physical quantity to the rest of the
system. A general method to provide a model with such a
structure can be stated as follows:

1) choose an “output” variable from the model that
will be used as a test variable —in the WVF case
in this letter, we choose Ts, the atmospheric surface
temperature, as the test variable;

2) add a perturbed version of this variable to the system
—say ϕ= Ts+ perturbation;

Fig. 1: Feedback structure using an extra-variable ϕ (left panel)
and the classical block-diagram (right panel).

3) close the feedback loop: the new variable ϕ is
introduced back in the model where the mecha-
nisms are depending on its perturbed version —in
eq. (17), the water content is chosen as depending on
ϕ instead of Ts.

Accordingly, the introduction of a feedback loop in
the original system corresponds to the following formal
procedure:

– a scalar variable ϕ is added to the system with
equation ϕ= f(η) —see eq. (14) for instance;

– the primitive model (1) is modified to be sensitive to
ϕ in such a way that original and modified models are
mathematically equivalent:

∂tη(t) = g
′(η(t), ϕ(t),h(t)) = g(η(t),h(t)).

Now, if a scalar perturbation u(t) is applied to the ϕ
equation only (ϕ(t) = f(η)+u(t)), the system will respond
to that change within a feedback loop: perturbation u on
ϕ→ selected mechanisms→ rest of the system→ response
δϕ (see fig. 1).
The opening of the loop means preventing the system

from responding on ϕ (cross in fig. 1): δϕ0 = u. The
classical response would be δϕ= 1

1−gu in a symbolic form.

The difference between the perturbation u(t) and the
response in ϕ(t) is commonly understood as the feedback
effect of the system on ϕ.

A general definition of dynamical feedback. Following
the preceding procedure, the original tangent system (2)
is modified into:

{

∂tδη(t) =A
♭(t)δη(t)+ |b(t)〉δϕ(t),

δϕ(t) = 〈c(t)|δη(t)+u(t).
(4)

The column and row matrices |b〉= ∂ϕg
′ and 〈c|= ∂ηf

formalise the structure of the feedback loop. For system (4)
to be mathematically equivalent to (2), the following
equality A(t) =A♭(t)+ |b〉〈c|(t) must hold. Opening the
loop corresponds to the cancelling of 〈c|, that disallows
the system perturbation to influence ϕ.
It is easily checked that system (4) takes the form of (2)

when δϕ has been eliminated. Correspondingly, we define
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the state sensitivity s(t, 0) as the state response in (4)
using solution (3) —setting δη(0) = 0:

s(t, 0) = δη(t) =

∫ t

0

Φ(t, τ)|b(τ)〉u(τ)dτ. (5)

We call σu(t, 0) = δϕ(t) the response in ϕ, and ̺u(t, 0) =
σu(t, 0)−u(t) the feedback effect of the system on ϕ,
which is the deviation of the response from the perturbing
function starting at τ = 0:

̺u(t, 0) = 〈c(t)|

∫ t

0

Φ(t, τ)|b(τ)〉u(τ)dτ. (6)

This function can be computed along T ref from the system
obtained by time-differentiating eq. (5):

{

∂ts(t, 0) =A
♭s(t, 0)+ |b〉̺u(t, 0)+ |b〉u(t),

̺u(t, 0) = 〈c|s(t, 0), s(0, 0) = 0.
(7)

In [13], Cacuci has shown how to obtain such systems
using the Gâteaux differentiation, and called “general
sensitivity” the response δϕ to u.
It is worth noticing that the CTLS integration of (7) is

carried out simultaneously with the reference trajectory,
that is, without applying any actual numerical perturba-
tion that would change the trajectory. This is admissible as
far as the perturbation amplitude stays within the limits of
linearity of the perturbed system. Also, the CTLS provides
a definite advantage concerning the generic features of the
results, compared to finite difference methods using finite
perturbation amplitudes.

The autonomous limit. On short segments of trajec-
tory, the constant Jacobian matrices define a local
TLS, with a simpler state transition matrix: Φs(t, τ) =
expA(t− τ). For such autonomous system, a Laplace
transformation can be applied to the convolution product
in (6) to obtain:

˜̺us (μ) = 〈c|(μI −A)
−1|b〉ũ(μ), (8)

where f̃(μ) is the Laplace transform of f(t), with μ
as the Laplace variable. We call standing this function
corresponding to the dynamical response of the local
autonomous system to perturbation. When the system
reaches equilibrium, the CTLS becomes truly autonomous,
and the standing response identifies with the circulating
one, a property that allowed the dynamical analysis in [11]
simply using the inversion of eq. (8).
To retrieve the feedback gain, one can directly apply

a Laplace transformation to the autonomous version of
eq. (4) to get

{

(μI −A♭)s̃(μ) = |b〉σ̃(μ),

σ̃(μ) = 〈c|s̃(μ)+ ũ(μ),
(9)

which, after elimination of s̃, leads to

(1−〈c|(μI −A♭)−1|b〉)σ̃(μ) = ũ(μ). (10)

The form (1− g̃(μ))σ̃(μ) = ũ(μ) of eq. (10) is the one used
by Bode as the definition of feedback gain in the Laplace
domain:

g̃(μ) = 〈c|(μI −A♭)−1|b〉 (11)

In this form, it is easily seen that setting 〈c|= 0 corre-
sponds to the open-loop mode, that is, to a null feedback
gain.
We may conclude that the two feedback functions σ

and ̺ generalise the autonomous ones with the following
correspondence:

{

σu(t, 0)←→ σ̃(μ) = 1
1−g̃(μ) ũ(μ),

̺u(t, 0)←→ ˜̺(μ) = ũ(μ)− σ̃(μ) = g̃(μ)
1−g̃(μ) ũ(μ).

(12)

Dynamical feedback characteristics. The standard
definition of feedback characteristic functions σΥ and ̺Υ

considers the particular perturbing step-function u(τ) =
Υ(τ), whose Laplace transform is Υ̃(μ) = 1

μ
in (12). Corre-

spondingly, the feedback effect characteristic function ̺Υ

is given by eq. (6) setting u(τ) = 1. This form is referred
to as the “F4 sensitivity-altering” feedback in [10].
Unlike the linear feedback mechanism which is

completely characterised by autonomous functions, the
nonlinear case is depending both on a trajectory and on a
starting point. It may happen that, in practical applica-
tions, those primitives are known: in an economic model,
a shock (i.e. on oil prices) arises at a known date; in
climate models, a volcano eruption is also chronologised.
In general the feedback response may strongly depend
on the initial time of perturbation: this pertains to the
richness of nonlinear systems behaviour. A comparison
between standing (8) and circulating (6) TLS functions is
presented in the application section.
As a final formal remark, the Dirac impulse u(τ) = δ(τ)

may also be useful as a perturbing function because the
corresponding ̺δ(t, τ) kernel can be convoluted with any
perturbing function v(t) to produce the model response:

δϕ(t) = 〈c(t)|
∫ t

0
̺δ(t, τ)v(τ)dτ + v(t). Because in that

case ̺δ(t, τ) is needed as a function of τ , the feedback
system (7) shall be integrated in its adjoint-system form,
see [14]. That feedback form corresponds to the “F3
stability-altering” class in [10].

Circulating feedback gain function. Contrary to the
linear case, one cannot retrieve the feedback gain of
nonlinear systems from neither ̺ nor σ, as in (12). A
particular system has to be built. Let us consider the
following system:

{

∂ts(t, 0) =A
♭s(t, 0)+ |b〉Υ(t),

g(t, 0) = 〈c|s(t, 0).
(13)

In the autonomous case, that system simplifies into: g̃(μ) =
μ−1〈c|(μI −A♭)−1|b〉, that is recognised as Bode’s feed-
back gain. System (13) is the so-called “open-loop” mode
which provides for the general feedback gain function in
its circulating form.
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Fig. 2: Test variable in the Lorenz model and feedback effect
CTLS function.

Application to the Lorenz model. – We illus-
trate the method using the Lorenz [15] model to prove
the numerical efficiency of the method on a well-known
nonlinear system. The system —modified into feedback
form— reads

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂tx= s(y−x),

∂ty= (rx− y−xz),

∂tz =−bz+ϕ,

ϕ= xy,

(14)

with the set of parameters s= 10, r= 28, b= 83 that leads
to a chaotic behaviour (fig. 5 displays the x, y trajectory
with the two wings of the attractor).
To build the feedback form (14), we have chosen ϕ= xy

as a nonlinear test variable, but any other term could
have been chosen, since we are not interested in physical
analysis here1. Also, the comments on dynamics will only
consider numerical aspects of the results.
Figure 2 shows the evolution of ϕ and the CTLS ̺Υ(t, 0)

function along the trajectory, starting at the beginning of
an orbital point A and going after four revolutions through
a transition point B (in the following, Υ is dropped from
symbol ̺Υ).
Because of the symmetry of the system across z, the

test variable ϕ= xy does not clearly reveal the transition,
whereas the CTLS feedback effect does. Between points A
and B in the figure, the interaction mode responds with
a zigzag at each orbit, increasing regularly in amplitude.
After B the response at transition amplifies.
This systematic amplification before transitions is seen

in fig. 3 which displays the long-term tendency of ̺(t, 0).
The chaotic nature of the model is correctly characterised
by the average linear increase of the log CTLS effect which
is found to follow a local Lyapunov exponent. Moreover,
the oscillation is similarly increasing in amplitude, an
aspect that is not revealed by the Lyapunov analysis.
Figure 4 illustrates what happens when starting far

from the attractor. Clearly, the feedback effect is very

1Nevertheless, a physical interpretation can be found in
http://www.lmd.jussieu.fr/ZOOM/doc/examples.html.

Fig. 3: Long-term feedback effect (log scale). The x trajectory
is rotated along the Lyapunov exponent: x→ x+λLt, with
λL ≃ 0.95, to ease curve collocation.

Fig. 4: Same as fig. 3 with initial conditions out of the attractor.

different depending on whether the current point is lying
within the attractor or not: the average increase of ̺(t, 0)
reduces each time the circulating point leaves the attractor
(see times 0, 35, 48, 73). The attractor can therefore be
characterised by an enhanced action of the xy mode
interaction.

Short-term dynamical response. The asymptotic
behaviour of the feedback function shows coherence with
the Lyapunov stability analysis, but feedback analyses
are further concerned with short- and medium-term
dynamics. To account for the Lyapunov divergence of
the Lorenz system, we will remove this divergence by
applying a factor exp(−λLt) on dynamical functions.
Let now zoom on the four-orbits sequence going to

transition. In fig. 5, the x, y trajectory is plot with error
bars. Error bars represent the CTLS effect amplitude
(log-scaled), plotted as blue vertical when above the mean
Lyapunov increase, and as green horizontal when under
the mean Lyapunov increase. Both orbits are followed
clockwise. The first (inner) orbit shows the under effect
only, when the point is orbiting around the left-wing point
of steady convection (at the centre of orbits).
Between points 1 and 2 on the fourth orbit, the above

reaction is active when the movement decelerates toward
the perigee (close to central point (0,0)), and when it
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Fig. 5: Lorenz attractor in the (x, y)-plane; error bars: CTLS
effect (scaled, see text).

accelerates heading to the apogee (see points 3 and 4).
This suggests that the above effect is determined by a
repulsion from the central point. The transition initiates
with a strong under reaction after the apogee (5), and the
circulating-point decelerates again from the central-point
repulsive effect, but with an offset that knocks the state
onto the right wing.
Such dynamical characteristics show how different

regions of the attractor influence the behaviour of the
system. The feedback formalism just brings another
approach, simple and general, to the numerous and
sophisticated tools developed for nonlinear analysis.

Water vapour feedback model. – Coming back
to the water vapour feedback effect, we have built the
simplest model to analyse the slow response of climate
to a CO2 perturbation that matches the results obtained
in [11]. The purpose of the exercise is to give an idea
of what importance nonlinear mechanisms might have on
WV feedback.
We consider the evolution of a 30m thick mixed ocean

layer, irradiated by a mean solar flux FSW = 343Wm
−2.

The energy loss is from the LW radiative flux only:

Co
dTs
dt
= FSW −FLW , (15)

with Co = 1.257 · 10
8 JK−1m−2.

To simulate the effect of greenhouse gases (WV or
CO2) on radiation, we use an equivalent radiation altitude
ze. Seen from space, this altitude gives an equivalent
outcoming blackbody radiation temperature due to both
surface and low-level layers of the atmosphere (that
contain a substantial amount of water vapour):

FLW = σ(Ts− zeγz)
4, (16)

where σ= 5.67 · 10−8Wm−2K−4 is the Stephan-
Boltzmann’s constant and γz = 6.5Kkm

−1 the fixed

Fig. 6: Water vapour feedback model responses.

atmospheric-temperature lapse rate (i.e. γz = ∂zTatm).
The specific humidity at surface Q is given by the
Clausius-Clapeyron relation:

Q= f(Ts) = μ exp

[

Lv

Rm

(

1

T0
−
1

Ts

)]

, (17)

with μ= 11.05, Lv
Rm
= 5423K and T0 = 273.15K.

We now determine the dependence of ze on Q. When the
ocean temperature Ts increases due to a CO2 concentra-
tion increase, more water evaporates in the atmosphere,
and ze increases: ze = z0+αQ. Parameters z0 = 1km and
α= 0.02 have been calibrated from the more complete
model in [11], as they account for the elevation of ze due
to the amount of water vapour in low atmosphere, which
is non-trivially related to Q.
To build the WV feedback loop, we define the new

variable as ϕ= Ts, and let the atmospheric water vapour
depend on it in eq. (17): Q= f(ϕ). In this new structure
of the system, ϕ is the air-surface temperature, and can
now be perturbed independently of Ts.
The WV feedback loop is: ϕ ↑→Q ↑→ ze ↑→LW ↓→

Ts ↑→ϕ and it increases more (positive feedback). The
open-loop mode is obtained when Q does not respond to
the change in ϕ.
We first consider a Ts trajectory starting out of equilib-

rium from 16 ◦C, and slowly reaching equilibrium at 17 ◦C
(red-points curve in fig. 6). At the final equilibrium, the
standing response to a perturbation in ϕ is given by the
blue curve, an exponential response that reaches 0.43 with
an e-folding time of 423 days. The corresponding feedback
gain is 30% as in [11] (the model is calibrated for that
purpose). This means that if a step in CO2 concentra-
tion is responsible for a final increase of 1K in the model
temperature, then an immediate fraction of 0.7K is due to
the direct CO2 effect, while the WV feedback is gradually
adding an extra 0.3K (i.e. 0.7× 0.43).
The response time is nevertheless much shorter than

the several years in [11], this being due to the absence of
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delay in the coupling of the ocean to the atmosphere in
this crude model, where the response time is proportional
to Co —or to the ocean layer thickness

2.
The CTLS response is the green curve just above

with the same asymptotic response of 0.43. Following the
trajectory, the circulating response is very close to the
standing one, meaning that the nonlinearity of the model
is marginally active.
We now consider a cyclic seasonal SW forcing with

an added amplitude of ±100Wm−2; the response is the
blue oscillating curve and the thin red line is the surface
temperature trajectory, finally oscillating between 9 ◦C
and 25 ◦C. The nonlinear effect of the model is illustrated
by a stronger WV feedback in the mean. Moreover, it
is even stronger during autumn (̺≃ 0.52) than in spring
(0.44).
If this minimalist model of climate were realistic, it

would tell that in response to a constant CO2 step,
fall temperatures would be more amplified than spring
temperatures. Such asymmetry proceeds from the non-
linearity of the model.

Final remarks. – We have shown how to extend to
nonlinear systems the original Bode’s approach of the
feedback analysis. Using the tangent linear system along
trajectories gives rise to a natural extension of linear
concepts and allows to exhibit the dynamical aspects of
feedback characteristic functions.
In practical applications, the addition of an extra-

variable to the basic state model as we did is a simple
way to unambiguously build a feedback loop structure
in a model, including the explicit reference to the open-
loop mode. Moreover, this new variable offers flexibility
in implementing meaningful feedback loops. In gridded
models for instance, a meaningful response relies on the
average of an ensemble of grid variables, because the space
discretisation is guided by numerical rather than physical
concern. A combination of state-space-averaging methods

2The autonomous response can be analytically obtained from
the application of eq. (8) and inversion. One gets the asymptotic

feedback gain: g∞ = αγz
Lv
Rm

Q(Ts)

T2
s

and an e-folding time of τ =

1
(1−g∞)T3(ze)

Co
4σγz

for the response.

with feedback characterisation would bring important gain
in gridded-systems analysis.
As a conclusion, the proposed CTLS approach offers

a technique to apply dynamical feedback concepts to
nonlinear models while reflecting some generic features of
the results. Moreover, the dynamical aspects of feedback
mechanisms address the basic issues in the behaviour of
complex systems, especially the effect of interdependence
of parts in the functional complexity of the whole system.
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